# The importance of scale for spatial-confounding bias and precision of spatial regression estimators 

Chris Paciorek<br>Department of Biostatistics Harvard School of Public Health www.biostat.harvard.edu/~paciorek

March 16, 2009
Supported by NIEHS ES01244, NIEHS ES000002, NCI CA1342494-01

## Spatially-correlated Residuals

$$
Y \sim \mathcal{N}(X \beta, \Sigma)
$$

What do we know?

- Under known correlation structure:
(1) GLS is more efficient than OLS for estimating exposure effect, $\beta$.
(2) Standard OLS variance estimator is incorrect.
(3) Estimating the correlation structure complicates matters.

What don't we know?

- If the residual is correlated with the exposure, what can we say about bias?
- How does the spatial scale of the residual affect bias, efficiency, and variance estimation?
- How does spatial scale in exposure affect matters?


## The Core Issue

- Is the spatial residual structure correlated with the exposure?
(1) The spatial structure may be caused by unmeasured confounders.
(2) If exposure and residual have large-scale variation, dependence/concurvity seem likely.
- If so, this association violates a key assumption of standard random effects models, including kriging models.


## Example of Air Pollution Epidemiology

- Estimates of chronic health effects of air pollution are identified from cross-sectional (i.e. spatial) variation in exposure.
- Large-scale spatial differences are easier to measure than small-scale differences in exposure.
- Hypothesis: large-scale variation is more likely to be confounded than smaller-scale variation.
- regional variation in diet, exercise, cultural factors, socioeconomic status
- So if regions with lower income or less healthy diets are regions with higher pollution, you would expect spatial confounding bias.


## Birthweight and Traffic Pollution in Eastern Massachusetts

All births in eastern Massachusetts, 1996-2001


For comparison, sex effect is ${ }^{\sim} 130 \mathrm{~g}$, black carbon estimate of ${ }^{\sim} 7 \mathrm{~g}$.

## Scale Matters

How does elevation affect precipitation in the central United States?

- Large-scale negative association, but elevation is not the causal effect.


Residual association


- A spatial model $y_{i}=\beta_{0}+\beta_{1} x_{i}+g\left(s_{i}\right)+\epsilon_{i}$ can isolate the elevation effect to the effect of elevation at small scales (positive association).


## A Simple Modeling Framework

Consider the linear model with correlated residuals:

$$
Y \sim \mathcal{N}(\mathcal{X} \beta, \Sigma)
$$

This can be obtained using a simple mixed model,

$$
Y_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{X} X\left(s_{i}\right)+g\left(s_{i}\right), \tau^{2}\right)
$$

with spatially-correlated, normally-distributed random effects,

$$
g \sim \mathcal{N}\left(0, \sigma_{g}^{2} R\left(\theta_{g}\right)\right)
$$

Marginalizing over $g$ gives

$$
Y \sim \mathcal{N}\left(\beta_{0} 1+\beta_{x} X, \sigma_{g}^{2} R\left(\theta_{g}\right)+\tau^{2} l\right)
$$

$X$ is likely to be spatially correlated (e.g., if $X$ is generated by a Gaussian process, $X \sim \mathcal{N}\left(0, \sigma_{x}^{2} R\left(\theta_{x}\right)\right)$. Note that this model is essentially equivalent to a universal kriging model.

## A Potential Problem

- What if $X$ and $g$ are dependent?
- We have integrated over the marginal for $g$ (because the usual random effects model assumes the random effects are independent of the covariates) when we should have integrated over the conditional for $g \mid X$.
- Letting $\epsilon_{i}^{*}=g\left(s_{i}\right)+\epsilon_{i}$, we have the model $Y_{i}=\beta_{0}+\beta_{x} X\left(s_{i}\right)+\epsilon_{i}^{*}$.
- The usual regression model assumes the covariate and the residual are independent
- Violating this assumption induces bias.


## Identifiability

- There is a fundamental non-identifiability in the model

$$
Y_{i}=X\left(s_{i}\right) \beta+g\left(s_{i}\right)+\epsilon_{i}
$$

which we could re-express as

$$
Y_{i}=g^{*}\left(s_{i}\right)+\epsilon_{i}
$$

How do we separate the pollution effect from the spatial effect (spatial confounder) if the pollution effect is just another form of spatial effect?

## Constraints Provide Identifiability

- Constraints on $g$ provide identifiability: penalized likelihood, distribution on random effects (mixed effects model or Bayesian model)
- Such penalized models favor attribution to the fixed effect:
- Penalty on smoothness of $g$
- Random effects density (prior) for $g$
- Key question: Do such models reduce spatial confounding bias?
- Potential mechanism for bias reduction: attribute variability from confounder to $g$.
- Conventional Wisdom?
- Accounting for spatial correlation in the residual, $g$, can account for spatial confounding and reduce (eliminate?) bias.


## General Analytic Framework

Assume there is an unmeasured spatially-varying confounder, $Z(s)$. Let the data generating mechanism be

$$
Y_{i}=\beta_{0}+\beta_{x} X\left(s_{i}\right)+\beta_{z} Z\left(s_{i}\right)+\epsilon_{i}, \epsilon_{i} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \tau^{2}\right)
$$

Assume that $X(s)$ and $Z(s)$ are Gaussian processes and that at a given location $\operatorname{Corr}\left(X\left(s_{i}\right), Z\left(s_{i}\right)\right)=\rho$.

- $X$ and $Z$ could be considered deterministic, in which case, $\rho$ stands in for the empirical association of $X$ and $Z$,

$$
\hat{\rho}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(z_{i}-\bar{z}\right)}{s_{x} s_{z}}
$$

## Bias Implications (1)

## Known parameters, single scale

- Suppose $X(s)$ and $Z(s)$ share the same range of spatial correlation, but may be scaled differently in magnitude, namely, $\operatorname{Cov}(X)=\sigma_{x}^{2} R\left(\theta_{c}\right)$ and $\operatorname{Cov}\left(\beta_{z} Z\right)=\beta_{z}^{2} \sigma_{z}^{2} R\left(\theta_{c}\right)$, then

$$
\begin{aligned}
\mathrm{E}\left(\hat{\beta}_{x}^{\mathrm{GLS}} \mid X\right) & =\beta_{x}+\left[\left(\mathcal{X}^{T} \Sigma^{-1} \mathcal{X}\right)^{-1} \mathcal{X}^{T} \Sigma^{-1} \mathrm{E}(Z \mid X) \beta_{z}\right]_{2} \\
& =\beta_{x}+\rho \frac{\sigma_{z}}{\sigma_{x}} \beta_{z}
\end{aligned}
$$

because $\mathrm{E}(Z \mid X)=\mu_{x}+\rho \sigma_{z} \sigma_{x} R\left(\theta_{c}\right) \sigma_{x}^{-2} R\left(\theta_{c}\right)^{-1}\left(X-\mu_{x} 1\right)$.

- The bias, $\rho \frac{\sigma_{z}}{\sigma_{x}} \beta_{z}$, is the same as if the covariates were not spatially structured.
- Heuristic: the model attributes variability from the confounder to the covariate of interest.


## Bias Implications (2)

Known parameters, multi-scale
Let $X(s)=X_{c}(s)+X_{u}(s)$ with $\operatorname{Cov}(X)=\sigma_{c}^{2} R\left(\theta_{c}\right)+\sigma_{u}^{2} R\left(\theta_{u}\right)$.
Let $\operatorname{Cov}(Z)=\sigma_{z}^{2} R\left(\theta_{c}\right)$ and $\operatorname{Cor}\left(X_{c}\left(s_{i}\right), Z\left(s_{i}\right)\right)=\rho$.

$$
\begin{aligned}
\mathrm{E}\left(\hat{\beta}_{x}^{\mathrm{GLS}} \mid X\right) & =\beta_{x}+\left[\left(\mathcal{X}^{T} \Sigma^{*-1} \mathcal{X}\right)^{-1} \mathcal{X}^{T} \Sigma^{*-1} M\left(X-\mu_{x} 1\right)\right]_{2} p_{c} \rho \frac{\sigma_{z}}{\sigma_{c}} \beta_{z} \\
& =\beta_{x}+c(X) \rho \frac{\sigma_{z}}{\sigma_{c}} \beta_{z}
\end{aligned}
$$

where

$$
\Sigma^{*} \equiv \frac{\beta_{z}^{2} \sigma_{z}^{2} R\left(\theta_{c}\right)+\tau^{2} I}{\beta_{z}^{2} \sigma_{z}^{2}+\tau^{2}}=\left(\left(1-p_{z}\right) I+p_{z} R\left(\theta_{c}\right)\right)
$$

and

$$
M \equiv\left(p_{c} I+\left(1-p_{c}\right) R\left(\theta_{u}\right) R\left(\theta_{c}\right)^{-1}\right)^{-1}
$$

and $p_{z} \equiv \beta_{z}^{2} \sigma_{z}^{2} /\left(\beta_{z}^{2} \sigma_{z}^{2}+\tau^{2}\right)$ and $p_{c} \equiv \sigma_{c}^{2} /\left(\sigma_{c}^{2}+\sigma_{u}^{2}\right)$,

## Detour: Spatial processes



## Bias Implications (2)

## Known parameters, multi-scale



## Bias Implications (2)

## Known parameters, multi-scale

- Reducing bias requires the covariate of interest to have a spatial scale at which it is unconfounded, and that scale must be smaller than the scale at which confounding operates.
- We would like the covariate to have as much variation at the unconfounded scale and as little at the confounded scale as possible.

$$
\begin{aligned}
\mathrm{E}\left(\hat{\beta}_{x}^{\mathrm{GLS}} \mid X\right) & =\beta_{x}+\left[\left(\mathcal{X}^{T} \Sigma^{*-1} \mathcal{X}\right)^{-1} \mathcal{X}^{T} \Sigma^{*-1} M\left(X-\mu_{x} 1\right)\right]_{2} p_{c} \rho \frac{\sigma_{z}}{\sigma_{c}} \beta_{z} \\
& =\beta_{x}+c(X) \rho \frac{\sigma_{z}}{\sigma_{c}} \beta_{z}
\end{aligned}
$$

- Other results are straightforward and match the non-spatial setting for confounding. We want:
- the magnitude of variation in the confounder (or its effect on the outcome) be small.
- the correlation between confounder and covariate to be small.


## Bias Implications (3)

Unknown parameters, multi-scale: Simulation results
(a) mixed model (theoretical)

(b) mixed model (sims)

(c) pen. spline, GAM-R

spatial scale of confounding, $\theta_{c}$
Further simulations indicate that bias is somewhat reduced by having unconfounded small-scale residual variability ( $\beta_{z} Z+h+\epsilon$ ).

- This increases the variation attributed to the spatial residual.
- This fits with the partial spline literature, which suggests undersmoothing to reduce bias.


## Bias-Variance Tradeoff

- Peng et al. (2006) and Zeger et al. (2007) suggest fixing the degrees of freedom and assessing sensitivity to different df values.
- If there is unconfounded small-scale variation, choosing a df that captures the large-scale variation should reduce bias.
- Regression splines show less bias (but much higher variance) than penalized splines with equivalent df.
- Penalized spline smoothing matrix is not a projection matrix.



## Birthweight Analysis

- Covariates: mother's age, mother's race, gestational age, mother's cigarette use, mother's health conditions, previous preterm birth, previous large birth, sex of baby, year of birth, index of prenatal care, maternal education, census tract income
- Exposure: 9-month black carbon as predicted from Gryparis et al. (2007) spatio-temporal/land use model
- Gryparis et al. (2008) found a black carbon effect of -7.27 g (s.e. 3.78) per $\mu \mathrm{g} / \mathrm{m}^{3}$ black carbon



## Naive Analysis

Assume individual covariates largely unavailable

- Covariates: mother's age, gestational age, sex of baby, year of birth
- Exposure: 9-month black carbon as predicted from Gryparis et al. (2007) spatio-temporal/land use model
- Model: $y_{i}=\mathcal{X}_{i}^{\top} \beta+g\left(s_{i} ; \mathrm{df}\right)+\epsilon_{i}$



## Residual Assessment in Full Model

Question: is there residual spatial correlation and does accounting for potential spatial confounding affect epidemiological results?



Spatially-smoothed residuals

Variograms may fail to detect small magnitude spatial variation that can affect bias.

## Sensitivity Analysis

Could previous results be affected by spatial confounding?


## Spatial Scales and Precision

Does it help or hurt to have spatial variation in your data?
Relative to the equivalent amount of non-spatial variation, what is the precision of GLS estimation in the presence of residual spatial structure?

$$
\log \frac{\mathrm{E}_{X}\left(\operatorname{Var}\left(\hat{\beta}_{x}^{\mathrm{GLS}}\right)^{-1}\right) \text { with spatial data }}{\mathrm{E}_{X}\left(\operatorname{Var}\left(\hat{\beta}_{x}^{\mathrm{GLS}}\right)^{-1}\right) \text { with non-spatial data }}
$$



Intuition: Model treats spatial structure as a covariate that reduces residual variance, $Y_{i}=\mathcal{X}_{i}^{\top} \beta+g\left(s_{i}\right)+\epsilon_{i}$.

## Spatial Scales and Relative Efficiency

When does accounting for spatial variation increase efficiency?
What is the relative efficiency of GLS compared to OLS?

$$
\log \mathrm{E}_{x} \frac{\operatorname{Var}\left(\hat{\beta}_{x}^{\mathrm{GLS}}\right)^{-1}}{\operatorname{Var}\left(\hat{\beta}_{x}^{\mathrm{OLS}}\right)^{-1}}
$$



Take-home message: Benefits of GLS kick in primarily when residual spatial variation is moderate to large in scale.

## Spatial Scales and Uncertainty Estimation When is the naive OLS variance estimate OK?

What is the expected ratio of the naive and correct OLS variance estimators?

$$
\log \mathrm{E}_{X} \frac{\operatorname{Var}_{\text {correct }}\left(\hat{\beta}_{x}^{\mathrm{OLS}}\right)}{\operatorname{Var}_{\text {naive }}\left(\hat{\beta}_{x}^{\mathrm{OLS}}\right)}
$$



Take-home message: Using the naive variance estimator may be reasonable when either the exposure or residual spatial scales are small.

## Conclusions

Scale is critical: Assess the spatial scale of variation in residuals and exposure.

- Bias:
- Large-scale exposure variation only: little ability to reduce bias.
- If small-scale variation in exposure exists, large-scale bias can be reduced.
- Having small-scale variation in the residual does not reduce bias at that scale but can result in less smoothing and therefore reduced bias at larger scales.
- Use fixed df spatial terms to assess bias-variance tradeoff in exposure estimates.
- Measurement error in fine-scale exposure estimates may be a concern.
- Precision
- Accounting for large-scale residual correlation is also critical for efficiency and uncertainty estimation.
- Try to account for effect of spatial residual on uncertainty estimation, but if scale of residual is small, effect may be minor.


## Implications for Areal Spatial Data

- Areal data by construction lack fine-scale variation in exposure.
- Standard areal spatial models (conditional auto-regression; CAR) vary at the scale of the areas.
- These results suggest models cannot account for bias at that scale.
- However, to the extent the CAR structure fits both small- and large-scale spatial patterns, standard CAR models may reduce bias from large-scale confounding.

