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Setting

Proxy information is increasingly common in environmental
science and other applications

Deterministic model output

Climate models
Atmospheric chemistry models
Meteorological models

Remote sensing information

Pollutant concentrations
Meteorological variables
Land use

Proxy data such as biomarkers

Understanding the discrepancies (biases) between the proxy
and the process of interest is critical, but not adequately
explored scientifically or statistically.
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Satellite AOD as a proxy for PM2.5

Aerosol optical depth:

Integrated vertical column measurement based on light
reflecting off the earth surface

Algorithms for separating surface reflectance from aerosol
effect

Pixels provide nominal resolution of 4 (GOES), 10 (MODIS),
18 (MISR) km

Clouds and orbit patterns lead to unavailable retrievals

Correlations of matched daily AOD and PM2.5 (24-hour average),
eastern U.S., 2004

MODIS (10:30 am snapshot): 0.60

MISR (10:30 am snapshot): 0.50

GOES (average of half-hourly retrievals): 0.38
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Daily Comparison (1)
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Daily Comparison (2)
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Daily Comparison (3)
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Monthly Comparison
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Key Questions

Scientific:

Can AOD help predict spatial patterns in PM?

Are there specific spatial scales for which AOD is helpful (or
not helpful)?

Does including AOD in the model improve predictions of PM
concentrations conditional on other information?

GIS-based covariates
Spatial smoothing
Meteorological covariates

Statistical

How can we use statistical modeling to better understand
relationships between proxy information and processes of
interest?
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A Basic Data Fusion Model

Fuentes and Raftery (2005, Biometrics) proposed treating the
proxy as a second data source.

A basic model:

Yi ∼ N (P(si ), σ
2
y )

Am ∼ N (β0 + β1P(sm), σ2
a)

P(·) ∼ GP(µ(·),C (·, ·))

where Y is the gold-standard data, A is the proxy information
source, and P(·) is the latent process of interest.

This model treats the proxy as reflecting the latent process
with additive bias, β0, and multiplicative bias, β1, plus white
noise error.
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Implications of Simple Bias Structures

0

5

10

15

20

25

30

Predicted PM

0.0

0.2

0.4

0.6

0.8

1.0

MODIS AOD

Key question: Are our predictions of the process of interest
distorted by unrelated patterns in the proxy.
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Flexible Spatial Bias Modeling

Consider additive bias as a spatial process, φ(·):

Y (si ) ∼ N (P(si ), σ
2
y )

A(si ) ∼ N (φ(si ) + β1P(si ), σ
2
a)

P(·) ∼ GP(µP(·),CP(·, ·))
φ(·) ∼ GP(µφ(·),Cφ(·, ·))

We can explore the relationship of the proxy and gold
standard through analysis of the spatial scales of φ(·).
Depending on the scale of φ(·), we might call it either ’bias’
or ’systematic error’ (residual spatial correlation).

One can include covariates in the various mean terms, µP and
µφ.
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Additional Comments on the Flexible Model

One can view the model in the form of a coregionalization
model (

Y
A

)
=

(
1 0
β1 1

) (
P
φ

)
+

(
εy
εa

)
Or as a factor analysis, with spatial factors, P and φ, and
constrained loadings.

Treating the multiplicative bias, β1, as a spatial process
causes identifiability issues, but subject matter knowledge
might help in setting up models for φ(·) and β1(·).
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Bias Scenarios

φ(·) very smooth (large-scale variation only):

Proxy and gold standard show similar patterns at small and
moderate scales, but there is a large-scale bias that causes an offset
between proxy and gold standard.
φ(·) is a large-scale bias correction term that should be estimable
with a moderate amount of gold standard data.

φ(·) wiggly but with little large-scale variation (small-scale variation only):

Proxy and gold standard show similar large-scale patterns but
small-scale variation in proxy unrelated to gold standard.
φ(·) is small-scale bias, or equivalently, spatially-correlated error in
the proxy.
Without dense data, bias cannot be corrected for; model treats this
as error that is uninformative about the process of interest.

φ(·) with both large- and small-scale variation, β1 ≈ 0:

Little correspondence between proxy and process of interest at any
scale.
Proxy best described by a separate latent process.
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Bias Diagnostics

Jun and Stein (2004; Atmos. Env.) consider scales of model
error (Y − A) relative to observations (Y ) and model output
(A):

R(d) =
Variog(Y − A)

Variog(Y ) + Variog(A)

where R(d) = 1 if the model output captures none of the
variability in the observations at scale d .

We propose a similar diagnostic in the model-based framework
as

R(d) =
Variog(φ)

Variog(β1P) + Variog(φ+ β1P)

R(d) is the spatial bias variability as a proportion of the
explained variation in the proxy, at scale d .
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Computational Issues

Proxy information is often massive in size, causing difficulty in
computing the likelihood for the proxy.

Some potential approaches include:

If φ or P is smooth, use reduced rank approaches such as
penalized thin plate splines (Ruppert et al. 2003 book; Wood
2006 book)
If φ or P is wiggly and can be represented on a regular grid,
use Markov random field approximations to a thin plate spline
(Rue and Held 2005 book, Yue and Speckman, in submission)
Other techniques for large spatial datasets may also be useful:
covariance tapering (Furrer et al. 2006, JCGS; Kaufman et al.
in press, JASA), approximate likelihoods (Stein et al. 2004,
JRSSB; Fuentes 2007, JASA)

One concern in MCMC sampling is that P and φ can trade
off, so mixing may be troublesome.
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Sidenote: MRF Approximation to the Thin Plate Spline
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Chris Paciorek Spatial bias modeling and PM 16



Introduction
Statistical Framework

Case Study
Conclusions

Comparison of Weights for the MRF Models

−1

−1 4 −1

−1

Standard CAR

1

2 −8 2

1 −8 20 −8 1

2 −8 2

1

Thin plate spline MRF approximation

Precision matrix elements for one row, oriented spatially (with respect to the
focal grid cell of the row) to indicate neighborhood structure.

Key feature of TPS MRF: Precision matrices are sparse but
realizations can be very smooth or very wiggly.
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Model Structure

Likelihood for monthly average data:

PMi = yi ∼ N (P(s(i)) +
∑

k

fk(zk,i ), σ
2
y ,i )

AODm = am ∼ N (φ(sm) + β1P(sm), σ2
a,m)

fk(·), k = 1, . . . ,Kf are penalized spline functions of within-grid cell
covariates:

Distance to A1 and A2 roads; distance to local emission
sources, weighted by emissions strength

Latent PM2.5 process, P(s), on 4 km grid:

P(sm) =
∑

k

hk(wk(sm)) + g(sm)

hk(·), k = 1, . . . ,Kh are penalized spline functions of grid cell-scale
covariates:

Land use, population density, road density, elevation, local
emissions
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Smooth term structure

Thin plate spline-based smooth terms, evaluated on the grid:

g = Zbg

φ = Zbφ

bg
iid∼ N (0, σ2

g )

bφ
iid∼ N (0, σ2

φ)

Z is a reduced rank thin plate spline basis matrix, following
Ruppert, Wand, and Carroll (2003), Semiparametric
Regression.

b(·) are basis coefficients for the given smooth term.

Variance components, σ2
(·), penalize complexity.

Regression smooths, fk(·) and hk(·), are represented in a
similar fashion.
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Spatial Misalignment

AOD is relatively smooth from pixel to pixel so we choose to
handle misalignment in ad hoc way.

MODIS: pixel locations change from orbit to orbit:

We associate each grid cell on each day with pixel centroids
and average values for each cell to the month.

GOES: fixed pixels

We average to the month and then compute a weighted
average to realign to the 4 km grid.
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MCMC Implementation

Because of conditional conjugacy, ψ = {bg , bφ, bf , bh, β0, µ}
can be sampled from its exact conditional.

Importance: g , φ, fk , and hk are all competing to explain the
spatial patterns in the data; joint sampling accounts for this
dependence.

Also, there is high dependence between the spline coefficients
and their associated variance component (e.g., between bg

and σ2
g ).

Therefore, jointly sample: {σ2
g , ψ}, {σ2

φ, ψ},
{{σ2

fk
}k=1,...,Kf , ψ}, {{σ2

hk
}k=1,...,Kh , ψ} .

Joint sampling is done with a Metropolis proposal for the
variance component and then sampling ψ from its conditional
normal, with a single acceptance decision and a Hastings
adjustment needed because we are not sampling from the joint
conditional.
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Effects of Bias Structure: July 2004, MODIS

Model 1: No spatial bias term;
 AOD as a simple proxy
 with scalar additive and

 multiplicative bias.

Model Structure
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Spatial Scales of Variation

The proposed variogram ratio is: R(d) = Variog(φ)

Variog(β1P)+Variog(φ+β1P)
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Implications for Using AOD to Predict PM2.5

The results suggest there is little common spatial pattern to
PM and AOD observations.

Systematic error is considerable and critical to include, and
predictions are very sensitive to assumptions about this error.

The bias term, φ(·), varies at both small- and large-scales,
with little apparent relationship with the gold standard (β1 is
estimated to be near zero and R(d) is near 1).

Results for the other 11 months and using GOES AOD or
meteorology-adjusted AOD give similar conclusions.

Despite raw daily correlations between AOD and PM2.5,
spatial patterns in AOD provide little useful information for
predicting spatial patterns in PM.
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Further Assessment: Correlations of AOD and PM

Raw AOD Calibrated AOD

MODIS MISR GOES MODIS MISR GOES

Daily values, eastern U.S.

Temporal plus spatial variation:

Overall correlation of daily values

across all sites and days.

0.60 0.50 0.38 0.64 0.57 0.40

Spatial variation only: Average of

daily spatial correlations.

0.35 0.30 0.23 0.45 0.32 0.29

Yearly averages, mid-Atlantic focal region

Spatial variation only: Correlation

of yearly averages.

0.09 0.25 -0.07 0.49 0.22 0.53

Correlations of raw and calibrated daily AOD with matched 24-h PM in 2004 for the eastern U.S. (top portion) and
correlations of raw and calibrated yearly-average AOD with yearly-average PM (sites with at least 100 daily PM

observations, matched in space to AOD) for our mid-Atlantic focal region in 2004 (bottom portion). Yearly
averages reflect all available AOD retrievals and all available 24-h average PM concentrations. Calibrated AOD has
been adjusted to account for the effects of planetary boundary layer (PBL) height, relative humidity (RH), season,
and regional variation in modifying the relationship between daily AOD and PM. Yearly results exclude one outlying

site.
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Further Assessment: AOD as a covariate for PM

Likelihood for monthly average PM2.5 :

PMit = yit ∼ N (Pt(si ) +
∑
k

fk(zk,i ), σ
2
it)

Latent PM2.5 process, Pt(s), on 4 km grid:

Pt(sm) = µt + β1,tAt(sm) +
∑
k

hk(wk(sm, t)) + gt(s)

Advantages of the covariate approach:

Direct estimation of the regression coefficient for AOD
Ease of interpretation

Disadvantages:

Doesn’t easily handle missing AOD
Doesn’t address scale issues directly
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AOD as a covariate: Cross-validation R2(MSPE)

Model Yearly averages Monthly averages

All monitors

(n=151)

Pop’n exposure

monitors

(n=130)

All monitors

(n=1793)

Pop’n exposure

monitors

(n=1542)

Models including land use, emissions, and meteorological predictors

No AOD 0.580 (1.04) 0.570 (0.93) 0.827 (2.71) 0.839 (2.48)

With calibrated MODIS AOD 0.573 (1.06) 0.564 (0.94) 0.825 (2.73) 0.839 (2.50)

With calibrated GOES AOD 0.572 (1.06) 0.563 (0.95) 0.825 (2.73) 0.838 (2.50)

Models without land use, emissions, and meteorological predictors

No AOD 0.463 (1.33) 0.456 (1.38) 0.794 (3.22) 0.810 (2.94)

With calibrated MODIS AOD 0.467 (1.32) 0.459 (1.17) 0.794 (3.22) 0.810 (2.94)

With calibrated GOES AOD 0.467 (1.33) 0.458 (1.17) 0.794 (3.22) 0.810 (2.94)

Results exclude one outlying site.
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Reasons for the Mismatch between AOD and PM2.5

Are the results consistent with the empirical correlations seen
in previous studies? Explanations:

Differences between temporal and spatial association
Matched vs unmatched comparisons

Some potential causes of spatial variability that interfere with
spatial association of AOD and PM:

Spatial variability in surface reflectivity
Spatial variability in aerosol chemical composition and size
distributions.
Spatially-coherent missingness due to daily cloud cover, with
aggregate effects for longer-term averages
Spatial structure in pollution aloft in the atmosphere
Spatial structure in pollution at times not captured by the
satellite (night-time and hours with no satellite coverage)
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General Conclusions

We need to be more explicit about our assumptions about
proxy information and potential bias/spatially-correlated error.

White noise error, while convenient, may not be appropriate.

We know there is error in proxy data sources and in many
situations this is likely to be spatially-correlated, and at fine
scales.
When using results for epidemiology, bias in the health analysis
is a key concern.

Modeling as bias/spatially-correlated error provides for careful
assessment of the variation in the proxy, considering scales of
concordance and discordance.

This approach can enhance simple deterministic model
validation, which is often done via scatterplots and R2

calculations.
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