Accounting for space in regression models with binary outcomes: A Bayesian spectral basis approach outperforms other methods

Chris Paciorek

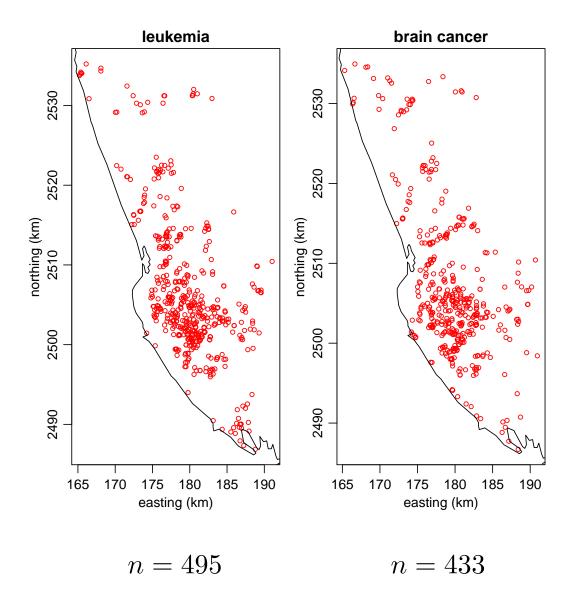
October 23, 2004

Department of Biostatistics

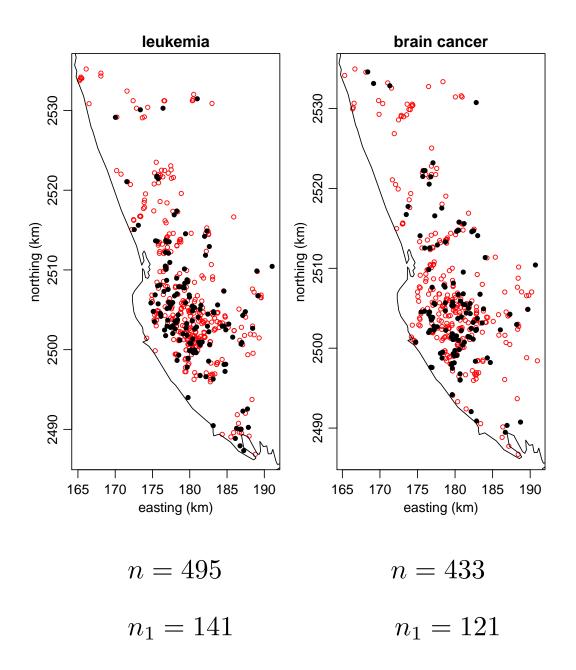
Harvard School of Public Health

www.biostat.harvard.edu/~paciorek

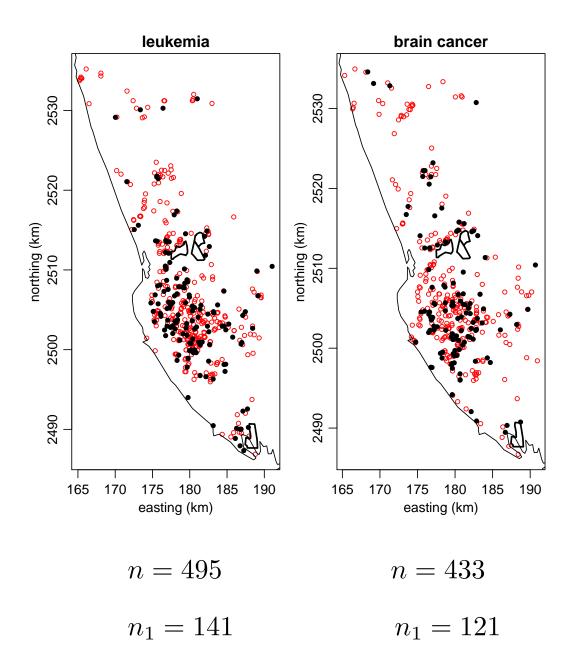
Petrochemical exposure in Kaohsiung, Taiwan



Petrochemical exposure in Kaohsiung, Taiwan



Petrochemical exposure in Kaohsiung, Taiwan



Possible approaches for health analysis

- Estimate exposure and use as covariate in health model
- Use distance to exposure source as covariate
- Explicitly include space as a covariate
 - Map of risk exploratory
 - Account for spatially-related unmeasured confounders
 - Test for spatial effect

Outline

- Motivating example
- Generalized additive model and generalized mixed model approaches
- Difficulties in fitting regression for non-normal outcomes with 2-d smooth terms
- Parameterizations and fitting methods
- Simulations
 - binary responses
 - Poisson responses
- Revisit the example
- Goals for computational environmetrics

Goals for Computational Environmetrics

- reproducibility and ease of implementation, particularly for Bayesian methods
- modularity
- comparison and evaluation of models and fitting methods

GAM and **GLMM** frameworks

basic model

$$Y_i \sim \mathsf{Ber}(p(\boldsymbol{x_i}, \boldsymbol{s_i}))$$
 $\mathsf{logit}(p(\boldsymbol{x_i}, \boldsymbol{s_i})) = \boldsymbol{x_i}^T \boldsymbol{\beta} + g_{\theta}(\boldsymbol{s_i})$

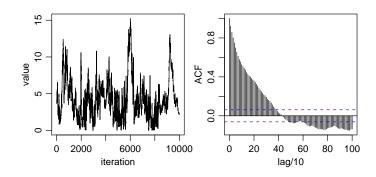
- basic spatial model for $g_{\theta}^s = (g_{\theta}(s_1), \dots, g_{\theta}(s_n))$
 - GAM: $g_{\theta}(\cdot)$ is a two-dimensional smooth term
 - * basis representation, $oldsymbol{g}^s_{ heta} = Zoldsymbol{u}$
 - * Gaussian process representation: $g(\cdot) \sim \mathsf{GP}(\mu(\cdot), C_{\theta}(\cdot, \cdot)) \Rightarrow \boldsymbol{g}_{\theta}^{s} \sim N(\boldsymbol{\mu}, C_{\theta})$
 - GLMM: $g_{\theta}(s_i) = z_i^T u$ * correlated random effects, $u \sim N(0, \Sigma)$

Difficulties: speed and mixing

- Gaussian responses: closed form marginal likelihood
 - estimate β , θ
- non-Gaussian: no closed form ⇒ high dimensional estimation
 - estimate β , θ , u

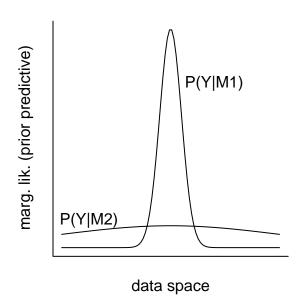
Challenges:

- Classical mixed model: how approximate integral over random effects?
- Bayesian methods: how perform large matrix calculations and avoid poor mixing?



Fitting approaches

- penalized likelihood, $l(\boldsymbol{y}; \boldsymbol{\beta}, \boldsymbol{g}_{\theta}^s) \lambda J(\boldsymbol{u})$
 - fit by iterative weighted least squares
- Bayesian model for (β, θ, u)
 - fit by MCMC
 - implicit Bayesian penalty on complex spatial functions



Goals for implementations

- fast computations, avoiding large matrix calculations
- methods that scale reasonably with n
- reasonable fitting of simple risk surfaces we expect to model
- ease of implementation for applied work

Models and fitting methods considered

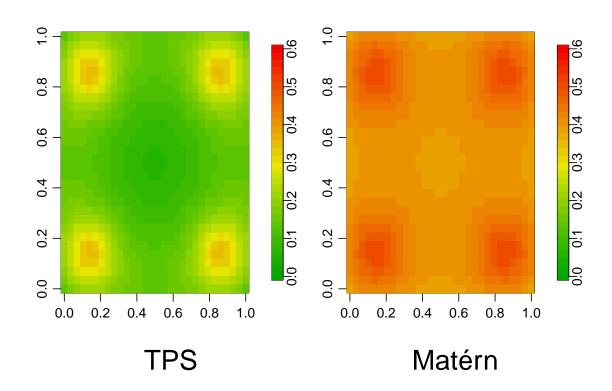
- penalized likelihood based on mixed model with REML smoothing (Kammann and Wand, 2003; Ngo and Wand, 2004) [PL-PQL]
- penalized likelihood with GCV smoothing (Wood, 2001, 2003, 2004) [PL-GCV]
- Bayesian geoadditive model-style radial basis functions fit by MCMC (Zhao and Wand 2004) [B-Geo]
- Bayesian spectral basis representation fit by MCMC using the FFT (Wikle 2002; Paciorek and Ryan, in prep.) [B-SB]
- Bayesian neural network model fit by MCMC (R. Neal) [B-NN]

Penalized likelihood using GLMM framework with REML [PL-PQL]

- $g^s=Zu$, $Z=\Psi_{nk}\Omega_{kk}^{-\frac{1}{2}}$, $u\sim N(0,\sigma_u^2)$ variance component provides complexity penalty
- Ω contains pairwise spatial covariances between k knot locations and Ψ between n data locations and k knot locations
- potential covariance functions:
 - thin plate spline generalized covariance function, $C(\tau) = \tau^2 \log \tau$
 - Matérn correlation function, $R(\tau)=\frac{1}{\Gamma(\nu)2^{\nu-1}}\left(\frac{2\sqrt{\nu}\tau}{\rho}\right)K_{\nu}\left(\frac{2\sqrt{\nu}\tau}{\rho}\right)$, with ρ and ν fixed
- ullet computationally efficient approximation of a Gaussian process representation for g^s
- PQL approach IWLS fitting of (β, u) with REML estimation of σ_u^2 within the iterations using MM software

GLMM basis functions

- radial basis functions centered at the knots
- 4 of 64 functions displayed:



Penalized likelihood using GCV [PL-GCV]

- thin plate spline basis for $g(\cdot)$
- truncated eigendecomposition of basis matrix increases computational efficiency
- IWLS fitting of (β, u) with GCV estimation of penalty
- easy implementation using the R mgcv library gam()

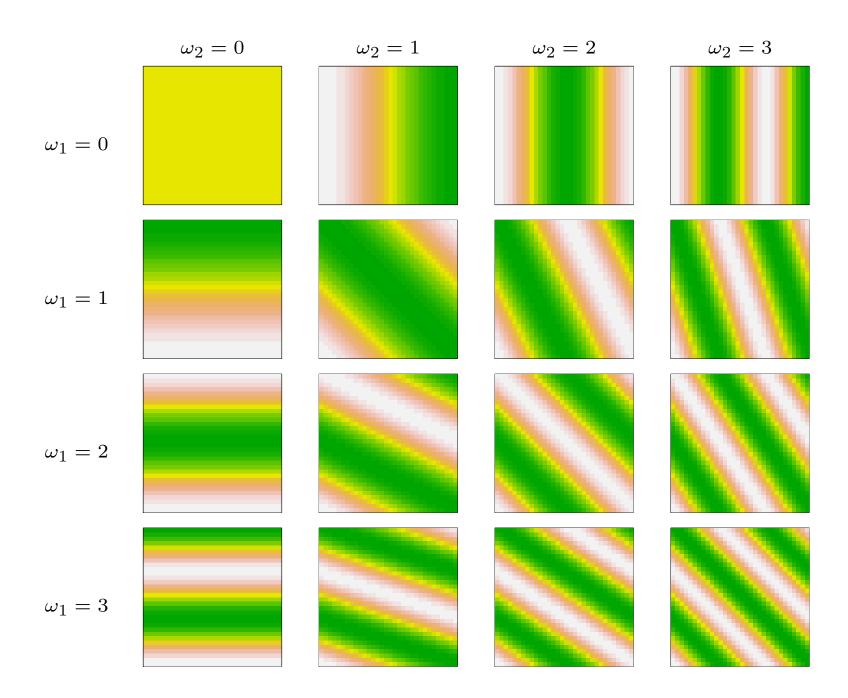
Bayesian geoadditive model [B-Geo]

- Bayesian version of GLMM framework already described
 - $m{-} m{g}^s = Zm{u}, \, Z = \Psi_{nk}\Omega_{kk}^{-rac{1}{2}}, \, m{u} \sim N(0, \sigma_u^2)$
 - natural Bayesian complexity penalty through prior on u
- \bullet thin plate spline covariance or Matérn correlation basis construction of Ψ and Ω
- MCMC implementation ensuring mixing is not simple
 - Metropolis-Hastings for u using conditional posterior mean and variance based on linearized observations
 - joint proposals for σ_u^2 and u to ensure that u remains compatible with its variance component

Bayesian spectral basis function model [B-SB]

- computationally efficient basis function construction
- ${m g}^\#=Z{m u}$, ${m g}^s=\sigma P{m g}^\#$ piecewise constant gridded surface on k by k grid
- ullet Z is the Fourier (spectral) basis and $Z oldsymbol{u}$ is the inverse FFT
- Zu is approximately a Gaussian process (GP) when...
 - spectral density, $\pi_{\theta}(\cdot)$, of GP covariance function defines V(u)
 - $\boldsymbol{u} \sim N(0, \operatorname{diag}(\pi_{\theta}(\boldsymbol{\omega})))$ for Fourier frequencies, $\boldsymbol{\omega}$

Bayesian spectral basis functions



Comparison with usual GP specification

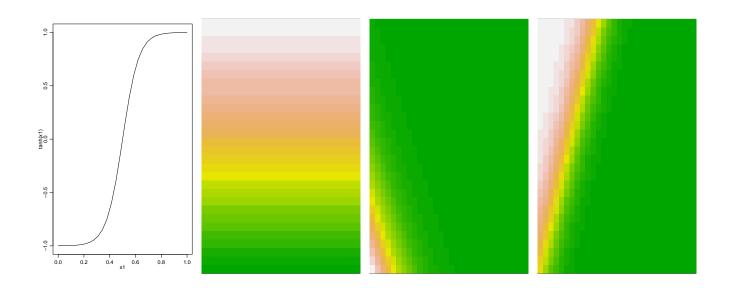
- usual GP model: ${m g}^s \sim N({m \mu}, C_{\theta})$
 - $O(n^3)$ fitting: $|C_{\theta}|$ and $C_{\theta}^{-1}g$
- spectral basis uses FFT
 - $O(k^2) \log(k^2)$
 - additional observations are essentially free for a fixed grid
 - fast computation and prediction of surface given coefficients
 - a priori independent coefficients give fast computation of prior and help with mixing

Bayesian neural network [B-NN]

 multilayer perceptron with one hidden layer gives basis representation:

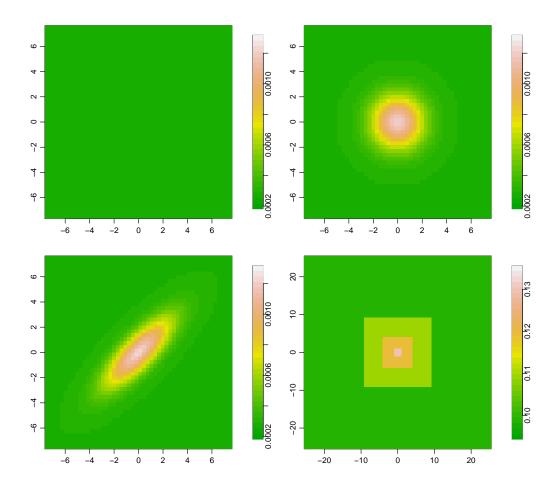
$$-g(s_i) = \sum_k \tanh(\phi_k^T s_i) u_k$$

- ullet position and orientation of basis functions change with $\phi_{m{k}}$
- implemented with software of R. Neal; somewhat complicated proposal scheme

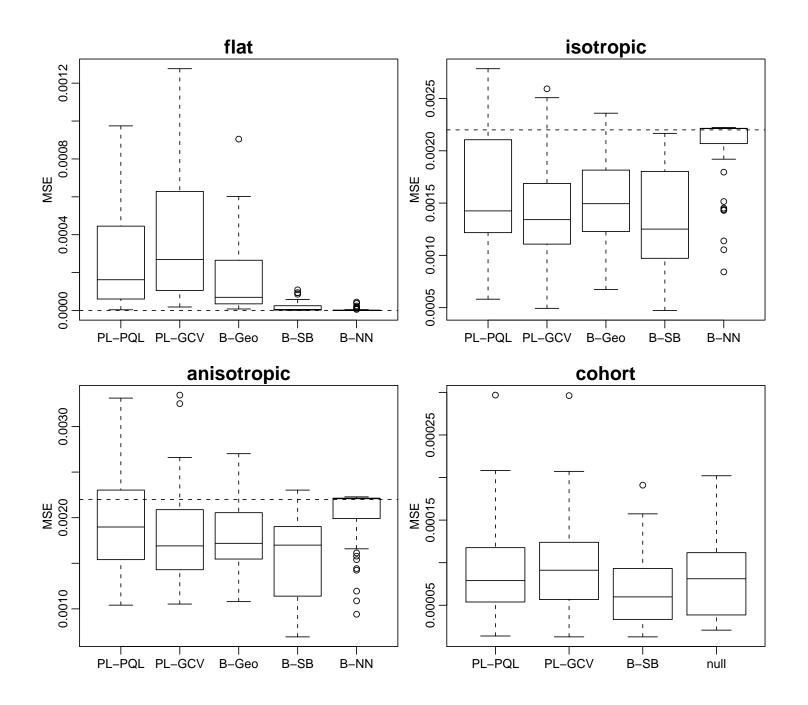


Simulated datasets

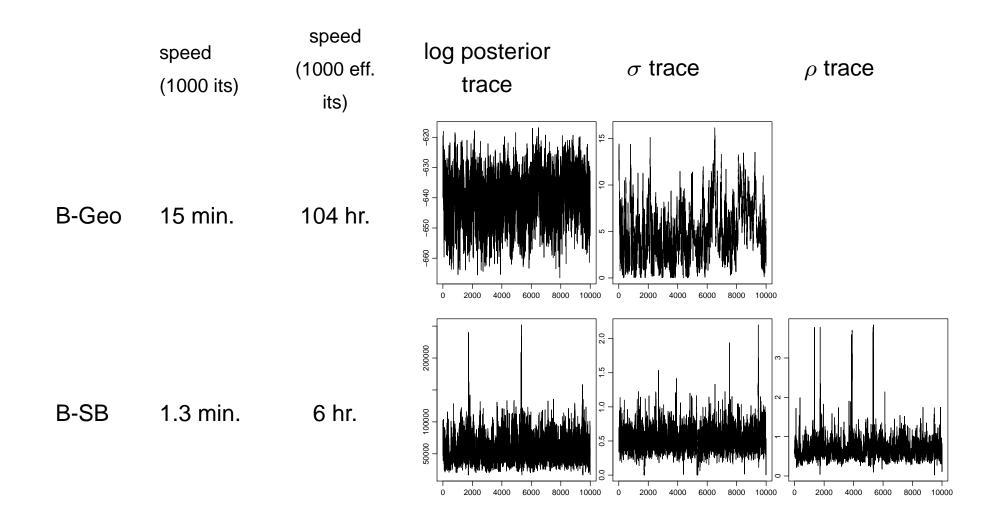
- 3 case-control scenarios: $n_0 = 1,000$; $n_1 = 200$; $n_{\text{test}} = 2500$ on 50 by 50 grid
- 1 cohort scenario: n = 10,000; $n_{\text{test}} = 2500$ on 50 by 50 grid



Assessment on 50 simulated datasets



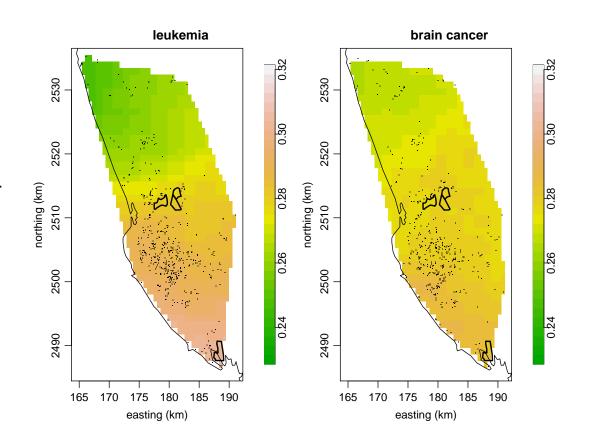
Mixing and speed of Bayesian methods



Example revisited - assessment

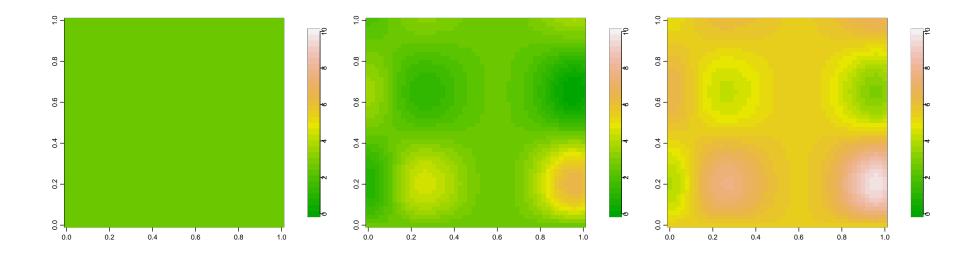
Summed test deviance over 10-fold C-V sets

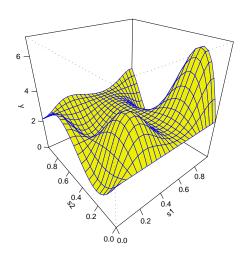
	leukemia	brain cancer
PL-GCV	590.1	529.8
PL-PQL	585.6	529.5
B-Geo	583.3	525.7
B-SB	582.1	525.1
null	581.6	525.5



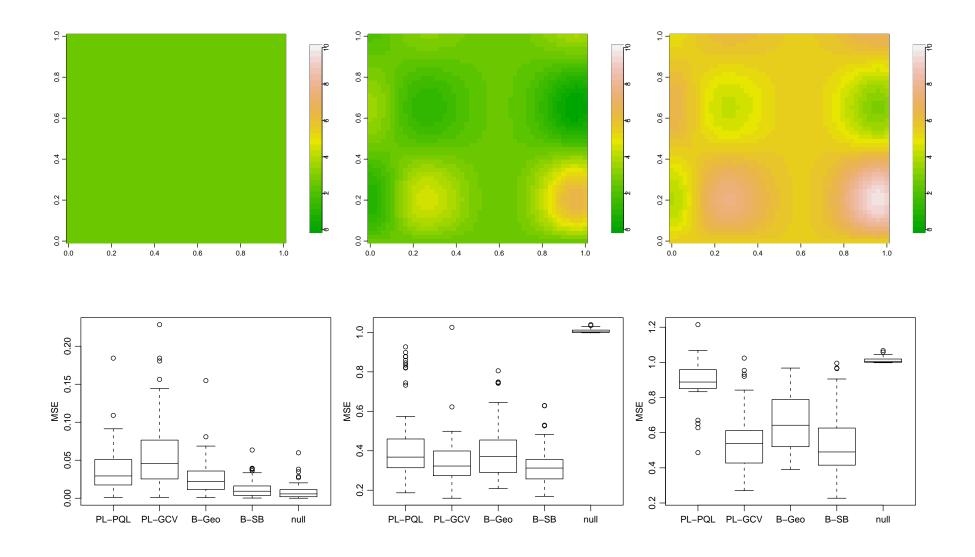
Simulated count data

 \bullet n=225, $n_{\mathrm{test}}=2500$ on 50 by 50 grid





Assessment on count simulations



Methodology conclusions

- Effective process parameterization allows for faster Bayesian estimation
 - effective for spatial models with thousands of observations
- Natural Bayesian complexity penalty works well; other automatic criteria appear to overfit
- R code for spectral basis model to ease implementation
- Power is an issue with binary observations
- Results hold for count data

Suggestions for computational environmetrics

reproducibility

- requires code and detailed description (supplemental material/web)
- standard computing environment (R) helps
- enabling reproducible MCMC (beyond BUGS)
 - class structures, templates, and proposal functions for R

modularity

- spectral basis as modular component in hierarchical models
- comparison of methods/models
 - rare
 - difficult without reproducibility, particularly with Bayesian methods

Future methodological work

- Importance of basis functions vs. speed/mixing in MCMC vs. penalty estimation method in determining fitting success
 - Why don't automatic criteria for penalized likelihood work as well?
 - Importance of fitting both variance and spatial range parameters small-sample results (consider effective basis functions) vs. asymptotics (Zhang, 2004)
- Simple approaches for testing necessity of spatial term
- Other process parameterizations allowing fast Bayesian estimation:
 - Simple prior structures for wavelet basis coefficient (co)variances?