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Abstract 

Previous studies have identified associations between traffic-related air pollution 

and adverse health effects.  Most have used measurements from a few central ambient 

monitors and/or some measure of traffic as indicators of exposure, disregarding spatial 

variability and/or factors influencing personal exposure-ambient concentration 

 1

mailto:lbaxter@hsph.harvard.edu


24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

relationships.  This study seeks to utilize publicly available data (i.e., central site 

monitors, geographic information system (GIS), and property assessment data) and 

questionnaire responses to predict residential indoor concentrations of traffic-related air 

pollutants for lower socioeconomic status (SES) urban households.  

As part of a prospective birth cohort study in urban Boston, we collected indoor 

and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter 

(PM2.5) in 43 low SES residences across multiple seasons from 2003 – 2005. Elemental 

carbon concentrations were determined via reflectance analysis.  Multiple traffic 

indicators were derived using Massachusetts Highway Department data and traffic counts 

collected outside sampling homes.  Home characteristics and occupant behaviors were 

collected via a standardized questionnaire.  Additional housing information was collected 

through property tax records, and ambient concentrations were collected from a centrally-

located ambient monitor. 

The contributions of ambient concentrations, local traffic and indoor sources to 

indoor concentrations were quantified with regression analyses.  PM2.5 was influenced 

less by local traffic but had significant indoor sources, while EC was associated with 

traffic and NO2 with both traffic and indoor sources.  Comparing models based on 

covariate selection using p-values or a Bayesian approach yielded similar results, with 

traffic density within a 50m buffer of a home and distance from a truck route as important 

contributors to indoor levels of NO2 and EC, respectively. The Bayesian approach also 

highlighted the uncertanity in the models. We conclude that by utilizing public databases 

and focused questionnaire data we can identify important predictors of indoor 

concentrations for multiple air pollutants in a high-risk population.  
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1.  Introduction 

Numerous studies have identified associations between traffic-related air pollution 

and adverse heath effects either by characterizing exposures to specific pollutants using 

measurements from a few central ambient sites (Dockery et al. 1993; Pope et al. 1995; 

Studnicka et al. 1997; Laden et al. 2000), or by some measure of traffic (Oosterlee et al. 

1996; Garshick et al. 2003; Heinrich et al. 2005; Ryan et al. 2005).  Yet, by ignoring the 

contribution of indoor sources and the effect of residential ventilation, it is difficult to 

accurately estimate personal exposures, especially in an intraurban epidemiological 

study.  Residential indoor concentrations are a product of ambient-generated pollution 

that has infiltrated indoors and indoor-generated pollution, and are strongly correlated 

with personal exposures (Levy et al. 1998; Koistinen et al. 2001; Kousa et al. 2001; 

Brown 2006).  However, it is often impractical to obtain direct indoor measurements (or 

personal exposure measurements) for all participants in a large epidemiological study, 

raising the question of how personal exposures can be best estimated. Given the logistical 

constraints, utilizing public databases and focused questionnaires may be the best 

approach to reasonably estimate indoor and therefore personal exposures. 

 In lieu of using home-specific outdoor measurements to determine ambient-

generated pollutant exposures (which would be nearly as labor-intensive as indoor 

monitoring), factors generated from Geographic Information Systems (GIS), such as 

distance from road, population density, and land use can be used in combination with 
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central site monitoring data to estimate ambient exposures (Briggs et al. 1997; Brauer et 

al. 2003).  Questionnaire (e.g., opening of windows, air conditioning usage) and/or 

property assessment data on individual building characteristics can then be used to 

estimate residential ventilation patterns (Long et al. 2001; Setton et al. 2005) that 

potentially affect the influence of ambient concentrations and indoor sources (Abt et al. 

2000).   Similarly, questionnaire data on exposure-related activities can be used to predict 

indoor sources.   

The current study seeks to utilize publicly available data (i.e., central site 

monitors, GIS, and property assessment data) and questionnaire responses to predict 

residential indoor concentrations of traffic-related air pollutants for lower socioeconomic 

status (SES) households in an urban area.   Lower SES urban residents have been 

previously identified as a high risk population for asthma (The American Lung 

Association 2001) and often live in smaller apartments, possibly resulting in greater 

contributions from indoor sources (given smaller volumes and higher occupant densities), 

traffic (nearer to busier roads), and different ventilation patterns (given adjoining units 

and lack of central air conditioning).  We will build upon previously developed predictive 

models identifying important indoor source terms in this population (Baxter et al. in 

press), and home characteristics and occupant behaviors associated with infiltration 

(Baxter et al. 2006).  We hypothesize that GIS variables addressing traffic volume and 

composition will be more predictive of indoor levels for pollutants with more spatial 

heterogeneity and fewer indoor sources, such as elemental carbon (EC), relative to those 

with less spatial heterogeneity (fine particulate matter, PM2.5) or those with indoor 

sources (PM2.5 and nitrogen dioxide, NO2).   
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2.  Methods  

2.1  Data Collection 

Study design, sampling, analysis, and quality control measures are described in a 

previous publication (Baxter et al. in press).  Briefly, residential indoor and outdoor PM2.5 

and NO2 samples and home characteristics/occupant behavior data were collected at 43 

homes from 2003 - 2005 in the metropolitan Boston area as part of the Asthma Coalition 

for Community, Environment, and Social Stress (ACCESS) study, a prospective birth 

cohort assessing asthma etiology in a lower SES population.  Sampling was conducted in 

two seasons, the non-heating (May – October) and heating season (December – March). 

When possible, two consecutive 3-4 day measurements were collected in each season; all 

analyses were based on the average of within-season measurements.  PM2.5 samples were 

collected with Harvard Personal Environmental Monitors (PEM) on Teflon filters, and 

analyzed for EC using reflectance analysis.  NO2 concentrations were measured using 

Yanagisawa passive filter badges.  A standardized questionnaire was administered at the 

end of each sampling period to gather housing characteristics/occupant behavior data. 

The study was approved by the Human Studies Committee at the Brigham & Women’s 

Hospital and the Harvard School of Public Health.   

Information on housing characteristics was also collected through the City of 

Boston, Brookline, Cambridge, and Somerville property tax records, and ambient 

concentrations were collected from an ambient monitor (the Massachusetts Department 

of Environmental Protection monitor in Dudley Square, Roxbury) located near the center 

of our monitoring area.  Ambient concentrations were averaged over the same sampling 
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period (matching date and time) as when the indoor and outdoor samples were collected.  

Finally, continuous traffic counts were recorded on the largest road within 100m of the 

home with a Jamar Trax I Plus traffic counter.  

  Sample homes were individually geocoded with ArcGIS 9.1 using U.S. Census 

TIGRE files and City of Boston street parcels data, and combined with road networks and 

traffic data obtained from the Massachusetts Highway Department (MHD) to create 

various measures of traffic.  Because different aspects of traffic (e.g. density, roadway 

configuration, vehicle speed) may affect overall emission rates, pollutant mix, and 

dispersal, we created and examined a number of traffic indicators to capture varying 

characteristics, including cumulative traffic density scores (unweighted and kernel-

weighted) at various radii (50-500m), distance-based measures, total roadway length 

measures, and characteristics of traffic on the nearest major road to each home.  To 

consider the influence of the nearest major road, we created indicators for its average 

daily traffic, diesel traffic (using axle length from ACCESS traffic measurements), and 

weighted each by distance to the road.  Lastly, block group-level population and area 

measures were used to estimate population density (Clougherty 2006). 

 

2.2.  Data Analysis 

2.2.1  Regression Models   

Models utilizing publicly available data and questionnaire responses were 

developed by regressing ambient concentrations, predetermined indoor source terms, and 

traffic indicators against indoor concentrations as seen in Equation (1). 
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ijjijjijjojij TrafficQCambientCin *** 321 ββββ +++=                                                  (1) 

 

where Cinij (ppb, μg/m3, or m-1 x 10-5)  is the indoor concentration of pollutant j for 

sampling session i, Cambientij is the concentration collected from the ambient monitors, 

Qij is a vector of the various indoor source terms, and Trafficij  represents the different 

traffic indicators created for each home and then selected by pollutant. The indoor source 

terms were determined from a previous analysis where home-specific outdoor 

concentrations and exposure-related activities, collected via questionnaire, were regressed 

against home-specific indoor concentrations.  The indoor source terms were as follows: 

for PM2.5, cooking time (≤ 1/day vs. > 1h.day) and occupant density (people/room); for 

NO2, gas stove usage (using an electric stove or a gas stove ≤1 h/day vs. using a gas stove 

>1h/day); and for EC, no indoor sources were identified (Baxter et al. in press).  We 

restricted our modeling to these terms, for the sake of comparability and to minimize the 

likelihood of spurious findings. The best model was then selected based on the lowest p-

values for the traffic term.   

Although many homes had two sampling sessions, conducted in two different 

seasons (a heating and non-heating season), these were broadly defined and covered a 

period up to 6 months. Therefore, each sampling session was treated as an independent 

measurement. In all regression models, outliers were removed that unduly influenced 

regression results, defined as having an absolute studentized residual greater than four.  

One outlier was removed for PM2.5 and two were removed for EC.   

 

2.2.2.  Bayesian Variable Selection 
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 With 24 traffic variables and a small dataset, there may be issues with comparing 

models using p-values, both because multiple variables may have similar significance 

levels and because the observed relationships may be due to chance.  For a more formal 

model comparison, a Bayesian approach was used to estimate the probability that a model 

using a given traffic covariate is the best model.  This approach allowed us to weigh the 

evidence for each traffic term and see the amount of uncertainty in choosing the best 

model.  The posterior model probabilities for each pollutant are shown by Equations (2) – 

(4) (George and McCulloch 1997; Chipman et al. 2001).   
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where Mk is the model with traffic term k when all of the other variables (e.g. ambient 

concentrations, indoor sources) are in the model, Y is the observed indoor concentrations 

for one of the pollutants, P(Mk|Y) is the posterior model probability of Mk given Y, l(Y|Mk) 

is the marginal likelihood of Y given Mk, P(Mk) is the prior probability that Mk is the true 

model.  We assumed the same prior probability P(Mk) for all of the traffic terms, equal to 

N
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 (N = the number of traffic terms). 

  The marginal likelihood is the likelihood of the observed data under Mk 

accounting for the uncertainty in the regression coefficients as shown in Equation (3). 
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where Yi is the residual from sampling session i from regressing indoor concentrations on 

ambient concentrations and indoor source terms, X

182 

183 

184 
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191 

192 

ik is the residual from regressing traffic 

term k on ambient concentrations and indoor source terms, n is the number of 

observations, and c reflects our prior uncertainty on the regression coefficients of the 

traffic terms in Yj|Mk.  We used c = n, making c large enough to acknowledge reasonable 

uncertainty in the effect estimates while still giving very unlikely effect estimates low 

prior probability.  We also conducted sensitivity analysis by calculating the posterior 

probabilities with a range of c ‘s (5 -100) (Chipman et al. 2001).   

The probabilities then need to be normalized as shown in Equation (4) (multiplied 

by 100 to calculate a percentage). 
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In a sensitivity analysis, we considered another model where M0  is the model 

without a traffic term.  We assumed a P(Mk) of 2
1 and N2

1  for M0 and Mk (models with the 

traffic term), respectively.  This assumed an equal chance of traffic affecting indoor 

concentrations as not.  Using the 

196 
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N2
1  weights in the model selection inherently penalized 

for testing many traffic terms in a small dataset.  The posterior probabilities of M

198 
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0 for 

each pollutant were calculated as shown by Equation (5) and normalized utilizing 

Equation (4). 
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2.2.3  Effect Modification by Ventilation Characteristics 

The model expressed in Equation (1) does not account for variations in home 

ventilation patterns which may influence the effect of indoor sources, local traffic, and 

ambient concentrations.  In this study there are no direct measurements of air exchange 

rates (AERs), so we relied on other methods to capture the effects of ventilation.  Prior 

studies conducted in Boston area homes observed a strong relationship between the 

infiltration factor (FINF) and AER (Sarnat et al. 2002; Long and Sarnat 2004).  In a 

previous analysis, we described home ventilation characteristics using FINF estimated by 

the indoor-outdoor sulfur ratio, and then estimated the contribution of season, home 

characteristics (e.g. year of construction, apartment vs. multi-family home, and floor 

level), and occupant behaviors (e.g. open windows and air conditioner use).  We 

predicted FINF using logistic regression, dichotomizing FINF at the median into high and 

low categories, and found open windows to be the most significant contributor in our 

dataset (Baxter et al. 2006).   

 The variable of open windows (no vs. yes) was therefore used as a readily 

available proxy for the infiltration factor and was incorporated as an interaction term into 

the model illustrated in Equation (1).  This can be expressed as: 
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where Openwindowsi indicates whether during the sampling period the occupant had their 

windows open or closed.  Adhering to the mass balance framework, the opening of 

windows should theoretically increase the influence of ambient concentrations and traffic 

while decreasing the influence of indoor sources.  All analyses were done using SAS 

version 8.  

 

3.  Results and Discussion 

3.1  Data Analysis 

3.1.1.  General Characteristics 

A total of 66 sampling sessions were conducted.  The 43 sites (shown in Figure 1) 

were distributed among 39 households throughout urban Boston, with 4 participants 

moving and allowing us to sample in their new home.  Summary statistics of NO2, PM2.5, 

and EC for indoor, outdoor, and ambient concentrations (collected from a centrally 

located monitor) are presented in Table 1 and are comparable to those seen in other 

studies (Zipprich et al. 2002; Brunekreef et al. 2005; Meng et al. 2005; Brown 2006).  

Average indoor concentrations of NO2 and PM2.5 are greater than both home-specific 

outdoor and ambient concentrations while indoor concentrations of EC were less than 

both outdoor and ambient concentrations.  For EC, ambient concentrations are in mass-

based units while the absorption coefficient is used for the indoor and outdoor 

concentrations.  For the sake of comparison, a conversion factor of 0.83 μg/m3 per m-1 x 
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10-5 (Kinney et al. 2000) was used on the indoor and home-specific outdoor 

concentrations.  
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We regressed indoor concentrations on outdoor concentrations, indoor on 

ambient, and outdoor on ambient, to help determine the likely predictors of indoor 

concentrations (Table 2).  For our outdoor concentrations, the ambient monitor was 

strongly predictive for PM2.5, but not for NO2 or EC.  This indicates that temporal rather 

than small-scale spatial variability was dominant for PM2.5, whereas for NO2 and EC, 

there was more pronounced spatial variability and more influential local sources, such as 

local traffic conditions.  The coefficients of determination (R2) for indoor vs. outdoor and 

indoor vs. ambient are similar to one another for NO2 and PM2.5, however, outdoor and 

ambient concentrations did not explain the majority of variability seen in indoor 

concentrations, possibly due to the influences of indoor sources.  For EC, the R2s were 

quite different, with outdoor concentrations explaining a large portion of the variability 

whereas ambient concentrations did not due to the influence of local traffic.  

 

3.1.2  Regression Models 

Variables and regression coefficients of the regression models with the most 

significant traffic terms are shown in Table 3.  The unweighted cumulative density score 

within 50 m of the home was associated with an increase in indoor NO2 levels.  For EC, a 

proxy for diesel traffic appeared to be predictive of indoor concentrations, with levels 

decreasing as the distance a home is from a designated truck route increases.  No traffic 

variable was significantly associated with indoor PM2.5 concentrations. 
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For each pollutant, the posterior probabilities of models using the different traffic 

variables were calculated and grouped based on the GIS algorithm used to create them 

(Table 4).  Posterior probabilities greater than three times the prior probability (4.2%) 

included the unweighted cumulative density score within a 50m buffer, which yielded the 

highest probability (26.5%) for NO2, and distance from a designated truck route (14.3%) 

for EC.  Average daily traffic (ADT) had the highest posterior probability in the PM2.5 

models (8.3%), but was less than twice the prior probability, and multiple additional 

measures had comparable probabilities. We calculated these posterior probabilities using 

a range of c’s (5-100) and the results were similar (not shown). 

Within the Bayesian analysis, all posterior probabilities were under 30%, 

emphasizing the difficulty in choosing the correct model with a small dataset and many 

correlated predictors.  For NO2, models describing traffic closer to the home (50 -100m 

buffers) generally had the highest probabilities.  This agrees with previous studies 

showing outdoor NO2 levels decreasing significantly with increasing logarithmic distance 

from the road (Roorda-Knape et al. 1999; Gilbert et al. 2003), and the majority of air 

pollution from the road occurring within 50-75m (Van Roosbroeck et al. 2006).  

Therefore roadways within 50m of the home may be the largest contributor to the total 

NO2 concentration.   

For EC, the highest probability traffic terms were related to truck traffic.  EC has 

commonly been used as a marker for diesel particles (Gotschi et al. 2002) and since 

almost all heavy-duty trucks have diesel engines, it is expected that a traffic indicator 

summarizing truck traffic would be important, especially in the United States where 
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relatively few passenger vehicles use diesel fuel.  In contrast to the other pollutants, the 

traffic model with the highest probability (ADT) was not significant in the indoor PM
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model.  None of the models yielded probabilities over 10%, suggesting little differential 

information value across covariates and therefore that a traffic variable may not be 

necessary in the model. This was not entirely unexpected given that PM2.5 exhibits less 

spatial heterogeneity than the other pollutants (Roorda -Knape et al. 1998).   

To address the issue of multiple testing, sensitivity analyses calculated the 

posterior probabilities for pollutant models with (Mk) and without a traffic term (M0) 

assuming an equal chance of traffic affecting indoor pollutant concentrations as not.  For 

all of the pollutants, the models without the traffic term had high probabilities, with 

77.3% for NO2, 84.3% for PM2.5, and 84.6% for EC, reflecting both the presumed prior 

probabilities and the relatively small amount of variability explained by the traffic terms.  

The highest probabilities for those models with the traffic term were 6.02% (unweighted 

cumulative density score within a 50m buffer) for NO2, 1.31% (ADT) for PM2.5, and 

2.21% (distance from a designated truck route) for EC.  This suggests the difficulty in 

relating traffic variables to indoor concentrations given less spatial variation across an 

urban area as opposed to comparing an urban vs. suburban/rural area, as well as the 

contribution of indoor sources and ventilation.  The small sample sizes and multiple 

testing also contribute to the difficulty of definitively demonstrating that traffic terms 

should be in the model. 

 

3.1.4  Effect Modification by Ventilation Characteristics 
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The use of open windows as a ventilation proxy agrees with a similar study 

conducted in Boston which found air exchange rates (AER) higher in homes with open 

windows, and that an open windows covariate may be a better estimate of air exchange 

with outdoors than measured AERs for multi-unit buildings, such as those seen in the 

current study.  This is because measured AERs cannot distinguish between make-up air 

from adjacent apartments and the air from the outdoors (Brown 2006).  The term 

openwindows served as a proxy for ‘high’ and ‘low’ infiltration factors and is used as an 

effect modifier as described by Equation (5).  This was done without modifying the effect 

of indoor sources due to the limited statistical power and resulting statistical instability 

when effect modification of indoor sources was included (related in part to the use of 

categorical variables for many indoor source terms).  The final models, including only the 

significant (p < 0.2) interaction terms, are shown in Table 5.  For NO
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2 and EC, the traffic 

variables were significantly modified by the open windows variable, with their effects on 

indoor levels more pronounced in homes where windows were opened.  For PM2.5, the 

effect of ambient concentrations was significantly greater in home where windows were 

opened compared to those where windows were kept closed.  The inclusion of this term 

increased the R2 from 0.02 to 0.25 for NO2, 0.20 to 0.40 for PM2.5, and 0.16 to 0.32 for 

EC. 

 

3.2.  Contribution of indoor and outdoor sources to indoor concentrations 

 It is also important to understand whether indoor or outdoor sources appear to 

contribute more to indoor concentrations. We therefore calculated the contributions due 

to local traffic and indoor sources for NO2, of traffic on EC, and of ambient 
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concentrations and indoor sources on PM2.5.  For NO2, the contribution of local traffic, 

given a range of cumulative unweighted density traffic scores (within 50m buffer) from 

4.1-198 vehicles*m, was approximately 0.29 ppb – 14 ppb for homes with open 

windows, with no significant contribution to homes with closed windows. This is 

comparable to a study conducted in the Netherlands which reported a difference of about 

7 ppb in average classroom concentrations comparing schools in high urbanization areas 

to schools in low urbanization areas (Rjinders et al. 2001). Gas stove usage contributed 

on average 7 ppb to indoor NO
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2 levels, similar in magnitude as observed in previous 

studies (Lee et al. 1998; Levy et al. 1998).  Thus, local traffic is a larger contributor to 

indoor NO2 where traffic density is high and windows are opened, whereas indoor 

sources are a larger contributor when traffic density is low or windows are closed.    

Similarly, traffic contributed up to 0.2 μg/m3 to indoor EC for homes with open 

windows, with an insignificant contribution for homes where windows were closed.  

Previous studies have found EC concentrations to be 50% higher in homes located on 

high intensity streets compared to low traffic homes (Fischer et al. 2000).  In addition, 

indoor EC increased 1.91 μg/m3 with increasing truck traffic density (Janssen et al. 

2001), although in a European setting with greater prevalence of diesel vehicles. 

  Ambient concentrations contributed an average of 15 μg/m3 to indoor PM2.5 for 

homes with open windows, and 10 μg/m3 for homes where windows were closed.  

Additionally, cooking for more than an hour per day contributed 6.2 μg/m3 and average 

occupant density contributed 6.5 μg/m3.  The effect of cooking is comparable to results 

from prior studies (Ozkaynak et al. 1994; Brunekreef et al. 2005). Occupant density is 

likely a proxy for multiple factors, including resuspension activities. Resuspension has 
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not been as substantial of a contributor in previous studies, although the smaller volumes 

and greater crowding of our study homes may increase the relative source strength.      

 Finally, in a previous paper we predicted indoor concentrations using home-

specific outdoor concentrations and indoor sources (Baxter et al. in press).  For PM2.5 and 

NO2 the predictive power of the models (R2 of 0.37 and 0.16, respectively) are similar to 

those seen in the current analysis.  This was expected given the large influence of indoor 

sources to indoor levels of these pollutants.  In contrast, for EC, the predictive power of 

the model from the current analysis (R2 = 0.32) was weaker than seen in the previous 

analysis (R2 = 0.49).  EC tends to be dominated by outdoor sources; it is therefore more 

important to accurately capture its outdoor spatial pattern wherein our traffic indicators 

may not be adequate. 

  

3.3  Limitations 

 The ambient monitor is located within the city and may be influenced by local 

traffic.  It also uses different measurement methods for EC, possibly explaining both 

model performance and the higher ambient concentrations relative to outdoor.  However, 

the Dudley Square monitor includes all three pollutants, is at the center of our monitoring 

region, and is well correlated with other ambient monitors in and around Boston. The 

sample size also limited our ability to explore a larger range of potential indoor source 

terms and traffic variables.  Deficiencies in the underlying data, with traffic counts on 

smaller residential roads sparse, led to increased uncertainties for these variables in that 

they may be imperfect proxies of traffic volume/composition. In addition, many of these 

indicators do not capture the characteristics of traffic that are relevant to concentrations 
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of different pollutants. For example, dense stop-and-go traffic may create more emissions 

per vehicle-mile, and total traffic counts fail to capture such aspects.  For this reason a 

variety of traffic indicators were created to capture these different effects as well as those 

not dependent on total traffic counts (e.g. road segment lengths).  

Additionally, the open windows variable may not effectively capture a home’s 

ventilation characteristics in that it is used as proxy for the sulfur indoor/outdoor ratio 

which itself is a proxy of the infiltration factor.  Similarly, the indoor source terms are 

developed from questionnaires which are surrogates for the source emissions rate and 

may represent a variety of occupant activities. However, these limitations are inherent in 

developing exposure estimates based on publicly available or questionnaire data.  

Due to limited statistical power we also were not able to incorporate the 

interaction term on the indoor sources, omitting the effect of ventilation on the indoor 

source contribution. Finally, while it may have been desirable to develop season-specific 

models given the inherent seasonality in many factors, we did not have adequate power to 

construct those models. While it is apparent that many limitations are related to statistical 

power, it is often difficult to generate a large exposure dataset in an epidemiological 

context, so many of these issues would need to be confronted by other investigators. 

More importantly, despite the aforementioned limitations and sample size issues, the 

models are generally interpretable and in agreement with the literature. 

 

4.  Summary and Conclusions 

 The current paper identified important predictors of indoor concentrations for 

multiple air pollutants in a high-risk population, by utilizing public databases (e.g. 
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ambient monitor, GIS, tax assessment databases) and focused questionnaire data.  Given 

the numerous ways to characterize traffic, the use of a Bayesian variable selection 

approach helped us better determine the appropriate traffic measures for each pollutant.   

Our regression models indicate that PM
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2.5 was influenced less by local traffic but had 

significant indoor sources, while EC was associated with local traffic and NO2 was 

associated with both traffic and indoor sources.  Comparing models based on p-values 

and using a Bayesian approach yielded similar results, with traffic density/volume within 

a 50m buffer of a home and distance from a designated truck route as important 

contributors to indoor levels of NO2 and EC, respectively. However, results from the 

Bayesian approach also suggested a high degree of uncertainty in selecting the best 

model.  We also found additional information value in the variable capturing the opening 

of windows, previously shown to be associated with ventilation, which allowed our 

model to keep with the principles of the mass balance model.   

 In general, our study provides some direction regarding how publicly available 

data can be utilized in population studies, in order to predict residential indoor (and 

therefore personal) exposures in the absence of measurements.  We have demonstrated 

that information on traffic applied in GIS framework in combination with ambient 

monitoring data can be used as an effective substitute for home-specific outdoor 

measurements.   Along with some type of evaluation of the ventilation characteristics of 

the home, the aforementioned information can be used to estimate indoor exposures of 

outdoor dominated pollutants (e.g., EC).  For those pollutants with significant indoor 

sources (e.g. NO2 and PM2.5) questionnaire data capturing these sources is also needed.  
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Figure 1. Location of sampling sites and DEP monitor 
 
 



Table 1. Indoor, home-specific outdoor and ambient (from centrally located monitors) concentrations 
 
Pollutant Category N Mean (SD) Median Range 
NO2 (ppb) Indoor 54 19.6 (11.0) 17.1 5.67 – 61.1 
 Home-Specific Outdoor 52 17.2 (5.67) 16.8 5.21 – 33.3 
 Ambient 52 18.4 (3.86) 18.3 12.2 – 27.6 
PM2.5 (μg/m3) Indoor 64 20.3 (12.5) 16.7 6.77 – 74.9 
 Home-Specific Outdoor 60 14.2 (5.43) 12.6 6.75 – 31.3 
 Ambient 60 15.4 (6.07) 14.6 6.24 – 45.7 
EC (μg/m3) Indoora 62 0.47 (0.29) 0.41 0.10 – 1.8 
 Home-Specific Outdoora 58 0.52 (0.41) 0.46 0.10 – 3.2 
 Ambient 58 0.86 (0.34) 0.83 0.28 – 1.9 
a factor of 0.83 was used to convert from m-1 x 10-5 to μg/m3 (Kinney et al. 2000), to allow for comparison 
between residential and ambient measurements. 
 
Table 2. Coefficients of determination (R2) for NO2, PM2.5, and EC concentrations in univariate regression 
models. 
 
Pollutant  Indoor vs. outdoor  Indoor vs. ambient  Outdoor vs. ambient 
NO2  0.07  0.02  0.21 
PM2.5  0.23  0.20  0.65 
EC  0.49  0.16  0.08 
 
Table 3.  Identification of traffic indicators contributing to indoor concentrations after adjusting for ambient 
concentrations and indoor source termsa

 
Pollutant R2 Model β (SE) p-value 

Ambient Concentrations 0.66 (0.35) 0.06 
Gas Stove Usage 5.0 (3.0) 0.11 NO2  

(ppb) 0.20 
unweighted density at 50m buffer 0.06 (0.03) 0.02 
Ambient Concentrations 0.99 (0.25) <0.01 
Cooking Time 5.1 (2.9) 0.08 PM2.5 

(μg/m3) 0.36 
Occupant Density 5.2 (2.2) 0.02 
Ambient Concentrations 0.26 (0.09) < 0.01 EC 

(m-1 x 10-5) 0.21 Distance to nearest designated truck route -7.2 x 10-5 
(4.2x 10-5) 

0.01 

a only models with significant (p < 0.2) covariates are shown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4.  GIS-based variables grouped by algorithm used to create them and their posterior probabilities. 
Covariates with posterior probabilities three times (12.6%) greater than the prior probability (4.2%) are 
presented in bold. 
 

 NO2 PM2.5  EC 
Cumulative Traffic Scores (number of cars/day)    
   density of urban road a within 200m 2.39 3.48 3.02 
   unweighted density within 50m buffer 26.5 3.08 2.97 
                                              100m buffer 2.15 2.90 2.95 
                                              200m buffer 2.23 4.07 3.18 
                                              500m buffer 2.46 5.33 3.82 
   Kernel-weighted densities at 50m buffer 6.64 3.13 3.12 
                                                  100m buffer 10.3 3.16 3.00 
                                                  200m buffer 1.93 3.02 3.44 
                                                  300m buffer 2.25 4.30 3.75 
                                                  500m buffer 3.25 5.40 3.39 
Distance based measures (m)    
   Distance to nearest urban road 3.90 5.43 3.57 
                                  major roadb 3.93 6.28 3.65 
                                  highwayc 2.01 2.97 3.72 
                                  designated truck route 2.16 4.37 14.3 
Roadway Segment Length (m)    
   Total roadway length contained within 50m 5.76 3.48 3.36 
                                                                  100m 2.31 4.40 3.41 
                                                                  200m 2.30 5.18 2.95 
                                                                  300m 2.42 5.78 4.33 
Average Daily Traffic Scores (number of cars/day)    
   Average daily traffic (ADT) 2.04 8.34 5.04 
   ADT/distance to major road 2.27 3.00 3.45 
Diesel Measures: based on our traffic counter    
   Number of trucks/day on largest roadway within 100m 2.45 2.87 8.63 
   Diesel fraction on largest roadway within 100m 2.09 2.84 3.77 
   Trucks per day/distance to major road 4.06 3.16 2.96 
Population Density  
(for census block containing sampling site) 

   

   Population density  2.18 4.06 4.19 
a urban road defined as > 8500 cars/day 
b major road defined as > 13,000 cars/day 
c highway defined as > 19,000 cars/day 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5.  Regression analyses of contributors to indoor concentrations accounting for the effect 
modification of open windowsa 

 
 R2 Model β (SE) p-value 

Ambient Concentrations 0.79 (0.35) 0.03 
Gas Stove Usage 6.8 (3.1) 0.04 
unweighted density at 50m buffer*open windows = Yes 0.07 (0.03) 0.01 

NO2
(ppb) 0.25 

unweighted density at 50m buffer*open windows = No -0.03 (0.06) 0.62 
Ambient Concentrations*open windows = Yes 0.98 (0.32) <0.01 
Ambient Concentrations*open windows = No 0.64 (0.32) 0.05 
Cooking Time 6.2 (2.9) 0.04 

PM2.5
(μg/m3) 0.40 

Occupant Density 6.5 (2.3) 0.01 
Ambient Concentrations 0.38 (0.09) <0.0001 
Distance to nearest designated truck route* 
open windows = Yes 

-9.2 x 10-5 
(4.1x 10-5) 

0.03 EC 
(m-1 x 10-5) 0.32 

Distance to nearest designated truck route* 
open windows = No 

1.0 x 10-4

(5.9 x 10-5) 
0.86 

a only significant interaction terms (p < 0.2) are shown 
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