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Abstract

We present five statistics examples with surprise twists, on topics ranging from descriptive
statistics to sampling to multiple regression. Some of these examples are well known; our
contribution here is to collect them in a convenient place and to discuss in some detail how we
present them to a class in an interactive manner.

1 Introduction

After teaching statistics for several years, we all develop our own collection of favorite examples. We

collect here some examples we have encountered that have surprise twists. In addition to being fun,

the shock of confusion, followed by recognition, is a good way for students to learn and remember

the material. In this article, we present the examples in the order that we do them in the class.

2 World record times for the mile run

At the beginning of our introductory course, we teach descriptive statistics, the simplest example of

which are time plots. We illustrate the difficulties of extrapolation with a low-tech multimedia trick

using a transparency projector and a blackboard.

We blow up and photocopy Figure 1 on a transparency and project it on the blackboard, but

with the right half of the graph covered, so that the students see the world record times for the mile

run from about 1900 to 1950. We then ask how well a straight line fits the data (reasonably well) and

get a student to come up and draw a straight-line fit with chalk on the blackboard, extending to the

year 2000 and beyond. We discuss interpolation and extrapolation: is the straight-line prediction for

the year 2100 reasonable? What about the year 2000? The students agree that these extrapolations

will be too optimistic since there is some minimum time that will never be attained, and they agree

on an extrapolated curve that flattens out a bit between 1950 and 2000. We draw this extrapolation

on the blackboard, and then prepare to reveal the covered-up half of the curve, so that the students

can compare their extrapolation to what actually happened.
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Figure 1: World record times in the mile run since 1900. Blow up this graph onto a transparency
and display it on the blackboard with the portion after 1950 covered up. Then ask the students to
extrapolate to the year 2000. It is surprising that the approximately linear trend continues unabated.

We then reveal the right half of the curve, and the students do a double-take. Amazingly, the

linear extrapolation fits pretty well all the way to the year 2000—in fact, the time trend is actually

slightly steeper for the second half of the century than for the first half. We were pretty shocked

when we first saw this. Of course, we wouldn’t expect this to work out to the year 2050 . . .

The mile run example is also discussed in Anderson and Loynes (1987, 128–130). If your students

might be interested in other work on world record times of men and women in running and swimming,

see Wainer et al. (2000).

3 Heights of men and women

A simple and standard example of the normal distribution is the height of adult men or women (in

the United States, men’s heights have mean 5′9.1′′ and standard deviation 2.9′′, women’s have mean

5′3.7′′ and standard deviation 2.7′′, and both distributions are well-approximated by the normal.

(The normal distribution is understandable here if we think of the height of a man or woman as a

sum of many small factors, so that the Central Limit Theorem applies.) The numbers and more

discussion of the normal model appear in Brainard and Burmaster (1992).

When students are asked to sketch the distribution of heights of adults, they often start with a

bell-shaped curve. But when they are reminded that the population is divided into men and women,

they almost always draw a strongly bimodal picture. We then show them the combined distribution

of the heights of all adults which, surprisingly, has only one mode—the means of the two sexes are

close enough that the modes overlap. See Figure 2.

The height distributions appear in Brainard and Burmaster (1992). Schilling et al. (2001) provide

a detailed discussion of why there is a common misconception that the distribution of heights is

bimodal.
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Figure 2: (a) Distributions of heights of adult men and women in the United States. (b) Distribution
for all adults (52% women, 48% men). Surprisingly, the combined distribution has only one mode
because the mean heights of men and women are so close together.
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Figure 3: Data on number of children in families (displayed as frequency table and histogram) from
students in a typical class. The average is 3.1, which is at first a surprise, given that the average
family has about 2 children. See Section 4 for the explanation.

4 How large is your family?

At some point when we are covering sampling, we ask the students to each write down how many

children are in his or her family (“How many brothers and sisters are in your family, including

yourself?”). We write the results on the blackboard as a frequency table and a histogram, and then

compute the mean, which is typically around 3 (see Figure 3 for an example).

We tell the students that the average number of children in families that were having children

20 years ago (about the age of the students in the class) was about 2.0. Why is the number for this

class so high? Students give various suggestions such as, perhaps larger families are more likely to

send children to college. After some discussion, a student notes that if the family had zero children,

they certainly did not send any to college. The 2.0 figure is the average number of children when

sampling by family; 3.0 is the average number of children when sampling by child. When sampling

by child, a family with n children is n times more likely to be sampled than a family with 1 child.

This illustrates the general point that it is not enough to say you sampled at random; you must

also know the method of sampling. It can also be considered as an example of sampling bias. We

sometimes also ask the students to provide the number of children in his or her oldest uncle’s family,
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which gives an estimate of family size when sampling by family. Although some form of sampling

bias still exists, the mean number of uncle’s children is closer to 2. For example, once when we

asked this question, we found the mean number of children for those students with uncles who have

children to be around 2.3.

This example appears in Gelman and Glickman (2000) and also appears in Madsen (1981).

Size-based sampling in waiting times is a standard example in probability theory; a classroom

demonstration based on this idea appears in Scheaffer et al. (1996, pp. 157–160). Also see Anderson

and Loynes (1987, pp. 123–124).

5 Weighing a “random” sample

It is well known among statisticians that when you take a “haphazard” sample without using any

formal probability sampling, you are likely to oversample the more accessible units. We have found

students respond well to the following demonstration based on estimating the weight of a collection

of objects.

We pass around the room a small digital kitchen scale along with a bag which, we (truthfully)

tell the class, we filled ahead of time with 100 wrapped candies of different sizes (for example, 20

full-sized candy bars and 80 assorted small candies). The class is divided into pairs, and each pair

of students is instructed to estimated the total weight of the candies in the bag by first selecting

a “representative or random sample” of 5 candies out of the bag, then weighing the sample and

multiplying by 20 to estimate the total weight. Each pair of students is told to write down their

measurement and estimate silently (so as not to influence the other students), then put their sample

back in the bag, shake up the bag, and pass to the next pair. At the end, we tell the students, we

will weigh the bag, and whoever has the closest estimate will get to keep all the candy.

This demonstration takes about two minutes to explain, and then it proceeds while the lecture

takes place, thus giving all the students the opportunity to participate without taking away lecture

time. As usual, we have the students work in pairs so they will focus more consciously on the task.

When all the pairs of students have weighed their candies, we then ask each pair of students to

state their estimated total weight; we write all these weights on the blackboard and then display

them as a histogram, as shown in Figure 4. This histogram illustrates the sampling distribution of

the estimated weights. We then get another student to weigh the entire bag (a digital kitchen scale

with enough accuracy to weigh 5 candies and enough range to weigh all 100 can be bought for about

$50) and state the total weight. It is invariably lower than most or even all of the sample-based

estimates, and this shocks the students.

Why did this happen? The students realize that the larger candies are more accessible (and also
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Figure 4: Results of 17 pairs of eighth-graders independently estimating the weight of a bag of 100
candies of varying size by selecting a sample of 5, weighing them (and returning them to the bag),
and multiplying the weight by 20. (The estimate of 2827.7 was from a student trying something
clever.) The histogram represents the sampling distribution of the estimates, and the spread in the
histogram shows the variance of the estimate. The true weight was 1480 grams; thus the sampling
distribution also includes a large bias. Students tend to overestimate the weight, even when they
are motivated to guess accurately, because it is easier to grab the larger candies out of the bag.

are more likely to remain on the top of the bag after it has been shaken). Even though they tried

to get a representative or random sample, they could not help oversampling the large candies.

This example leads to the topic of random sampling. We begin the discussion by asking the

students how they would take a random sample of size 5 from the 100 candies. In addition, this

is an excellent way to introduce the concepts of bias and variance of a sampling distribution: we

indicate the bias of the sampling distribution by drawing a vertical line at the true weight on the

histogram of estimates. We can then discuss how the bias and variance would change if (a) we

switched to a random sampling approach, or (b) we increased the sample size from 5 to 10 or 20.

Variations of the subjective sampling demonstration appear in the literature; for example, Scheaf-

fer et al. (1996, pp. 149–156) present a version based on rectangles drawn on paper.

6 Tall people have higher incomes

We use the following example to explain lurking variables in the context of linear regression. As

with our other examples, there is a surprise twist at the end.

Before class begins, we set up Figure 5 on a transparency and project onto the blackboard. We

trace the lines and label the axes of the graph, then turn off the projector, but leave it in place on

the table.

We begin by asking students if they think that taller people have higher earnings (that is, income

excluding unearned sources such as interest income). If so, by how much? We draw on the blackboard

a pair of axes representing earnings and height, and a point at (66.5, 20000): the average height of

adults in the United States is about 5′6.5′′ and their average earnings (in 1990) were about $20,000.

We then draw a line through this central point with slope 1560 (we carefully draw this by drawing
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Figure 5: Annual earnings (in thousands of dollars) vs. height (in inches) for a random sample of
adult Americans in 1990, along with the least-squares regression line. The heights have been jittered
slightly so the points do not overlap.

the line through the point (56.5, 20000− 10 ∗ 1560) and (76.5, 2000 + 10 ∗ 1560)).

We explain that this line has equation y − 20000 = 1560(x − 66.5), or y = −84000 + 1560x.

What are the interpretations of −84000 and 1560? We tell the students that this is the regression

line predicting earnings from height.

We now ask the students to work in pairs and sketch a scatterplot of data that are consistent

with this regression line. They need one more piece of information: the standard deviation of

the residuals, which is 19000. We show this on the graph by two dotted lines lines, parallel to the

regression line, with one line 19000 above and the other line an equal distance below. Approximately

68% of the data should fall in this region, but plotting the points is tricky given that earnings cannot

be negative.

We then turn on the projector and display the graph of the actual survey data (Figure 5) on

the blackboard. (We downloaded the data from the Work, Family, and Well-Being Survey (Ross,

1990).) On the scale of the actual data, the regression slope ($1560 per inch of height) is small but

undeniably positive (the regression output in Stata format appears below):

. regress earn height
Source | SS df MS Number of obs = 1379

---------+------------------------------ F( 1, 1377) = 137.21
Model | 4.8773e+10 1 4.8773e+10 Prob > F = 0.0000

Residual | 4.8948e+11 1377 355470204 R-squared = 0.0906
---------+------------------------------ Adj R-squared = 0.0900

Total | 5.3826e+11 1378 390606004 Root MSE = 18854
------------------------------------------------------------------------------

earn | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------

height | 1563.138 133.4476 11.713 0.000 1301.355 1824.92
_cons | -84078.32 8901.098 -9.446 0.000 -101539.5 -66617.15

------------------------------------------------------------------------------
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We then ask the students how do we interpret the constant term in the regression: that is, the

value −84000 in the equation, y = −84000 + 1560x (see the regression table above)? The answer is,

−84000 is the y-value of the regression line where x = 0—that is, predicted value of income for an

adult who is zero inches tall. In this example, such an extrapolation is meaningless. That is why we

prefer to work with the form, y = ȳ + b(x − x̄).

The next question is what does this mean—why do taller people have higher earnings? The

students realize that men are, on average, taller than women and tend to make more money; thus,

sex is a lurking variable.

The “lurking variable” story makes a lot of sense here, but it does not tell the whole story! We

see this by running the multiple regression of earnings on height and sex:

. regress earn height sex
Source | SS df MS Number of obs = 1379

---------+------------------------------ F( 2, 1376) = 101.73
Model | 6.9335e+10 2 3.4667e+10 Prob > F = 0.0000

Residual | 4.6892e+11 1376 340785180 R-squared = 0.1288
---------+------------------------------ Adj R-squared = 0.1275

Total | 5.3826e+11 1378 390606004 Root MSE = 18460
------------------------------------------------------------------------------

earn | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------

height | 550.5448 184.5701 2.983 0.003 188.4756 912.614
sex | -11254.57 1448.892 -7.768 0.000 -14096.85 -8412.295

_cons | 1617.938 14059.5 0.115 0.908 -25962.44 29198.32
------------------------------------------------------------------------------

By including sex in the regression, we have reduced the coefficient of height by about a factor

of 3, but it is still positive and statistically significant. Apparently, tall people do, on average, earn

more, even after controlling for sex.

At the conclusion of the discussion, we hand out copies of the Stata log file, which shows what

we had to do to clean the data file before running the regressions. They can also use this as a

template when doing their computer homework assignments. We explain to the students that linear

regression is not the best model for this sort of data (economists might use a logarithmic model, or

a tobit regression), but it is in some ways more useful to illustrate the concept in an example for

which it is not completely appropriate.

7 Discussion

We have shown how we make examples with twists into activities in which the students participate.

Using data collected on themselves (Section 4 on the number of siblings) or collected by them

(Section 5 on weighing a random sample) involves students directly. In examples where students
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do not generate data, we have them work in pairs to find estimates (Section 2 on the mile run),

discuss reasons for the phenomenon observed (Section 6 on the regression of height and income), or

sketch plots (Section 3 on heights of men and women). With this approach, the students process

the problem before we tell the story, and when we reveal the surprise twist, we find the students

are now intrigued with the problem. They want to find our what went wrong with their seemingly

correct procedure, why their data do not match the standards, or what was the flaw in their logic.

We are careful to leave time to help them figure it out. The impact of the surprise twist is lost if

the revelation is carried over to the next class meeting.

Although we enjoy surprising students with these examples, we avoid giving them too many

of these types of examples. If there are too many, they lose their impact, and students become

distrustful of the material. But overall, we have found that double takes can be effective at promoting

classroom discussion, and they can help students remember a statistical lesson.
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