
FOURIER ANALYSIS AND PHYLOGENETIC TREES

STEVEN N. EVANS

Abstract. We give an overview of phylogenetic invariants: a technique for re-

constructing evolutionary family trees from DNA sequence data. This method

is useful in practice and is based on a number of simple ideas from elementary
group theory, probability, linear algebra, and commutative algebra.

1. Introduction

Phylogeny is the branch of biology that seeks to reconstruct evolutionary “family
trees.” Such reconstruction can take place at various scales. For example, we could
attempt to build the family tree for various present day indigenous populations in
the Americas and Asia in order to glean information about the possible course of
migration of humans into the Americas. At the level of species, we could seek to
determine whether modern humans are more closely related to chimpanzees or to
gorillas. Ultimately, we would like to be able to reconstruct the entire “tree of life”
that describes the course of evolution leading to all present day species. Because
the status of the “leaves” on which we wish to build a tree differs from instance to
instance, biologists use the general term taxa (singular taxon) for the leaves in a
general phylogenetic problem.

For example, for 4 taxa, we might seek to decide whether this tree
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describes the course of evolution. In such trees:
• the arrow of time is down the page,
• paths down through the tree represent lineages (lines of descent),
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• any point on a lineage corresponds to point of time in the life of some
ancestor of a taxon,

• vertices other than leaves represent times at which lineages diverge (that
is, times at which certain taxa cease to have common ancestors),

• the root corresponds to the most recent common ancestor of all the taxa.

Phylogenetic reconstruction has a long history. Classically, reconstruction was
based on the observation and measurement of morphological similarities between
taxa with the the possible adjunction of similar evidence from the fossil record;
and these methods continue to be used. However, with the recent explosion in
technology for sequencing large pieces of a genome rapidly and cheaply, reconstruc-
tion from the huge amounts of readily available DNA sequence data is now by
far the most commonly used technique. Moreover, reconstruction from DNA se-
quence data has the added attraction that it can operate fairly automatically on
quite well-defined digital data sets that fit into the framework of classical statistics,
rather than proceeding from a somewhat ill-defined mix of qualitative and quan-
titative data with the need for expert oversight to adjust for difficulties such as
morphological similarity due to convergent evolution.

There is a substantial literature on both the mathematics behind various ap-
proaches to phylogenetic reconstruction and the algorithmic issues that arise when
we try to implement these approaches with large amounts of data and large num-
bers of taxa. We won’t attempt to survey this literature or provide a complete
bibliography. Rather, these lecture notes are devoted to some of the mathematics
behind one particular approach: that of phylogenetic invariants. Not only is this
technique of practical utility, but it requires a nice combination of elementary group
theory, probability, linear algebra, and commutative algebra.

The outline of the rest of these notes is as follows. Section 2 begins with a discus-
sion of the sort of DNA sequence data that are used for phylogenetic reconstruction
and how these data are pre-processed using sequence alignment techniques. We then
describe a very general class of “Markov random field” models that incorporate ar-
bitrary mechanisms for nucleotide substitution and a dependence structure for the
nucleotides exhibited by the taxa that mirrors the phylogenetic tree. Section 3 in-
troduces 3 restricted classes of substitution mechanisms that are commonly used in
the literature: the Jukes-Cantor model and the 2- and 3-parameter Kimura mod-
els. We observe in Section 4 that standard statistical techniques such as maximum
likelihood are still computationally very demanding for infering phylogenies even
for such restricted models and we propose the alternative approach of phylogenetic
invariants. We point out in Sections 5 and 6 that an underlying group structure is
present in the restricted substitution models and develop the Fourier analysis that is
necessary for exploiting this group structure to construct and recognise invariants.

Section 7 is a warm-up that uses these algebraic tools to exhibit an invariant
for a particular tree. The ideas in this section are then generalised in Section 8 to
characterise the class of all invariants for an arbitrary tree. Finally, we determine
the “dimension” of the space of invariants for an arbitrary tree in Section 9 and show
in Section 10 that different trees have different invariants, with the “dimension” of
the class of distinguishing invariants depending in a simple manner on the difference
between the two trees.
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2. Data and general models

We assume that reader is familiar with the basic notion of the hereditary in-
formation of organisms being carried by DNA molecules that consist of two linked
chains built from an alphabet of four nucleotides and twisted around each other in
a double helix, and, moreover, that such a molecule can be described by listing the
sequence of the nucleotides encountered along one of the chains using the letters
A=adenine, G=guanine, C=cytosine, T=thymine. A lively and entertaining guide
to the fundamentals is [GW91].

The totality of the DNA in any somatic cell constitutes the genome of the in-
dividual. The genomes of different individuals differ. As evolution occurs, one
nucleotide is substituted for another, segments of DNA are deleted, and new seg-
ments are inserted.

Sequence alignment is a procedure that attempts to provide algorithms that
takes DNA sequences from several taxa, line up “common positions” at which
substitutions may or may not have occurred, and determine where deletions and
insertions have occurred in certain sequences relative to the others. For example,
an alignment of two taxa might produce an output such as the following:

Taxon 1 ...AGTAACT...

Taxon 2 ...AT ∗ ∗ ∗ CA...

Reading from left to right: both taxa have an A in the “same” position, the next
position is common to both taxa but Taxon 1 has a G there whereas Taxon 2 has
a T, then (due to insertions or deletions) there is a stretch of 3 positions that are
present in the genome of Taxon 1 but not present in the genome of Taxon 2 etc.
There are many approaches to deriving such alignments, and a discussion of them is
outside the scope of these notes. A good introduction to some of the mathematical
issues is [Wat95].

Our basic data are DNA sequences for each of our taxa that have been prepro-
cessed in some suitable way to align them. For simplicity, we suppose that we are
dealing with segments where there have been no insertions or deletions, so all the
taxa share the same common positions and differences between nucleotides at these
positions are due to substitutions.

The standard statistical paradigm dictates (in very broad terms) how we should
go about taking these data and producing inferences about the phylogeny connect-
ing our taxa. Firstly, we should begin with a probability model that incorporates
the possible trees as a “parameter” along with other parameters that describe the
mechanism by which substitutions occur relative to such a tree. Secondly, we should
determine the choice of parameters (in particular, the choice of tree) that best fits
the observed sequence data according to some criterion.

A standard assumption in the literature is that the behaviour at widely separated
positions on the genome is statistically independent. With this assumption, the
modelling problem reduces to one of modelling the nucleotide observed at a given
position.

In order to describe the general class of single position models typically used
in the literature, it is easiest to begin by imagining that we can observe not only
the nucleotides for the taxa but also those for the unobserved intermediates repre-
sented by the interior vertices of the tree. (For simplicity, let us refer to the taxa
and the intermediates as “individuals” for the moment.) Two individuals share the
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same lineage up to their most recent common ancestor and so the processes such
as mutation leading to substitution act on the genomes of their common ancestors
in the same way up until the split in lineages that occurs at the most recent com-
mon ancestor. After the split in lineages, it is a reasonable first approximation to
assume that the random mechanisms by which substitutions occur are operating
independently on the genomes of the ancestors that are no longer shared. Math-
ematically, this translates into an assumption that that the nucleotides exhibited
by two individuals are conditionally independent given the nucleotide exhibited by
their most recent common ancestor. Equivalently, the nucleotides exhibited by two
individuals are conditionally independent given the nucleotide exhibited by any
individual on the path that connects the two individuals in the tree.

For example, consider the 4 taxa tree
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Letting Yi denote the nucleotide exhibited by individual i, we have, for example,
that

• Y1 and Y2 are conditionally independent given Y5,
• the pair (Y1, Y2) are conditionally independent of the pair (Y3, Y4) given

any one of Y5, Y6, or Y7.

Because of this dependence structure, a joint probability such as

P{Y1 = A, Y2 = A, Y3 = G, Y4 = C, Y5 = T, Y6 = T, Y7 = A}

can be computed as

P{Y7 = A}
× P{Y5 = T |Y7 = A}P{Y6 = T |Y7 = A}
× P{Y1 = A |Y5 = T}P{Y2 = A |Y5 = T}
× P{Y3 = G |Y6 = T}P{Y4 = C |Y6 = T}.

Thus, for a given tree, the joint probabilities of the individuals exhibiting a partic-
ular set of nucleotides are determined by the vector of 4 unconditional probabilities
for the root individual and the 4× 4 matrices of conditional probabilities for each
edge.

Given such a model for the nucleotides exhibited by all the individuals (taxa
and intermediates), we obtain a model for the nucleotides exhibited by the taxa by
taking the marginal probability distribution for the taxa. Operationally, this just
means that we sum over the possibilities for the intermediates.

For example, suppose that we have the 2 taxa tree
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Then, for example,

P{Y1 = A, Y2 = G} = P{Y1 = A, Y2 = G, Y3 = A}+ P{Y1 = A, Y2 = G, Y3 = G}
+ P{Y1 = A, Y2 = G, Y3 = C}+ P{Y1 = A, Y2 = G, Y3 = T}

= P{Y3 = A}P{Y1 = A |Y3 = A}P{Y2 = G |Y3 = A}
+ P{Y3 = G}P{Y1 = A |Y3 = G}P{Y2 = G |Y3 = G}
+ P{Y3 = C}P{Y1 = A |Y3 = C}P{Y2 = G |Y3 = C}
+ P{Y3 = T}P{Y1 = A |Y3 = T}P{Y2 = G |Y3 = T}.

We now introduce some notation to describe in full generality the sort of model
we have just outlined.

Let T be a finite rooted tree. Write ρ for the root of T, V for the set of vertices
of T, and L ⊂ V for the set of leaves. We regard T as a directed graph with edge
directions leading away from the root. The elements of L correspond to the taxa,
the tree T is the phylogenetic tree for the taxa, and the elements of V\L correspond
to ancestors alive at times when the lineages of taxa diverge. It is convenient to
enumerate L as (l1, . . . , lm) and V as (v1, . . . , vn), with the convention that lj = vj

for j = 1, . . . ,m and ρ = vn.
Each vertex v ∈ V other than the root ρ has a a father σ(v) (that is, there

is a unique σ(v) ∈ V such that the directed edge (σ(v), v) is in the rooted tree
T.) If vα and vω are two vertices such that there exist vertices vβ , vγ . . . , vξ with
σ(vβ) = vα, σ(vγ) = vβ , . . . , σ(vω) = vξ (that is, there is a directed path in T from
α to ω), then we say that vω is a descendent of vα or that vα is an ancestor of vω

and we write vα ≤ vω or vω ≥ vα. Note that a vertex is its own ancestor and its
own descendent. The outdegree outdeg(u) of u ∈ V is the number of children of u,
that is, the number of v ∈ V such that u = σ(v). To avoid degeneracies we always
suppose that outdeg(v) ≥ 2 for all v ∈ V\L. (Note: Terms such as “father” and
“child” are just standard terminology from the theory of trees and don’t have any
biological significance — an edge in our tree may correspond to thousands of actual
generations.)

Let π be a probability distribution on {A,G,C, T} – the root distribution, The
probability π(B) is the probability that the common ancestor at the root exhibits
nucleotide B. For each vertex v ∈ V\{ρ}, let P (v) be a stochastic matrix on
{A,G,C, T} (that is, the rows of P (v) are probability distributions on {A,G,C, T}.)
We refer to P (v) as the substitution matrix associated with the edge (σ(v), v). The
entry P (v)(B′, B′′) is the conditional probability that the individual at vertex v
exhibits nucleotide B′′ given that the individual at vertex σ(v) exhibits nucleotide
B′ ∈ {A,G,C, T}.

Define a probability distribution µ on {A,G,C, T}V by setting

µ((Bv)v∈V) := π(Bρ)
∏

v∈V\{ρ}

P (v)(Bσ(v), Bv).

The distribution µ is the joint distribution of the nucleotides exhibited by all of the
individuals in the tree, both the taxa and the unobserved ancestors. The induced
marginal distribution on {A,G,C, T}L is

p((B`)`∈L) :=
∑

v∈V\L

∑
Bv

µ(((Bv)v∈V\L, (B`)`∈L)),
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where each of the dummy variables Bv, v ∈ V\L, is summed over the set
{A,G,C, T}. The distribution p is the joint distribution of the nucleotides ex-
hibited by the taxa.

With this model in hand, we could try to make inferences from sequence data
using standard statistical techniques. For example, we could apply the method of
maximum likelihood where we determine the choice of the parameters T, π, and
P (v), v ∈ V\{ρ}, that makes the probability of the observed data greatest. (As we
discussed above, we would need to observe the nucleotides at several positions and
assume they were independent and governed by the same single–position model.)
Maximum likelihood is known to have various optimality properties when we have
large numbers of data, but unless we have just a few taxa there are a huge number of
parameters over which we have to optimise and implementing maximum likelihood
directly is numerically infeasible. There are various approaches to overcoming these
difficulties – for instance, we can maximise likelihoods 4 taxa at a time and hope to
fit the subtrees inferred in this manner into one overall tree for all the taxa. Another
approach is to constrain the substitution matrices in some way and hope that the
extra structure this introduces makes the inferential problem easier to solve (while
still retaining some degree of biological plausibility.) That is the approach we will
follow starting in the next section.

3. More specific models

The general model for the observed nucleotides outlined in the Section 2 allows
the substitution matrices to be arbitrary. As we discussed in the Section 2, there
are practical reasons for constraining the form of these matrices.

The substitution matrix P (v) represents the cumulative effect of the substitutions
that occur between the times that the individuals associated with σ(v) and v were
alive. In order to arrive at a reasonable form for P (v), it is profitable to think about
how we would go about modelling the dynamics of this substitution process.

The most natural and tractable dynamics are (time-homogeneous) Markovian
ones. That is, if the position currently exhibits a certain nucleotide, B′ say, then
(independently of the past) the nucleotide changes at rate r(B′, B′′) to some other
nucleotide B′′. More formally, if the position currently exhibits nucleotide B′, then:

• independently of the past, the probability that the elapsed time until a
change occurs is greater than t is exp(−

∑
B′′ r(B′, B′′) t),

• independently of how long it takes until a change occurs, the probability
that it is to B′′ is proportional to r(B′, B′′).

There are obvious caveats in the use of such Markov chain models. Certain posi-
tions on the genome can’t be altered without serious consequences for the viability
of the organism, and so a model that allows substitution to occur in a completely
random fashion is not appropriate at such positions. However, if we look at posi-
tions that are not associated with regions of the genome that have an identifiable
function, then it is somewhat difficult to recognise two positions as being the “same”
in two different individuals for the purposes of alignment. Some care is therefore
necessary in practice to find positions that can be aligned but are such that a
Markov chain model is implausible.

The simplest Markov chain model for nucleotide substitution is the Jukes-Cantor
model [JC69, Ney71] in which r(B′, B′′) is the same for all B′, B′′. Under this
model, the distribution of the amount of time spent at a nucleotide before a change
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occurs does not depend on the nucleotide and all 3 choices of the new nucleotide
are equally likely when a change occurs.

Biochemically, the nucleotides fall into two families: the purines (adenine and
guanine) and the pyrimidines (cytosine and thymine). Substitutions within a family
are called transitions, and they have a different biochemical status to substitutions
between families, which are called transversions. Kimura [Kim80] proposed a model
that recognised this distinction by assigning a common rate to all the transversions
and possibly different common rate to all the transitions. We can represent the
rates schematically as follows:
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The solid arrows represent transitions and the dashed arrows represent transver-
sions. There are two rate parameters, α, β > 0, say, such that r(B′, B′′) = α (resp.
r(B′, B′′) = β) if B′ and B′′ are connected by a solid (resp. dashed) arrow.

Later, Kimura [Kim81] introduced a generalisation of this model with the fol-
lowing rate structure:
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Now there are 3 types of arrows (solid, dashed, and double) and 3 corresponding
rate parameters (α, β, γ > 0, say.) For example, if the current nucleotide is A then,
independently of the past, the probability that it takes longer than time t until
a change is exp(−(α + β + γ)t) and, independently of how long it takes until a
change, the change is to G with probability α/(α + β + γ), to C with probability
β/(α+ β + γ), and to T with probability γ/(α+ β + γ). There does not appear to
be a convincing biological rationale for this model with β 6= γ. However, the extra
parameter allows some more flexibility in fitting to data. Moreover, the analysis of
the 3 parameter model is no more difficult than that of the 2 parameter one, and
is even somewhat clearer from an expository point of view. We refer the reader to
[ES93, EZ98] for the changes that are necessary in what follows when dealing with
the 1 and 2 parameter models.

Probabilists usually record the rates for a Markov chain as an infinitesimal gen-
erator matrix. For example, the infinitesimal generator for the 3 parameter Kimura
model is

Q =


A G C T

A −(α+ β + γ) α β γ
G α −(α+ β + γ) γ β
C β γ −(α+ β + γ) α
T γ β α −(α+ β + γ)

.
The infinitesimal generator is more than just an accounting device: for any s, t ≥ 0
the entry in row B′ and column B′′ of the matrix

exp(tQ) = I + tQ+
t2

2!
Q2 +

t3

3!
Q3 + · · ·
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gives the conditional probability that nucleotide B′′ will be exhibited at time s+ t
given that nucleotide B′ is exhibited at time s.

Because the matrix Q is symmetric, exp(tQ) can be computed using the spectral
theorem once the eigenvalues and eigenvectors of Q have been computed. This is
straightforward for Q, but we won’t go into the details. Also, the diagonalisation
follows easily using the Fourier ideas of Section 6. As an example, the conditional
probability that nucleotide A will be exhibited at time s+ t given that nucleotide
A is exhibited at time s is

1
4
[1 + exp(−2t(α+ γ)) + exp(−2t(β + γ)) + exp(−2t(α+ β))],

and the the conditional probability that nucleotide G will be exhibited at time s+ t
given that nucleotide A is exhibited at time s is

1
4
[1− exp(−2t(α+ γ)) + exp(−2t(β + γ))− exp(−2t(α+ β))].

Note that both of these probabilities converge to 1
4 as t→∞: of course, we expect

from the symmetries of the Markov chain that if it evolves for a long time, then
it will converge towards an equilibrium distribution in which all nucleotides are
equally likely to be exhibited.

It is clear without computing exp(tQ) explicitly that this matrix is of the form


A G C T

A w x y z
G x w z y
C y z w x
T z y x w

,
where 0 ≤ w, x, y, z ≤ 1. Not all such matrices are given by exp(tQ) for a suitable
choice of α, β, γ, t. However, we suppose from now on that each substitution
matrix P (v) is of this somewhat more general form for some w, x, y, z (that can
vary with v.) Thus, once a tree T with m leaves and n vertices is fixed, there are
3n independent parameters in the model: 3 for the root distribution π and 3 for
each of the n−1 substitution matrices. Note that each of the 4m model probabilities
p((B`)`∈L), (B`)`∈L ∈ {A,G,C, T}L is a polynomial in these 3n variables.

4. Making inferences

From the development in Sections 2 and 3, we have a model for the joint proba-
bility of the taxa exhibiting a particular set of nucleotides. For more than a small
number of taxa, this model still has too many parameters for us to apply maximum
likelihood. Moreover, maximum likelihood necessarily estimates all the numerical
parameters in the model, even though the tree parameter is typically the one that
is of most interest.

An alternative approach to estimating the tree that does not involve directly
estimating the numerical parameters was suggested in [CF87] and [Lak87]. The
ideas behind this approach is as follows. For a given tree T, the model probabilities
p((B`)`∈L), (B`)`∈L ∈ {A,G,C, T}L, have a specific functional form in terms of the
numerical parameters defining the root distribution and the substitution matrices
(indeed, the model probabilities are polynomials in these variables.) This should
constrain the model probabilities to lie on some lower dimensional surface in RL.
Rather than represent this surface explicitly as the range of a vector of polynomials,
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we could try to characterise the surface implicitly as a subset of a locus of points
in RL that are common zeroes of a family of polynomials. That is, we want to
represent the surface as a subset of an algebraic variety.

Because we assuming that the same model (with the same numerical substitution
mechanism parameters) governs each position in our data set and that the behaviour
at different positions is independent, the strong law of large numbers gives that the
quantities p((B`)`∈L), (B`)`∈L ∈ {A,G,C, T}L, can be consistently estimated in a
model-free way by computing the proportion of positions in our data set at which
Taxon 1 exhibits nucleotide B1, Taxon 2 exhibits nucleotide B2, etc. Call these
estimates p̂((B`)`∈L), (B`)`∈L ∈ {A,G,C, T}L, so that p̂((B`)`∈L) will be close to
p((B`)`∈L) with high probability when we observe a sufficient number of different
positions to have enough independent identically distributed data points for the
strong law of large numbers to kick in.

We hope that the varieties for two different trees (say, Tree I and Tree II) have a
“small” intersection and so a “generic” point on the variety for one tree will not be
a common zero of the polynomials defining the variety for the other tree. That is,
we hope that we can find a polynomial f such that f(p((B`)`∈L)) = 0 for all choices
of substitution mechanism parameters for Tree I whereas f(p((B`)`∈L)) 6= 0 for all
but a “small” set of choices of substitution mechanism parameters for Tree II. If
this is the case, then f(p̂((B`)`∈L)) should be close to zero (that is, “zero up to
random error”) if Tree I is the correct tree regardless of the numerical parameters
in the model, whereas this quantity should be “significantly non-zero” if Tree II
is the correct tree unless we have been particularly unfortunate and the numerical
parameters are such that the vector p((B`)`∈L) happens to lie on the intersection
of the varieties for the two trees.

The polynomials that are zero on the algebraic variety associated with a tree are
called the (phylogenetic) invariants of the model. Note that the set of invariants
has the structure of an ideal in the ring of polynomials in the model probabilities:
the sum of two invariants is an invariant and the product of an invariant with an
arbitrary polynomial is an invariant.

In order to use the invariant idea to reconstruct phylogenetic trees we need to
address the following questions:

i) How do we recognize when a polynomial is an invariant?
ii) How do we find a generating set for the ideal of invariants (and how big is such

a set)?
iii) Do different trees have different invariants?
iv) How do we determine whether a vector of polynomials applied to estimates

of the model probabilities is “zero up to random error” or “significantly non-
zero”?

In principle, questions (i) and (ii) can be answered using general theory from
computational commutative algebra. There is an algorithm using Gröbner bases
that solves the implicitization problem of finding a generating set for the ideal of
polynomials that are 0 on a general parametrically given algebraic variety (see
[CLO92].) Unfortunately, this algorithm appears to be computationally infeasible
for the size of problem that occurs for even a modest number of taxa. Other
methods adapted to our particular problem are therefore necessary, and this is
what we study in these notes. Along the way, we answer question (iii) and even
establish how many algebraically independent invariants there are that distinguish
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between two trees. We don’t deal with the more statistical question (iv) in these
notes.

5. Some group structure

We begin with a step that may seem somewhat bizarre at first, but pays
off handsomely. Consider the Klein 4-group Z2

⊕
Z2 consisting of the elements

{(0, 0), (0, 1), (1, 0), (1, 1)} equipped with the group operation of coordinatewise ad-
dition modulo 2. The addition table for Z2

⊕
Z2 is thus


+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

.
Identify the nucleotides {A,G,C, T} with the elements of Z2

⊕
Z2 as follows: A↔

(0, 0), G↔ (0, 1), C ↔ (1, 0), and T ↔ (1, 1). This turns G := {A,G,C, T} into a
group with the addition table


+ A G C T

A A G C T
G G A T C
C C T A G
T T C G A

.
Suppose that X and Y are two G-valued random variables such that the condi-

tional distribution of Y given X is described by the matrix


A G C T

A w x y z
G x w z y
C y z w x
T z y x w

.
Note that P{Y = B′′ |X = B′} only depends on the pair of nucleotides (B′, B′′)
through the difference B′′−B′. It follows easily from this that the joint distribution
of the pair (X,Y ) is same as that of the pair (X,X + Z), where P{Z = A} = w,
P{Z = G} = x, P{Z = C} = y, P{Z = T} = z, and Z is independent of X.

The model that we described in Section 3 had an arbitrary root distribution
π and substitution matrices P (v) that satisfy P (v)(B′, B′′) = q(v)(B′′ − B′) for
some probability distribution q(v) on G. Repeatedly applying the observation of
the previous paragraph shows that if if (Zv)v∈V is a vector of independent G-
valued random variables, with Zρ having distribution π, and Zv, v ∈ V\{ρ}, having
distribution q(v), then the G-valued random variables

Y` :=
∑
v≤`

Zv, ` ∈ L,

have joint distribution

P{Y1 = B1, . . . , Ym = Bm} = p((B`)`∈L).
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That is, by suitable addition of independent G-valued “weights,” we can construct
a vector of random variables having the same joint distribution as the nucleotides
exhibited by the taxa.

For example, for the tree

1 2

�� BB

4
3

��TT

5

the construction is

Y1 = Z1 + Z4 + Z5

Y2 = Z2 + Z4 + Z5

Y3 = Z3 + Z5

6. A little Fourier analysis

We’ve seen that the model of Section 3 can be represented in terms of sums of
indpendent random variables taking values in a finite, Abelian group. Probabilists
have known for a long time that Fourier analysis is a very powerful technique for
handling such sums. In this section we’ll review some basic facts about Fourier
analysis for an arbitrary finite, Abelian group (H,+).

Let T = {z ∈ C : |z| = 1} denote the unit circle in the complex plane, and
regard T as an Abelian group with the group operation being ordinary complex
multiplication. The characters of H are the group homomorphisms mapping H
into T. That is, χ : H → T is a character if χ(h1 + h2) = χ(h1)χ(h2) for all
h1, h2 ∈ G. The characters form an Abelian group under the operation of pointwise
multiplication of functions. This group is called the dual group of H and is denoted
by Ĥ. The groups H and Ĥ are isomorphic. Given h ∈ H and χ ∈ Ĥ, write 〈h, χ〉
for χ(h).

The elements of H form an orthogonal basis for the space of functions from H
to C. Given a function f : H → C, the Fourier transform of f is the function
f̂ : Ĥ → C given by

f̂(χ) =
∑
h∈H

f(h)〈h, χ〉.

A function can be recovered from its Fourier transform via Fourier inversion:

f(h) =
1

#H
∑
χ∈Ĥ

f̂(χ)〈h, χ〉.

Given two finite, Abelian groups H′ and H′′, the dual of the product group
H′′ ⊕ H′′ is isomorphic to Ĥ′ ⊕ Ĥ′′ via the identification

〈(h′, h′′), (χ′, χ′′)〉 = 〈h′, χ′〉 × 〈h′′, χ′′〉.
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One may write Ĝ = {1, φ, ψ, φψ}, where the following table gives the values of
〈g, χ〉 for g ∈ G and χ ∈ Ĝ:


(0, 0) (0, 1) (1, 0) (1, 1)

1 1 1 1 1
φ 1 −1 1 −1
ψ 1 1 −1 −1
φψ 1 −1 −1 1

.
The characteristic function of a H-valued random variable X is the Fourier trans-

form of its probability mass function:

ξ(χ) =
∑
h∈H

P{X = h}〈h, χ〉

= E [〈X,χ〉]

(here, following the usual convention in probability theory, 〈X,χ〉 is the random
variable obtained by composing the random variable X with the function 〈·, χ〉.)
The probability mass function of X can be recovered from its Fourier transform by
Fourier inversion:

P{X = h} =
1

#H
∑
χ∈Ĥ

ξ(χ)〈h, χ〉.

Finally, note that if X ′ and X ′′ are independent H-valued random variables,
then

E[〈X ′ +X ′′, χ〉] = E[〈X ′, χ〉〈X ′′, χ〉] = E[〈X ′, χ〉] E[〈X ′′, χ〉].

That is, the characteristic function of X ′ +X ′′ is the product of the characteristic
functions of X ′ and X ′′.

7. Finding an invariant

Let’s begin by seeing how the observations of Sections 5 and 6 can be used to
find an invariant for an instance of the model of Section 3.

Consider the tree

1 2

�� BB

4
3

�
�
T
T

5

with the associated model for the nucleotides Y1, Y2, Y3 exhibited by the taxa written
in terms of independent G-valued random variables Z1, . . . , Z5 as follows:

Y1 = Z1 + Z4 + Z5

Y2 = Z2 + Z4 + Z5

Y3 = Z3 + Z5
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Using the results of Section 6 and the notation given there for for the characters
of G we have

E[〈Y1, φ〉〈Y2, φ〉〈Y3, ψ〉]
= E[〈Z1, φ〉〈Z4, φ〉〈Z5, φ〉〈Z2, φ〉〈Z4, φ〉〈Z5, φ〉〈Z3, ψ〉〈Z5, ψ〉]
= E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z4, φ

2〉] E[〈Z5, φ
2ψ〉]

= E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z5, ψ〉].

A similar argument shows that

E[〈Y1, φ〉〈Y2, φ〉] E[〈Y3, ψ〉]
= E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z5, ψ〉].

Thus
E[〈Y1, φ〉〈Y2, φ〉〈Y3, ψ〉]− E[〈Y1, φ〉〈Y2, φ〉] E[〈Y3, ψ〉] = 0.

Writing all of the expectations in the last equation as sums in terms of the model
probabilities p((B`)`∈L) gives a polynomial in the model probabilities of total degree
2 that is satisfied for all choices of the numerical parameters defining the root
distribution and the substitution matrices. Thus we have found an invariant for
this tree.

Now consider the tree

1 3

�� BB

4
2

��TT

5

with the associated model for the nucleotides Y1, Y2, Y3 exhibited by the taxa written
in terms of independent G-valued random variables Z1, . . . , Z5 as follows:

Y1 = Z1 + Z4 + Z5

Y2 = Z2 + + Z5

Y3 = Z3 Z4 + Z5

Now
E[〈Y1, φ〉〈Y2, φ〉〈Y3, ψ〉]− E[〈Y1, φ〉〈Y2, φ〉] E[〈Y3, ψ〉]
= E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z4, φψ〉] E[〈Z5, ψ〉]
− E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z4, φ〉] E[〈Z4, ψ〉] E[〈Z5, ψ〉]

= E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉]
(
E[〈Z4, φψ〉]− E[〈Z4, φ〉] E[〈Z4, ψ〉]

)
E[〈Z5, ψ〉].

It is not hard to show that that the vector

(E[〈Z4, φ〉],E[〈Z4, ψ〉],E[〈Z4, φψ〉])

ranges over a subset of R3 with non-empty interior as the distribution of Z4 ranges
over the set of possible distributions on G. Thus

E[〈Z4, φψ〉]− E[〈Z4, φ〉] E[〈Z4, ψ〉]

is certainly not identically 0 and the invariant we found for the previous tree is not
an invariant for this tree.
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8. Finding all invariants

The examples studied in Section 7 indicate how we should proceed to find all
the invariants for a general tree. The ideas that we describe in this section were
developed in [ES93].

We call a vector (χ`1 , . . . , χ`m) ∈ Ĝm an allocation of characters to leaves. Such
an allocation of characters to leaves induces an allocation of characters to vertices
(χv1 , . . . , χvn

) ∈ Ĝn as follows. The character χv is the product of the χ` for all
leaves ` that are descendents of v, that is,

χv :=
∏
`≥v

χ`.

In particular, if v = vi is a leaf (and hence the leaf `i by our numbering convention),
then χvi = χ`i .

Let

{(χi,1, . . . , χi,n), i = 1, . . . , 4m}

be an enumeration of the various allocations of characters to vertices induced by
the 4m different allocations of characters to leaves. Define 3n vectors {xv,θ =
(x(1)

v,θ, . . . , x
(4m)
v,θ ), v ∈ V, θ = φ, ψ, φψ} of dimension 4m by setting

x
(i)
vj ,θ :=

{
1, if χi,j = θ,

0, otherwise,

for i = 1, . . . , 4m, j = 1, . . . , n and θ ∈ {φ, ψ, φψ}.
Write R(T) for the free Z–module generated by the set {xv,θ : v ∈ V, θ =

φ, ψ, φψ}. That is, R(T) is the collection of integer vectors of dimension 4m con-
sisting of Z-linear combinations of the xv,θ. Set

N (T) := {a ∈ Z4m

:
4m∑
i=1

aix
(i)
v,θ = 0, v ∈ V, θ = φ, ψ, φψ},

so that Z4m

= R(T)⊕N (T).
For a ∈ Z4m

, the polynomial

∏
{i:ai≥0}

E

 m∏
j=1

〈Yj , χi,j〉

ai

−
∏

{i:ai≤0}

E

 m∏
j=1

〈Yj , χi,j〉

−ai

=
∏

{i:ai≥0}

 ∑
(B1,...,Bm)∈Gm

m∏
j=1

〈Bj , χi,j〉p(B1, . . . , Bm)

ai

−
∏

{i:ai≤0}

 ∑
(B1,...,Bm)∈Gm

m∏
j=1

〈Bj , χi,j〉p(B1, . . . , Bm)

−ai

is an invariant if and only if a ∈ N (T). It is shown in [ES93] that this is the only
game in town: the invariants produced this way generate the ideal of all invariants.
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Indeed, it is shown in [ES93] that if {(a1,r, ..., a4m,r), r = 1, ..., rankN (T)} is a
Z-basis for the free Z-module N (T), then the set of polynomials of the form

∏
{i:ai,r≥0}

E

 m∏
j=1

〈Yj , χi,j〉

ai,r

−
∏

{i:ai,r≤0}

E

 m∏
j=1

〈Yj , χi,j〉

−ai,r

generates the ideal of invariants but no subset thereof does. Finding a Z-basis for
N (T) is just elementary linear algebra – we are simply finding a basis for the null
space of an integer-valued matrix – and can be done using Gaussian elimination.

9. How many invariants are there?

Given our tree T with m leaves (taxa) and n vertices in total, we have 4m

model probabilities p((B`)`∈L) that arise as polynomials in 3n “free parameters”
— 3 free parameters for the root distribution and 3 free parameters for each of
the substitution matrices. A naive “degrees of freedom” argument would suggest
that there should, in some sense, be 4m − 3n independent relations between the
model probabilities. We verify this numerology in this section by showing that
rankR(T) = 3n, and hence rankN (T) = 4m − 3n. This and related results were
presented in [EZ98], but our proof here is quite different.

Let X denote the 4m × 3n matrix with columns indexed by V×{φ, ψ, φψ} that
has the column corresponding to (v, θ), given by xv,θ . We need to show that the
matrix X has (real) rank 3n, and this is equivalent to showing that the associated
3n× 3n Gram matrix XtX has full rank (see 0.4.6(d) of [HJ85].)

The entry of XtX with indices ((v∗, θ∗), (v∗∗, θ∗∗)), v∗, v∗∗ ∈ V, θ∗, θ∗∗ ∈
{φ, ψ, φψ}, is the usual scalar product of xv∗,θ∗ with xv∗∗,θ∗∗ , which is just the
number of assignments of characters to leaves that assign θ∗ to v∗ and θ∗∗ to v∗∗.
We can compute this number of assignments as follows.

If v∗ = v∗∗ and θ∗ = θ∗∗, then it is clear by symmetry that this entry is 4m−1,
whereas if v∗ = v∗∗ and θ∗ 6= θ∗∗, then this entry is obviously 0.

Consider now the case where v∗ 6= v∗∗, so that the collection of leaves descended
from v∗ is not the same as the collection of leaves descended from v∗∗. We claim
that the entry of XtX with indices ((v∗, θ∗), (v∗∗, θ∗∗)) is 4m−2. To see this, write
L∗ and L∗∗ for the leaves descended from v∗ and v∗∗, respectively. Suppose first
that L∗∗ ( L∗. If we have an assignment of characters to leaves that assigns the
characters η∗ to v∗ and η∗∗ to v∗∗, then replacing the character assigned to some
`∗ ∈ L∗\L∗∗ from χ∗ (say) to ρ∗ρ∗∗η∗χ∗ and replacing the character assigned to
some `∗∗ ∈ L∗∗ from χ∗∗ (say) to ρ∗∗η∗∗χ∗∗ gives a new assignment of characters to
leaves that assigns ρ∗ to v∗ and ρ∗∗ to v∗∗. It follows that number of assignments
of characters to leaves that assign θ∗ to v∗ and θ∗∗ to v∗∗ is indeed 4m−2 when
L∗∗ ( L∗. A symmetric argument argument handles the case L∗ ( L∗∗, and we
leave this to the reader.

We conclude that XtX can be partitioned into 3 × 3 blocks so that the blocks
down the diagonal are all of the form4m−1 0 0

0 4m−1 0
0 0 4m−1

 ,
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while the off–diagonal blocks are all of the form4m−2 4m−2 4m−2

4m−2 4m−2 4m−2

4m−2 4m−2 4m−2

 .

Now
XtX = 4m−2(D + 11t)

where 1 is the (column) vector with all entries equal to 1 and D is a matrix parti-
tioned into 3× 3 blocks with the blocks down the diagonal all of the form 3 −1 −1

−1 3 −1
−1 −1 3

 ,

and the off–diagonal blocks all zero. Note that D is invertible with inverse a par-
titioned matrix that has blocks down the diagonal all of the form 1

2
1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

 ,

and the off–diagonal blocks all zero. A standard result on inverses of small rank
perturbations (see 0.7.4 of [HJ85]) gives that XtX is indeed invertible (and hence
full rank), with inverse

4−(m−2)

(
D−1 − 1

1 + 1tD−11
D−111tD−1

)
= 4−(m−2)

(
D−1 − 1

1 + 3n
11t

)
.

10. How well do invariants distinguish between trees?

The last question remaining from Section 4 is, “Do different trees have different
invariants?” The answer is “Yes.” This follows from Theorem 10 in [SSE93]. We
give a different proof which actually establishes “how many” independent invariants
distinguish between two different trees.

We begin by making explicit the natural notion of equivalence for trees with
labelled leaves. We say that two trees T′ and T′′ with the same set L of leaves
are identical if there is a bijection τ from the set of vertices V′ of T′ to the set of
vertices V′′ of T′′ such that τ(`) = ` for each leaf ` ∈ L and u ∈ V′ is the father
of v ∈ V′ in T′ if and only if τ(u) ∈ V′′ is the father of τ(v) ∈ V′′ in T′′. This is
equivalent to requiring that τ(`) = ` for each leaf ` ∈ L and u ∈ V′ is the ancestor
of v ∈ V′ in T′ if and only if τ(u) ∈ V′′ is the ancestor of τ(v) ∈ V′′ in T′′. It is
not hard to see that two trees T′ and T′′ with the same set L of leaves are identical
if and only if for each v′ ∈ V′ the set of leaves descended from v′ is equal to the
set of leaves descended from some v′′ ∈ V′′ and vice-versa.

Given two trees T′ and T′′ with the same set L of leaves, write ν(T′,T′′) for
the number of vertices v′′ of T′′ such that the collection of leaves descended from
v′′ is not the collection of leaves descended from any vertex of T′. If T′ and T′′ are
not identical, then either ν(T′,T′′) > 0 or ν(T′′,T′) > 0. We claim that the rank
of the free Z–module N (T′) ∩ R(T′′) is 3ν(T′,T′′). That is, there are 3ν(T′,T′′)
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algebraically independent invariants for the tree T′ that are not invariants for the
tree T′′, and similarly with the roles of T′ and T′′ interchanged.

To establish this claim, first note that

rank (N (T′) ∩R(T′′)) = rank (R(T′′))− rank (R(T′) ∩R(T′′))

= rank (R(T′) +R(T′′))− rank (R(T′)).

Write V′ and V′′ for the vertices of T′ and T′′, respectively, and let Ṽ′′ denote the
set of vertices v′′ of T′′ such that the collection of leaves descended from v′′ is not
the collection of leaves descended from any vertex of T′. Hence |Ṽ ′′| = ν(T′,T′′).
Of course, if v′′ ∈ V′′\Ṽ′′, then there is a vertex v′ ∈ V′ such that the assignment of
characters to v′ and v′′ for each assignment of characters to leaves are the same, and
hence the vector xv′,θ (calculated for T′) is the same as the vector xv′′,θ (calculated
for T′′.) The claim will thus follow if we can show that the vectors

{xv′,θ : v′ ∈ V′, θ = φ, ψ, φψ} ∪ {xv′′,θ : v′′ ∈ Ṽ′′, θ = φ, ψ, φψ}

are linearly independent over the integers (equivalently, over the reals.)
Let X denote the 4m × 3(|V′| + |Ṽ′′|) matrix with columns indexed by (V′ ∪

Ṽ′′) × {φ, ψ, φψ} that has the column corresponding to (v′, θ), v′ ∈ V′ (resp.
(v′′, θ), v′′ ∈ Ṽ′′) given by xv′,θ (resp. xv′′,θ.) We need to show that X has
(real) rank 3(|V′| + |Ṽ′′|), and this is equivalent to showing that the associated
3(|V′|+ |Ṽ′′|)× 3(|V′|+ |Ṽ′′|) Gram matrix XtX has full rank. An argument very
similar to that in Section 9 completes the proof.

References

[CF87] J. A. Cavender and J. Felsenstein. Invariants of phylogenies in a simple case with discrete

states. J. Classification, 4:57–71, 1987.
[CLO92] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms : an introduction to

computational algebraic geometry and commutative algebra. New York : Springer-Verlag,

1992.
[ES93] S.N. Evans and T.P. Speed. Invariants of some probability models used in phylogenetic

inference. Ann. Statist., 21:355–377, 1993.
[EZ98] S.N. Evans and X. Zhou. Constructing and counting phylogenetic invariants. J. Comput.

Biol., 5:713–724, 1998.

[GW91] Larry Gonick and Mark Wheelis. The cartoon guide to genetics. Harper Perennial, New
York, updated edition, 1991.

[HJ85] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press, Cambridge,

1985.
[JC69] T.H. Jukes and C. Cantor. Evolution of protein molecules. In H.N. Munro, editor, Mam-

malian Protein Metabolism, pages 21–132. New York: Academic Press, 1969.

[Kim80] M. Kimura. A simple method for estimating evolutionary rates of base substitution
through comparative studies of nucleotide sequences. J. Mol. Evol., 16:111–120, 1980.

[Kim81] M. Kimura. Estimation of evolutionary sequences between homologous nucleotide se-

quences. Proc. Natl. Acad. Sci. USA, 78:454–458, 1981.
[Lak87] J.A. Lake. A rate-independent technique for analysis of nucleic acid sequences: evolu-

tionary parsimony. Mol. Biol. Evol., 4:167–191, 1987.

[Ney71] J. Neyman. Molecular studies of evolution: A source of novel statistical problems. In
S.S. Gupta and J. Yackel, editors, Statistical Decision Theory and Related Topics, pages

1–27. New York: Academic Press, 1971.
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