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Abstract. The rates–across–sites assumption in phylogenetic inference posits that the
rate matrix governing the Markovian evolution of a character on an edge of the putative
phylogenetic tree is the product of a character-specific scale factor and a rate matrix that is
particular to that edge. Thus, evolution follows basically the same process for all characters,
except that it occurs faster for some characters than others. To allow estimation of tree
topologies and edge lengths for such models, it is commonly assumed that the scale factors
are not arbitrary unknown constants, but rather unobserved, independent, identically dis-
tributed draws from a member of some parametric family of distributions. A popular choice
is the gamma family. We consider an example of a clock-like tree with three taxa, one un-
known edge length, a known root state, and a parametric family of scale factor distributions
that contain the gamma family. This model has the property that, for a generic choice of
unknown edge length and scale factor distribution, there is another edge length and scale
factor distribution which generates data with exactly the same distribution, so that even
with infinitely many data it will be typically impossible to make correct inferences about
the unknown edge length.

1. Introduction

Beginning with the germinal work [Fel78], statistically-based estimations of phylogenetic

trees have become popular in molecular systematics, with Bayesian [HR01] and maximum

likelihood methods [Swo96, GG03, PM00, Lew98, OMHO94] used with increasing frequency.

Such statistically-based methods assume that the observed sequences are the result of a sto-

chastic process that has operated on a tree, and they make assumptions about the stochastic

process (that is, model) that has produced the data.

A fundamental question about any statistical model is whether it is identifiable: that is,

whether different parameter values lead to different probability distributions for the data, so

that, in particular, there is some hope of estimating the parameters with increasing accuracy

as the amount of data increases. These questions have been investigated extensively for

certain models used in phylogenetic inference (see, for example, [Ste94, Cha96]).
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Many models used in phylogenetic inference combine a (typically parameter rich) model

of individual site evolution with the assumption that the different sites evolve under a rates–

across–sites model, so that each site c has an associated rate of evolution rc which is constant

across the tree. Thus, sites evolve under essentially the same evolutionary process, and are

just scaled up (or down) versions of each other. (Thus, the rates–across–sites assumption

implies that if one site is expected to evolve twice as fast as another site on edge e, then it

is expected to evolve twice as fast as the other site on every edge.)

Such rates–across–sites models in which each character has its own unknown scale factor

are discussed in [SOWH96], but these models still pose difficult inferential problems. As

remarked in Chapter 13 of [Fel04]:

As the number of sites increases, the number of parameters being estimated

rises correspondingly. This is worrisome: in such “infinitely many parame-

ters” cases maximum likelihood often misbehaves and fails to converge to the

correct tree as the number of sites increases.

Indeed, our own example below shows that relative edge-lengths are, in general, unidentifiable

for such models. (We discuss a situation in which the unknown scale parameters for the

respective characters are unobserved, independent, identically distributed, realizations of

some distribution belonging to a particular family of distributions. However, if edge-lengths

are not identifiable in our set-up, then they certainly won’t be identifiable in the analogous

set-up where the scale parameters are arbitrary.)

A popular ‘fix’ that has been proposed for this problem is to adopt a random effects

approach and suppose that the successive scale factors rc are unobserved, independent ran-

dom draws from a member of some parametric family of distributions. This reduces the

dimensionality of the problem by replacing the deterministic sequence of rc parameters with

the small number of parameters that describe the generating distribution (see, for example,

[UC71, NCF76, Ols87, HKY87, Yan96]).

A standard choice of distribution for the random scale factors is the two-parameter family

of gamma distributions. This family has the mathematical advantage that likelihoods still

have analytically tractable closed forms, and it was shown for a wide class of substitution

models in [Rog01] that edge-lengths are identifiable in this setting. The choice of the gamma

family is often supported by claims that it is sufficiently flexible to mimic the variation of
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rates between characters that is likely to be seen ‘in practice’. There also appears to be a

general sense among many practitioners that the choice of distributional family for the scale

factors is primarily a matter of convenience and that, provided the family is rich enough,

substantially correct inferences of relative edge-lengths will be possible with sufficient data.

To our knowledge, there is no argument in any setting justifying why an assumption of an

exact gamma distribution for the scale factors is biologically reasonable. As remarked in

[Fel04]:

There is nothing about the gamma distribution that makes it more biologically

realistic than any other distribution, such as the lognormal. It is used because

of its mathematical tractability.

It was shown in [SSH94] that the use of random scale factors might not be completely

without problems. In their paper they gave an example of a specific choice of edge-lengths for

each tree topology and a specific choice of discrete distribution for the scale factors (rather

than a continuous distribution such as a gamma) such that the resulting distribution for the

data under the Neyman two-state model is the same for all tree topologies.

In this paper we go further, at least in some directions. We consider a rooted tree with three

taxa and one unknown edge-length (with the remaining edge-lengths either known or fixed

by the clock-like constraint that all lineages have the same total length), and a particular ten-

parameter family F of scale factor distributions with a certain nine-parameter sub-family G

of F . We show that for a generic choice of unknown edge-length τ and model in G ∈ G there

is a choice of edge-length σ 6= τ and model in F ∈ F with the property that data generated

according to the Neyman 2-state model with known ancestral state, scale factor distributed

according to G, and edge-length τ , has the same distribution as data generated according

to a Neyman 2-state model with the same ancestral state, scale factor distributed according

to F , and edge-length σ. Thus, even with infinitely many data, it would be impossible to

decide whether the unknown edge-length is σ or τ – even if one somehow knew in advance

that the distribution for the scale parameter was one of either F or G. Here the term generic

means that the set of exceptional models G and edge-lengths τ for which no corresponding

F and σ exist is a lower dimensional subset of G×R+. In particular, the set of G and τ that

have corresponding F and σ is an everywhere dense open subset of G × R+.
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Moreover, the family F consists of distributions with smooth, unimodal, densities that

possess moments of all orders. In this sense, each distribution in F is as “nice” as a gamma

distribution. Of course, the two-parameter family of gamma distributions is simpler than

than the ten-parameter family F . However, the use of F is essentially a technical device

in our analysis. We could have described our results by simply saying that for a generic

unknown edge-length τ there is a corresponding edge-length σ 6= τ , and two scale parameter

distributions G and F , such that data generated according to the Neyman 2-state model

with known ancestral state, scale factor distributed according to G, and edge-length τ ,

has the same distribution as data generated according to a Neyman 2-state model with

the same ancestral state, scale factor distributed according to F , and edge-length σ. In

particular, unidentifiability is not inherently a case of “over-parametrization”: the effect

can be produced when we have just a finite number of possible parameter values and is

not produced by having a continuous space of possible parameter values with too high a

dimension. We have included the mention of the families F and G in the description of our

results to stress that the unidentifiability problem is, in some sense, generic.

The family G (and hence F) contains all the gamma distributions as a subfamily. Any

gamma distribution and any edge-length t will have a distribution G ∈ G and τ arbitrarily

close to them such that there is a corresponding F ∈ F and σ 6= τ as above.

Our example applies not only to the Neyman model but also to any model such as the

binary General Time-Reversible model that contains the Neyman model as a sub-model.

Furthermore, our example applies to the General Time-Reversible on an arbitrary finite

state-space, because one can choose the substitution rate matrices for such a model to

be sufficiently symmetric so that a suitable many-to-one binary encoding of the model is

Markovian and evolves according to the Neyman model.

We should point out that we construct our example using a perturbative technique. Con-

sequently, the edge-lengths τ and σ that arise will be “close” to each other. However, our

analysis doesn’t rule out the possibility that a similar example could be produced with

edge-lengths that are “far apart”. In order to fully assess the practical implications of the

phenomenon we have observed, further research is necessary to quantify just how distant

two edge-lengths can be and still have corresponding scale parameter distributions that lead

to identical distributions for the data. Moreover, this is not a purely mathematical question,
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because the notions of “close” and “far apart” are dependent on the scientific question being

investigated with a particular data set.

Also, we note that if we actually knew the distribution of the scale parameter in our

three taxa example, then the unknown edge-length could be recovered uniquely from the

distribution of the data, and this is so for an arbitrary scale parameter distribution, not

just the ones we consider in this paper. Moreover, the functional that recovers the unknown

edge-length is continuous in the scale parameter distribution when one equips the space of

distributions with the usual topology of weak convergence. This suggests that if we somehow

knew the scale parameter distribution up to some small error, then this would constrain the

errors we could make in determining the edge-length. However, it is not clear how well one

can identify the relevant features of the scale parameter distribution: the functional that

recovers the unknown edge-length depends on the functional inverse of the Laplace transform

of the scale parameter distribution and hence, a priori, on the entirety of the distribution

rather than some finite dimensional set of features such as the first few moments, and so

there is an apparent need to estimate the whole distribution quite well. Once again, this is

not solely a theoretical matter and the extent to which this continuity observation is relevant

will depend partly on context.

The rest of the paper is organized as follows. We begin with an introduction of the

mathematical terms in Section 2, and we present our example in Section 3. We conclude

with a discussion of the ramifications of this result, and directions for future research in

Section 4.

2. Basics

In phylogenetic inference, the data are the respective states of an ensemble of characters

exhibited by each of a collection of taxa. The most commonly used statistical models in

the area are parameterized by a rooted tree with edge-lengths (which typically represent the

expected number of times a site changes on the edge when the substitution mechanism is

in equilibrium) and a set of Markovian stochastic mechanisms for the evolution of succes-

sive characters down the tree. It is usually assumed that the observed states for different

characters are statistically independent. The goal of phylogenetic inference is to estimate
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some or all of: the shape (topology) of the tree, the lengths of the edges, and any unknown

parameters involved in the specification of the evolution mechanism.

We will restrict attention to the case where each character has the same finite set of

possible states. For example, the characters could be nucleotides exhibited at different sites

on the genome, and so each character is in one of the four states {A, G, C, T}. In the example

we will give in this paper, we will work with (binary) characters having one of two possible

states, 0 or 1. For each character c and each edge e in the tree, one then has a rate matrix

Qc,e that describes the evolutionary process on edge e for character c (we refer the reader

unfamiliar with continuous time Markov chains to a standard text such as [GS01]). Thus,

given that the character is in state i at the beginning of the edge, the conditional probability

of the (possibly unobserved) event that it is in state j at the end of the edge is the (i, j)

entry of the matrix exponential exp(tQe,c), where t is the length of e. The matrix Qc,e has

row sums equal to 0 and non-negative off-diagonal entries: −Qc,e(i, i) is the rate at which

the character leaves the state i and −Qc,e(i, j)/Qc,e(i, i) is the probability that it jumps to

state j when it leaves state i.

Single site substitution models can range from the very simple (e.g. the Jukes-Cantor and

Kimura 2-parameter models) to the very complex (e.g. the General Markov Model), which,

for a fixed character c, allow the Qe,c matrices to vary significantly from edge to edge, and to

have many free parameters. However, the variation between the different matrices obtained

by varying the character c is typically more proscribed. The most complex model is where

there are no constraints placed on the Qc,e; this is called the “no common mechanism model”

[TS97]. Under this no common mechanism model, it will clearly be difficult to recover any

information about edge-lengths. A simple class of models in which it is possible to extract

information about edge-lengths is the class in which Qc,e is the same for all characters

c and edges e. Even for this simple model, there is – as is well-known – a certain lack

of identifiability, because the same probability distribution for the data would arise if the

common rate matrix was multiplied by a common scale factor and all edge-lengths were

divided by that same factor. Thus, even for this model one can only hope to make inferences

about relative edge-lengths unless at least one edge-length is assumed to be known.

The more commonly used models assume that the different Qc,e matrices are themselves

the product of a rate matrix specific to the edge e, and a scale factor that is specific to
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the character c. Thus, the evolutionary process that governs one character is identical, up

to a scalar multiple, to that governing another character. This is the rates–across–sites

assumption in molecular phylogenetics, and it has the rather strong implication that if a

character c is expected to evolve twice as fast on edge e as character c′, then c is expected

to evolve twice as fast on every edge in the tree.

The assumption of a common rate matrix for all edges is the molecular clock assumption,

which is known to be untenable in many situations [JN90, Ree92]. Perhaps the next simplest

class of models is the family of rates-across-sites models in which Qc,e is the product of a

character-specific scale factor and a rate matrix that is common to all characters and edges.

That is, Qc,e is of the form rcQ̄. In other words, evolution follows basically the same pattern

on all lineages for all characters, except that it occurs faster for some characters than others.

Because of the inferential difficulties of allowing the rates for the different sites to be

arbitrary, these random scale factors are typically assumed to be drawn from a distribution.

Of the many possible distributions, the most popular distributions are the two-parameter

gamma distributions. In fact, in practice, almost all estimations of phylogenetic trees are

based upon the assumption that the rates across sites are drawn from a gamma distribution,

or a discretized gamma distribution. Also, it is sometimes assumed that certain characters

are invariable (that is, that the scale parameter for such sites is 0).

3. The example

We will present an example of a tree with three taxa, and with sites evolving under the

Neyman two-state model (i.e., the two-state version of the Jukes-Cantor model of evolution)

with a known state at the root.

Consider a tree with three taxa x, y, and z, a root v, and internal node w that is ancestral

to x and y. The edges (w, x) and (w, y) have a known length, which we can take as 1. Suppose

further that the edge (v, w) has unknown length σ and that the the tree is clock-like, so that

the edge (v, z) has length σ + 1.

Suppose there are {0, 1}-valued characters labelled 1, 2, . . . that have evolved on this tree.

The ith character evolves according to the Neyman model with rate ri. That is, the transition
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matrix for an edge of length t is

1

2

(
(1 + exp(−2rit)) (1− exp(−2rit))
(1− exp(−2rit)) (1 + exp(−2rit))

)
=:

(
p

(i)
t (0, 0) p

(i)
t (0, 1)

p
(i)
t (1, 0) p

(i)
t (1, 1)

)
,

say.

The probability distribution for the ith character (that is, the marginal likelihood for this

character) is given as follows. Suppose it is known that the state sv ∈ {0, 1} is exhibited by

the root v. Then the probability that states sx, sy, and sz are exhibited by the taxa x, y,

and z is

∑
sw∈{0,1}

p(i)
σ (sv, sw)p

(i)
1 (sw, sx)p

(i)
1 (sw, sy)p

(i)
σ+1(sv, sz).

Assume that successive characters evolve independently.

The probability distribution for the ith character is thus easily seen to be a linear combi-

nation of the terms

1
exp(−2ri) exp(−4ri) exp(−2riσ)

exp(−2ri(1 + σ)) exp(−2ri(2 + σ)) exp(−2ri(3 + σ))
exp(−2ri(1 + 2σ)) exp(−2ri(2 + 2σ)) exp(−2ri(3 + 2σ))

As one of the referees of this paper remarked, by explicitly writing out the likelihood or using

Corollary 8.6.6 of [SS03] one can show that only the terms 1, exp(−4ri), exp(−2ri(1 + σ)),

exp(−2ri(2 + 2σ)), and exp(−2ri(3 + σ)) actually appear, but we do not need to use this

fact.

As described in the Introduction, we will adopt the random effects approach and assume

that the ri are, in fact, realizations of a sequence of independent, identically distributed

random variables that we will denote by (Ai).

We are interested in finding such a sequence (Ai) and another independent, identically

distributed sequence (Bi) such that the distribution for the data induced by the random

choice of scale factors (Ai) is the same as that induced by the (Bi) for another choice of

edge-length τ 6= σ.
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We thus have to find positive random variables A and B with distinct distributions and

distinct positive constants σ and τ with the property that

E[exp(−2A)] = E[exp(−2B)]

E[exp(−4A)] = E[exp(−4B)]

E[exp(−2σA)] = E[exp(−2τB)]

· · ·

E[exp(−2(3 + 2σ)A)] = E[exp(−2(3 + 2τ)B)].

Take A to have the distribution which has Laplace transform

E[exp(−ζA)] =

{
9∏

i=1

(1 + diζ)−1

}
(1 + hζ)−1(1 + kζ)−1

for positive parameters d1, . . . , d7, h, k. Thus A has the distribution of the sum of 9 indepen-

dent exponential random variables with respective means d1, . . . , d7, h, k. Take B to have

the distribution which has Laplace transform

E[exp(−ζB)] =

{
7∏

i=1

(1 + giζ)−1

}
(1 + `ζ)−2

for positive parameters g1, . . . , g7, `. Thus B has the distribution of the sum of 9 independent

exponential random variables with respective means g1, . . . , g7, `, `.

Define maps P : R10
+ → R9

+ and Q : R9
+ → R9

+ by

P1(σ, d1, . . . , d7, h, k) =

{
7∏

i=1

(1 + 2di)

}
(1 + 2h)(1 + 2k)

P2(σ, d1, . . . , d7, h, k) =

{
7∏

i=1

(1 + 4di)

}
(1 + 4h)(1 + 4k)

P3(σ, d1, . . . , d7, h, k) =

{
7∏

i=1

(1 + 2diσ)

}
(1 + 2hσ)(1 + 2kσ)

. . .

P9(σ, d1, . . . , d7, h, k) =

{
7∏

i=1

(1 + 2di(3 + 2σ))

}
(1 + 2h(3 + 2σ))(1 + 2k(3 + 2σ))
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and

Q1(τ, g1, . . . , g7, `) =

{
7∏

i=1

(1 + 2gi)

}
(1 + 2`)2

Q2(τ, g1, . . . , g7, `) =

{
7∏

i=1

(1 + 4gi)

}
(1 + 4`)2

Q3(τ, g1, . . . , g7, `) =

{
7∏

i=1

(1 + 2giτ)

}
(1 + 2`τ)2

. . .

Q9(τ, g1, . . . , g7, `) =

{
7∏

i=1

(1 + 2gi(3 + 2τ))

}
(1 + 2`(3 + 2τ))2.

We want to show that P (σ, d1, . . . , d7, h, k) = Q(τ, g1, . . . , g7, `) for some choice of parameters

with σ 6= τ .

Write J(σ, d1, . . . , d7, h, k) for the Jacobian matrix of the mapping (d1, . . . , d7, h, k) 7→

P (σ, d1, . . . , d7, h, k) (thus, J is a 9 × 9 matrix). Write K(τ, g1, . . . , g7, `) for the Jacobian

matrix of Q. A straightforward check with a computer algebra package such as Mathematica

shows that the polynomials det J and det K are not identically 0. (While the determinants

could possibly be computed symbolically, it is easier to compute the matrices symbolically,

substitute in appropriate integer values for the parameters, and use exact integer arithmetic

to compute the determinant for those values: For example, det J(2, 3, 4, 5, 6, 7, 8, 9, 10, 11) 6=

0 and det K(2, 3, 4, 5, 6, 7, 8, 9, 10) 6= 0.) Because these determinants are polynomials, the

set of values where J (resp. K) is non-singular is a relatively open subset of R10
+ (resp. R9

+)

with a closure that is all of R10
+ (resp. R9

+) (that is, they are everywhere dense).

We can therefore find a point (τ̄ , ḡ1, . . . , ḡ7, ¯̀) in the interior of R9
+ such that

(i) the matrix K(τ̄ , ḡ1, . . . , ḡ7, ¯̀) is non-singular and

(ii) in any open neighborhood of (ḡ1, . . . , ḡ7, ¯̀, ¯̀) ∈ R9
+ there are points (d1, . . . , d7, h, k)

such that the matrix J(τ̄ , d1, . . . , d7, h, k) is non-singular.

By assumption (i) and the implicit function theorem (see, for example, [KP02]), the range

of Q contains an open neighborhood of Q(τ̄ , ḡ1, . . . , ḡ7, ¯̀). Note that P (τ̄ , ḡ1, . . . , ḡ7, ¯̀, ¯̀) =

Q(τ̄ , ḡ1, . . . , ḡ7, ¯̀), and so for all points (σ, d1, . . . , d7, h, k) in some open neighbor-

hood of (τ̄ , ḡ1, . . . , ḡ7, ¯̀, ¯̀) we can find (τ, g1, . . . , g7, `) such that P (σ, d1, . . . , d7, h, k) =

Q(τ, g1, . . . , g7, `).
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We will be done if we can show that it is not always the case that σ = τ for such a

solution. To see this, we will fix σ = τ̄ and let (d1, . . . , d7, h, k) vary. By assumption (ii)

and the implicit function theorem, the image of any open neighborhood of (ḡ1, . . . , ḡ7, ¯̀, ¯̀)

by the map (d1, . . . , d7, h, k) 7→ P (τ̄ , d1, . . . , d7, h, k) has non-empty interior. However, the

range of the map (g1, . . . , g7, `) 7→ Q(τ̄ , g1, . . . , g7, `) is at most 8-dimensional, and, in par-

ticular, has empty interior. Therefore, there certainly exists (d1, . . . , d7, h, k) such that

P (τ̄ , d1, . . . , d7, h, k) = Q(τ, g1, . . . , g7, `) for some (τ, g1, . . . , g7, `) with τ 6= τ̄ .

Remark. Note that if we take g1 = · · · = g7 = `, then we have a gamma distribution with

shape parameter 9. Also, we could still produce the unidentifiability phenomenon witnessed

above if we raised all the Laplace transforms to the same power c > 0. In that case, setting

g1 = · · · = g7 = ` would give a gamma distribution with shape parameter 9c. Since the

unidentifiability occurs on a dense set of parameters (g1, . . . , g7, `), any gamma distribution

will have distributions arbitrarily close to it that exhibit the phenomenon.

4. Conclusions and Future Research

The example we have given shows that the attempt to achieve identifiability and reasonable

inference of edge-lengths in the rates–across–sites model by using random scale factors that

come from some common distribution can be problematic.

The gamma distributions ‘work’, but distributions arbitrarily close to any given gamma

with smooth, unimodal densities and finite moments of all orders don’t. Using the gamma

family is thus not just a matter of working with distributions that have enough flexibility to

capture reasonable variation in rates. Rather, identifiability of edge-lengths for the gamma

family relies on quite specific features of members of that family that are not shared by

equally reasonable distributions.

The result has consequences for the estimation of times at internal nodes, since if edge-

lengths cannot be estimated, then neither can the dates (since the edge-length is a product

of the elapsed time on the edge, and the equilibrium expected rate of evolution for on that

edge).

Finally, although our main result is theoretical, its consequences can be tested in simu-

lation. To date, few (if any) such studies have been done that have not presumed that the

rates are distributed by a gamma distribution, or a distribution consisting of some invariable
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sites, and the remaining sites evolving under a gamma distribution. This also reflects the

implicit belief that the assumption of a gamma distribution is acceptable. We hope this

paper will help encourage researchers to reconsider this assumption.
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