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ABSTRACT. We propose several models of how languages evolve, and
discuss statistical estimation of evolution under these models. We also
discuss issues of identifiability and statistical consistency under these
models.

1. INTRODUCTION

In recent months several methods for estimating evolutionary histories
of languages have been described and used on Indo-European (IE) datasets
in order to estimate dates at which languages diversified. Implicit in these
methods are stochastic models of how languages evolve (Forster & Toth,
2003; Gray & Atkinson, 2003). We agree that a carefully considered sto-
chastic model can be of tremendous use to historical linguistics: if suffi-
ciently realistic, inference under the model can reveal much about the his-
tory of the language family, and examinations of how reconstruction meth-
ods perform under these models (via simulation, in particular) can help us
quantify the reliability of a reconstruction method. Since our own inter-
est in this is primarily motivated by the IE family, we will formulate this
model so as to reflect what we believe is likely to be true about IE’s evolu-
tion. Much, however, should be appropriate for other families, and we will
discuss extensions to other families at the end of the paper.

2. MODELS

In this section we explain what is meant by a stochastic model of lan-
guage evolution, and we present some specific models that are worth exam-
ining in the context of IE evolution.

We begin by explaining what linguistic “characters” are, since the evolu-
tionary model describes how each character evolves.
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2.1. Linguistic characters. A (linguistic) character is any feature of lan-
guages that can take one or more forms; these different forms are called the
“states” of the character. Thus, our characters include lexical characters,
where the different states are the cognate classes, so that two languages
exhibit the same state for the lexical character if and only if they have cog-
nates for the meaning associated with the lexical character. Other characters
include phonological characters (the appearance of a sound change within
the language or its ancestry) and morphological characters (e.g., inflectional
markers). Thus, a character defines an equivalence relation on the language
family, where two languages are equivalent if they exhibit the same state for
the character. Given a partition of a set into disjoint subsets, we can define
an equivalence relation by making two languages equivalent if and only if
they are in the same subset; thus, a partition of a set into disjoint subsets
defines an equivalence relation (and the converse holds as well).

Our first simplifying assumption is that all the characters are “monomor-
phic”, which means that every language exhibits only one state of each char-
acter. The contrasting phenomenon is a character which has two or more
states for some languages; examples of such characters include the semantic
slot “rock” for which English contains at least two equivalents: “rock” and
“stone”. Because we do not understand in enough detail how polymorphism
arises, we will exclude polymorphic characters from our model.� Simplifying assumption #1: there is no polymorphism (i.e, the ap-

pearance of two or more states for a given character in a given lan-
guage).

For each character, we can assign numbers to the states of the character
so that the character is defined to be a function that assigns every language
in a set

�
of languages a real number; the number assigned to the language

is called the “state” of the character for that language. Thus, the states of
all our characters are real numbers, and when we write ������� for a language� and a character � , we mean the state of the character � exhibited by the
language � . However, the particular real number used to label a state is
irrelevant, and all that matters is whether two states are equal or different.

2.2. Tree models. Languages can evolve in a purely treelike fashion (the
Stammbaum model), or with enough contact between languages that un-
detected (or undetectable) borrowing occurs between lineages, so that it
becomes difficult (or inappropriate) to define a “genetic tree” for the fam-
ily. Many conditions can make evolution non-treelike; creoles (hybrid lan-
guages) are one, dialect continua are another, but more generally contact
itself between divergent lineages can also lead to trees being inappropriate
(or just difficult to infer). All of these conditions can be loosely grouped
under the category of “reticulate evolution”.
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We will initially describe the model for the case where there is no reticu-
late evolution, since most of the concepts are more familiar in that context;
later we will show how the model extends to the case where we permit
reticulate evolution.

In the case where there is no reticulate evolution, the evolutionary history
of the languages is described by a rooted tree 	 , in which the leaves repre-
sent the languages in the family, and the internal nodes represent ancestral
languages at particular points in time; this is the “genetic tree” for the fam-
ily. Every node 
 in 	 has a time ���
�� associated to it, with times at nodes
increasing as one moves away from the root of the tree. All of the internal
nodes in the tree will have at least two edges issuing from them (that is,
they will have out-degree at least two) so that nodes can also be thought
of as representing diversification events. Therefore, an edge within the tree
represents the development of the language over a period of time between
diversification events.

2.3. The evolution of characters down trees. Now we will look at how
the characteristics of languages evolve down the genetic tree for the lan-
guage family. These characteristics, as described by the character states at
each node in the tree, evolve down the tree, changing state on the edges of
the tree as they evolve. Thus, we will refer to the character state assigned to
each node, using the notation ����
�� for character � and node 
 . We can model
the evolution of each character probabilistically, by assigning for each char-
acter and each edge a probability of the character changing its state on that
edge. If we assume that the characters evolve independently of each other,
then we can define the joint stochastic model for the characters by simply
specifying the model for each character. In linguistics this seems to be a
reasonable assumption, provided that the characters analyzed are chosen
with care; we will let this be our second simplifying assumption:� Simplifying assumption #2: The characters evolve independently.

Homoplasy. A substitution of character � on edge ���������
�� starting at �
and ending at 
 is one in which ��������������
�� (see above for the meaning of����
�� ). When a substitution occurs on an edge, it can result in a new state
(one that does not appear in the tree yet), or one that has already occurred.
The first type of substitution is said to be non-homoplaseous, and the second
type is said to be homoplaseous. The difference is easy to explain. Recall
first that every node 
 in 	 has a time ����
�� associated to it. A homoplaseous
substitution of character � on edge ���������
�� starting at � and ending at
 is one where ���
���� ���!�� for some node ! for which ����!��#"$���
�� . In
other words, a homoplaseous substitution results in the reappearance of a
character state in the tree – so that the substitution produces a state that is
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either present currently on the tree, or occurred at an earlier time (although
possibly on another lineage). By contrast, a non-homoplaseous substitution
always results in a new state.

Most of the homoplasy that occurs in linguistic evolution is relatively ob-
vious and can be detected using traditional methods; however, we do not
know how much of the “homoplasy” is actually due to undetected borrow-
ing between languages, or potentially even polymorphism, rather than true
homoplasy (i.e., backmutation or parallel evolution). One way of handling
characters that exhibit homoplasy is to sequester them, or process them (for
example, by coding clearly borrowed lexemes as unique states). However,
we can never be certain that all homoplasy has been discovered, and in
any case in may be advisable for the purposes of statistical inference not
to remove homoplaseous characters from the dataset. Therefore stochastic
models should allow for characters to evolve with homoplasy. However,
modelling homoplasy is somewhat tricky, as it involves factors that we do
not understand about the structure of, for example, lexical space that affect
the probability of the backmutation or parallel evolution inherent in homo-
plaseous substitutions. Just as we excluded polymorphism for the moment
because we do not understand it sufficiently to model it, we will exclude
homoplasy from the models we posit (though we will include a section at
the end discussing the issues involved in modelling homoplasy).

Thus our third simplifying assumption is:� Simplifying assumption #3: All characters evolve without homo-
plasy; thus, all substitutions of states result in new states.

Under this assumption, it becomes possible to infer the evolutionary
history of a set of languages with some level of accuracy. Consider, for
example, the case of inferring the evolutionary history of four languages�&%'�(�*)+�(�*,-� and �/. , under the assumption that each character evolves with-
out homoplasy. In this case, if there is any character that produces a two-two
split (i.e., a character that has two states on these languages, and groups the
four languages into two sets with two languages each), then the true tree
(but not the location of the root) is immediately known! For example, if a
character � has ����0%��1�$�����*)2�1�43 and ����5,'�6�7����*.-�1�$8 , then the tree
must contain an edge separating ��% and �*) from �5, and �/. . Since a tree on
four leaves only contains one internal edge, the tree is uniquely determined
by that single character. Similarly, if the language family has more than
four languages, then as soon as there are enough two-state characters to de-
fine each of the edges, the tree is uniquely determined. This observation is
well understood in historical linguistics, and is based upon the assumption
of homoplasy-free evolution.
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2.4. Stochastic processes operating on characters. Now that we have de-
scribed the kinds of events that happen to characters as they evolve down the
tree, we will explicitly model this as a stochastic process. We will assume
that for every edge � and character � , the character will change its state on
the edge with a probability that will depend on both the character and the
edge. We will denote that probability by 9;:=< > to reflect the dependency on
the edge/character pair. (That this probability depends upon the character
should be obvious; for example, some lexical characters change more easily
than others. The dependency on the edge is also natural, for example since
edges can have different time durations.) Our fourth simplifying assump-
tion (coupled with our second one) implies says that the probabilities 9?:@< >
suffice to specify the complete stochastic structure of the model:

� Simplifying assumption #4: Whether or not a substitution occurs on
an edge for a given character is statistically independent of what
happens on other edges for that character.

Our first simplifying assumption (that there is no polymorphism) means
that changes of state always replace the previous state by a new state, rather
than adding a new state to the current set of states. Our second and fourth
simplifying assumptions mean that whether or not a given character changes
on an edge is independent of the changes for other character/edge pairs. The
third simplifying assumption means that every change of state results in a
new state – i.e., there is no substitution of states that results in a previous
state (one that is already in the tree) appearing.

Given a rooted tree 	 down which A characters evolve (under our sim-
plifying assumptions), and a specific state defined at the root of the tree 	
for each of the A characters, we can think of these substitution probabilities9�:@< > (one for each edge/character combination) as defining a random process
that generates random data at the leaves of the tree.

As a very simple example, suppose we have only one character, and the
model tree is as given in Figure 1 below. Suppose the state at the root is3 , and we use the model parameters to generate states at each node of the
tree, and thus also at the leaves. The tree has only four leaves, and so it is
not too hard to calculate the probability of each of the possible “patterns”
we can observe at the leaves. The easiest pattern to analyze is where all the
leaves have the same state as the root, i.e., all leaves have state 3 . In this
case, the only way this pattern can be obtained is if there is absolutely no
change on any edge (since all changes result in new states, and there is no
backmutation). Hence, the probability of this particular pattern – all leaves
having the same state – is just the product of the probabilities of no change
on each edge, or BDCFE#GHBDCJI�GKBDCJI�GHBDCLI#GHBMCLN�GKBDCLO��PBDCQ3+RD3S8�I .
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FIGURE 1. A tree with probabilities of change on the edges.

Extending this calculation to other patterns involves more complicated
arithmetic, as we have to calculate the sum of the probabilities of each se-
quence of events (change or no change on each edge for each character) that
would produce that pattern. However, in essence, the idea is straightforward
(we discuss the details in Appendix 8). As a consequence, the probabilistic
model defines the probability of every given dataset. More interesting per-
haps is that it also suggests how reconstruction methods might try to use the
properties of the model and the observed character states for each language,
in order to figure out the evolutionary history of the dataset.

For example, while the location of the root of the evolutionary tree may
be hard or impossible to infer, the unrooted version of the evolutionary tree
can be reconstructed quite accurately, under some circumstances. Referring
again to the same tree in Figure 1, note that the pattern that groups leavesT �(U together with the same state, and groups VW�(X together (but with a
state different from the state assigned to

T
and U ) has zero probability, be-

cause of the assumption that there is no homoplasy. Similarly, the pattern
grouping

T �(X together and VW��U together also has zero probability. On the
other hand the pattern that groups

T ��V together and U��(X together has non-
zero probability. This observation is true for any model tree that contains
an edge separating the leaves

T
and V from leaves U and X . Thus, given a

dataset of four languages described by characters, if there is any character in
which

T
and V have the same state, and U and X have the same state - but

one that differs from the state shared by
T

and V , then the only possible can-
didate phylogenies will contain the split Y T �(V[Z]\JY�U���X^Z . That means that
the underlying unrooted tree can be identified from one such character – it is
a simple, but somewhat non-obvious, fact that the topology of an unrooted
tree can be reconstructed from a knowledge of the topologies of the subtrees
spanned by each set of four leaves. The consequence in terms of phylogeny
reconstruction is significant: even when the characters evolve with different
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substitution probabilities, the underlying unrooted tree can be reconstructed
if there are enough random data. Less obvious, but also significant, is the
following: if every character has the same evolutionary process (that is, 9?:@< >
does not depend on � , so we can denote the common value by 9?: ), then as
the number of characters evolving down this tree increases, not only will
the underlying unrooted tree be reconstructed correctly, but we can even es-
timate the shared values 9]: of substitution parameters on the edges as well,
with arbitrarily high accuracy. In general, however, the location of the root
will still not be identifiable under this model.

The point of this discussion is to show that under certain assumptions
about the stochastic process operating on the tree, much about the under-
lying model tree can be estimated quite accurately. The point of this paper
is to examine the conditions under which these assumptions allow for esti-
mating the different aspects of the model tree – its topology, the substitution
probabilities, the times on the internal nodes, etc.

What we have just described is an evolutionary model in which for every
edge � and every character � we have a substitution probability 9?:@< > , which
denotes the probability of the character changing its state to a new state on
the edge. If we make no further assumptions (relating, for example, the
probabilities of substitution so that different characters evolve in similar
ways), then this is the no common mechanism model. Since there are8�_a`b8 edges in a rooted binary tree with _ leaves, each model tree in
the no common mechanism model can be specified by at most ��8�_H`c8d�=A
parameters, where there are A different characters and _ is the number of
leaves, since we assume that all interior nodes have out-degree at least two.

On the other hand, we may wish to constrain the model further by as-
suming that all the characters evolve under exactly the same process. In this
case, the probability of a substitution for a character on an edge depends
only on the edge and not on the character. Thus, 9?:@< >e�f9�:=< >�g for all pairs
of characters �S�(�ih , and so it makes sense to define 9;: to be the probability
that any given character changes its state on the edge � . This model is the
simplest homoplasy-free model. The number of parameters in this model
is thus just the the number of edges in the tree (i.e., at most 8�_j`a8 ).

It should be clear from this discussion that under neither of these mod-
els is it possible to infer anything about times at nodes, because there is no
linkage between the probability of a substitution occurring on an edge and
the amount of time that has elapsed on that edge. Thus, we now turn to
describing more elaborate models that make such linkage possible by first
incorporating a description of the evolutionary dynamics and then relating
the probability of observing a net change between the endpoints to this evo-
lutionary process.
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We begin with a discussion of the properties of the number of times a
character changes on an edge, since these properties will determine in great
part the extent to which we can estimate dates at internal nodes. The first
assumption is that the number of times each character changes on an edge is
Poisson distributed. This assumption defines the probability of each num-
ber of substitutions in a particular way that seems reasonably appropriate
for evolutionary events such as these, as well as for mutational events in
molecular systematics, where it is standard. In the next section we provide
the mathematics for Poisson random variables.

Poisson random variables. The Poisson assumption can be heuristi-
cally described as follows. Fix a character � and an edge �k� ������
�� .
It is reasonable to posit that in a tiny time sub-interval l �i�m�onqpr�ts with����u�#"7�v"$�5ncpr�["$���
�� the character � has probability approximately3w`ax�:@< >i�y���zpr� of not changing in the sub-interval for some positive numberx':=< >i����� , probability approximately x-:=< >������tp#� of undergoing a single change
of state in the sub-interval, and probability of making two or more changes
in the sub-interval that is negligible when compared to pr� . It is also reason-
able to suppose that the random number of changes in any such subinterval
is independent of the ensemble of changes that occur outside the subinter-
val. Under these conditions, it is well-known that the number of changes for
character � in the interval l{���������m���
���s is Poisson distributed with parameter

| :@< >&}F�
~����L�@�
���L�'� x�:@< >����������iC

That is, if we denote the number of changes by �[:@< > , then

�5� YS�#:@< >/��A?Z��P�����i�y� �
|]�:@< >
A�� � A[�cBD�-3��i8��-C-C-C

The quantity x2:=< >������ is the instantaneous rate of evolution for character � on
edge � at time � , and the parameter

| :=< > is equal to �1l{��:=< >�s , the expected
number of changes on edge � for character � .

Using these results, it is possible to show that 9;:@< >���36`�� ���i�y� � ; this re-
lates the two types of edge parameters (substitution probabilities, and edge
lengths).

Relating lengths of edges to elapsed time. We now discuss how to set
up a linkage between the edge lengths

| :=< > and the time duration of edges,
and hence the time depth of interior nodes. For the edge ����������
�� , write	e�����&}L�c���
���`�������� for its time duration and set

� :=< >�}L� | :@< >= S	¡����¢� 3
���
���`������u�

~ ���L�@�
���L�'� x�:@< >i�y�����d�iC



STOCHASTIC MODELS 9

Thus � :@< > is the average rate of evolution for character � on edge � . Equiv-
alently, it follows that

| :=< >�� � :=< >�	e����� . If we have information regarding
the ways rates can vary across characters and edges, we may be able to es-
timate the

| :@< > from observed character data; however, direct estimations of
the times at nodes requires being able to factor the edge length

| :@< > as the
product of 	¡���� and the average rate of evolution of the character � on the
edge � . In other words, there is a degeneracy issue here: we could obtain the
same probability distribution for the data if we pick any constant £¥¤¦B and
set 	§h¨�����/�P£�	e����� and � h:=< > � � :@< >= �£ , since then

| :@< >/� � :=< >�	e�����/� � h:@< > 	§h¨���� .
That is, we can’t tell which factorization is right.

Relative versus absolute times. A question that is of interest to many
researchers is whether absolute times at nodes can be estimated with ac-
ceptable accuracy. By “absolute times” we mean the ���
�� values assigned
to each node 
 in the model tree; in a phylogenetic analysis, these values
are estimates of the true historical dates of diversification events for the lan-
guage family. It is clearly impossible to do this without explicit information
about rates of evolution (which are controversial) and/or at least one “cali-
bration point”. There are thus significant challenges to estimating absolute
times at internal nodes.

There are alternatives to absolute dates that may be feasible. Lacking a
calibration point, we may be able to estimate what are called relative times
at nodes. By this we mean dates that are correct, but only up to a constant
multiple; in other words, all estimated dates are off by a factor of � , but the
precise value of � is not known. It is easy to see that with relative times at
nodes and one calibration point, we can obtain absolute times at nodes.

Finally, we may be interested in just the order in which the different
diversifications happened – so that we can determine for each pair of nodes
in the tree, which one occurred earlier. Relative times at nodes suffice to
provide this ordering of internal nodes.

When the lexical clock holds, and we know how rates can vary across
characters, then we can establish relative times, and hence also absolute
times if we have also a calibration point. However, in the most general
setting, none of these can be estimated reliably. If we have a lexical clock
but no knowledge about how rates vary across characters, we can obtain an
ordering on internal nodes, but not relative times.

The impossibility of inferring even relative dates is most obvious under
the no common mechanism assumption: in essence we only have a sin-
gle observation for each edge/character pair, and we cannot expect to have
any statistical power to estimate the associated parameters. The more con-
straints we imply the more feasible it is that we can estimate relative dates
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with some degree of statistical power. On the other hand, the assumption of
these constraints may make the model unrealistic.

Therefore, it makes sense to examine those models that incorporate some
constraints on the variation among these � :@< > parameters, so as to under-
stand the conditions under which we can estimate either relative or absolute
times at internal nodes. We begin with a discussion of the lexical clock
assumption.

Lexical clock assumption. The lexical clock hypothesis is comparable to
the molecular clock in biology, and has the same abstract statement: for
all characters � and edges � , | :=< > is proportional to 	e����� , with a constant
of proportionality that is the same for all edges. Using our notation, this is
equivalent to the assertion that � :@< >5� � :gQ< > for all pairs of edges ���(� h and all
characters � , so that it makes sense to define the rate � > of the character � .
Note that the lexical clock hypothesis does not imply that all characters have
the same rate for all edges, only that the rate is constant for each character.

The lexical clock hypothesis is sufficient to establish the rooted tree,
using simple lexicostatistical techniques (as long as we are given enough
data). Furthermore, the same mathematical argument that establishes the
correctness of the tree reconstruction also allows us to establish the order-
ing on the dates at internal nodes. However, it is not possible to estimate
the relative dates at nodes, unless we have additional information about how
rates vary. Thus, even with the lexical clock assumption we have only lim-
ited capability. Furthermore, the lexical clock is likely to be violated by real
linguistic evolution.

We direct the interested reader to (Evans et al. , 2004) for more about
dating on internal nodes, and (Bergsland & Vogt, 1962) for a discussion of
the lexical clock.

2.5. Four stochastic models of treelike evolution for languages. Earlier
we described two basic models: the simplest homoplasy-free model and the
no common mechanism model. We can describe a model tree in each of
these basic models as a rooted tree 	 , times ���
�� for every internal node 

(and hence also the duration of edge � , given by 	e����� ), and rates of change� :@< > for every character � and edge � ; these parameters then allow us also
to define

| :=< > , the expected number of changes of a character � on edge� , by setting
| :@< >[� � :@< >�	e���� . The difference between the two models is

that in the no common mechanism model the � :=< > (and hence
| :=< > ) can be

arbitrary, but under the simplest model we require that � :@< >w� � :@< >yg (so that
also
| :@< >¢� | :@< >yg ) for all pairs of characters �S�(�ih (that is, all characters evolve

under the same underlying process). With the additional consideration of
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whether a lexical clock is also presumed, we obtain four basic models as
follows:� The simplest model without a lexical clock. Thus,

| :=< >/� | :=< >�g for
all edges, but no additional constraints are implied. This model can
be described by specifying

| : for every edge since the value does
not depend upon the character, and so requires as many parameters
as there are edges in the tree, or ©W��_�� parameters.� The simplest model with a lexical clock. Thus, � :=< >[� � :�gª< >�g for
all pairs of edges ���(�-h and all pairs of characters �S�(��h . This model
is the most constrained of the four models. Under this model we
can define the rate of evolution � , since it does not depend upon the
edge or character. This model can be defined therefore by the times
on the internal nodes and the rate of evolution, for a total of ©W��_��
parameters. Although it requires only one additional parameter than
the previous model, because of the lexical clock we should be able
to estimate relative times under this model.� The no common mechanism model without a lexical clock. In
this model we have no constraints at all on the edge parameters

| :=< > .
We need ©[�_uA;� parameters to define this model.� The no common mechanism model with a lexical clock. In this
case we will presume that for every character � there is a rate � >
so that

| :@< >�� � >t	e���� . This model requires ©W��_«n�A;� parameters:
the times at every node and the rates for each character. It differs
from the simplest model with a lexical clock by not assuming that� >§� � > g (i.e., the characters can evolve at arbitrarily different rates
in this model).

In the next section we will examine phylogeny estimation under each of
these models.

3. PHYLOGENY ESTIMATION

Phylogeny estimation (as it is called in statistics) or phylogeny recon-
struction (as it is called in computer science) addresses the issues of esti-
mating or constructing a tree, along (possibly) with the associated parame-
ters of evolution, from data that evolved down the tree. In this section we
will examine the possibility of estimating the model tree (under each of the
four basic models described in the previous section) from data generated on
the tree under the associated random process operating on the tree.

There are several issues we will wish to address. The first is what we want
to estimate – the underlying tree topology, or the parameters of evolution
as well? As we will show, it is quite difficult to estimate dates at internal
nodes, except under the most constrained model. However, estimating the
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tree topology (modulo the location of the root) may be quite feasible, even
under the least constrained model. Thus, parameter estimation – especially
of times at internal nodes – is much harder than tree estimation.

The second issue is what we mean by the quality of an estimation pro-
cedure. In statistical inference, it is traditional to discuss what is possible
under a model, given “enough data”. In this context, we would be interested
in understanding whether it is possible to estimate the tree and its associ-
ated parameters (perhaps modulo the location of the root) with error going
to B as the amount of data goes to infinity. Here, the data are characters,
so the question is asking about essentially an infinite number of charac-
ters. We can weaken the question, and instead of asking whether everything
about the model can be reconstructed given infinite data, we ask what can
be estimated exactly, given infinite data. In other words, if times cannot be
inferred exactly, can the edge lengths (

| :@< > parameters) be inferred? And if
these edge lengths cannot be inferred from infinite data, can the underly-
ing tree topology be inferred exactly? Finally, since data are never infinite,
we will have to also address the quality of a reconstruction (measured in a
precise quantitative way) on a finite number of characters.

3.1. Statistical consistency and identifiability. We begin with some com-
ments about statistical estimation. We begin by introducing the concept of
“patterns”, and then the probability of a pattern for a given model tree. Re-
call that a model tree is a rooted binary tree along with associated parame-
ters of evolution (times at internal nodes and rates of evolution of characters
on edges). Suppose that the model tree has _ leaves, labelled ¬�%'�i¬-)-�2C-C-C2�(¬- .
A pattern (for our model) is just an equivalence relation on the leaves. Thus,
we would consider a character that assigns all leaves the state 3 to define the
same pattern as a different character that assigns all leaves the state 8 . Thus,
in a tree with four leaves,

T ��VW�(U�� and X , there are only a finite number of
patterns. For ease we will use a ® -tuple of integers to represent each pat-
tern. For example, if each leaf is in its own class, we can represent this by3��i8M��¯D��® . Or if all four leaves are in the same class, we can represent it by3��-3��23��-3 . The set of possible patterns is given as follows:

Patterns.
(1) 3��-3��i8��i8
(2) 3��i8M�-3°�i8
(3) 3��i8M�i8��-3
(4) 3��-3��-3°�-3
(5) 3��-3��-3°�i8
(6) 3��-3��i8��-3
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(7) 3��i8M�-3°�-3
(8) 8M�-3��-3°�-3
(9) 3��-3��i8��(¯

(10) 3��i8M�-3°�(¯
(11) 3��i8M�(¯M�-3
(12) 8M�-3��-3°�(¯
(13) 8M�-3��(¯M�-3
(14) 8M�(¯D�-3°�-3
(15) 3��i8M�(¯M��®
It is important to remember that in our model the actual states do not

matter; all that matters is the equivalence relation imposed on the set of
leaves (i.e., which leaves are assigned the same state, and not what state
they are assigned). That is why this is the full set of patterns on a four-leaf
tree.

It should be clear that because we have not allowed any homoplasy, if
the model tree has an edge separating leaves

T
and V from U and X , then

two of the patterns listed above have zero probability: namely, patterns 2
and 3 will never appear – no matter how the substitution probabilities are
defined. On the other hand, as long as all 9;:@< >1���B , the first pattern has non-
zero probability. This means that the underlying tree is identifiable. We
summarize this discussion with the definition of identifiable, as follows:

Definition 1. A model is said to be identifiable if the model can be dis-
tinguished from every other model by the probability it defines on every
pattern.

Since a model tree is more than just an unrooted tree (it contains a root,
and associated edge parameters), we can ask about the identifiability of
the full model. In fact, it can be shown that for each of our models, the
underlying unrooted tree and the edge lengths

| :=< > are identifiable, but that
the location of the root and the times at the internal nodes are not identifiable
in general. On the other hand, when the lexical clock assumption holds, then
the location of the root can also be obtained correctly – given enough data.

Saying that a model is identifiable does not imply that any particular
method will perform well, even given infinite data, however. So we now
turn to questions about the performance of reconstruction methods. We
begin with the definition of statistical consistency:

Definition 2. A phylogeny estimation method is said to be statistically con-
sistent under a model of evolution if the probability of recovering the tree
(and its associated parameters) converges to 3 as the number of characters
increases.
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This is a strong requirement, since it requires the ability to accurately es-
timate all the parameters of the evolutionary process. We may instead focus
on whether a reconstruction method is statistically consistent with respect
to just the underlying tree. However, if we are interested in estimating dates
at internal nodes, we will need to look at performance issues involved with
parameter estimation as well.

Statistical consistency is concerned with performance in the limit, and not
actually with performance on finite data. Therefore, concrete performance
studies, largely based upon simulation, are also appropriate (and common
in the molecular phylogenetics literature).

3.2. Perfect Phylogenies. We now consider phylogeny (i.e., tree) recon-
struction under the models introduced in Section 2.3. In all these models,
we assumed that there is no homoplasy. Consequently, the true tree can, for
all of the characters, be labelled with states on the internal nodes so that it
is a Perfect Phylogeny in the sense of the following definition.

Definition 3. A tree 	 on a set
�

of languages is a perfect phylogeny for a
set U of characters if it is possible to label all internal nodes with character
states so that all characters evolve without backmutation or parallel evolu-
tion in 	 . In this case the tree 	 is said to be compatible with the states
observed at the leaves for all of the characters. (Kannan & Warnow, 1997).

A labelling of internal nodes establishes a perfect phylogeny if and only
if for every character and every pair of leaves with the same state of that
character all nodes in the path through the tree between the two leaves share
that same state.

As we remarked above, given a set of languages described by characters
under a homoplasy-free model (any such homoplasy-free model, including
ones we have not described), the only possible candidates for the true tree
must be perfect phylogenies. Therefore, under the assumption that the data
evolve under a homoplasy-free model, there must be at least one perfect
phylogeny for the data. Furthermore, if there is a unique perfect phylogeny,
then it must be the true tree.

We can formalize this statement as follows. Given a model tree (that
is, a rooted tree 	 with associated numerical parameters), we denote the
probability of the data

�
at the leaves by

�&� Y � \t	§�D±]² � ²�³[´�µ�´ �@¶ Z . For a
given realisation of the data, this probability is a function of the tree 	 and
the various numerical parameters (edge lengths, rates, time-durations etc.,
depending on the particular model class we are considering). This function
is called the likelihood of the data.

Theorem 1. The following dichotomy holds for the models considered here.
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� If 	 is not a perfect phylogeny, then for all ways of assigning values
to the parameters we have�5� Y � \t	§��±]² � ²°³v´'µ�´ �m¶ Z��PBMC� If 	 is a perfect phylogeny, then it is possible to assign parameter
values so that �5� Y � \t	§��±]² � ²°³v´'µ�´ �m¶ Zj��PBMC

3.3. Maximum Likelihood. Maximum likelihood is a general frame-
work for constructing statistical estimators. In our setting, the maxi-
mum likelihood estimator of the tree 	 and the associated numerical pa-
rameters is the choice of these quantities that maximises the likelihood�5� Y � \t	§��±]² � ²°³v´'µ�´ �m¶ Z . We will call the model tree that maximizes the
likelihood the maximum likelihood tree.

It follows from Theorem 1 that the maximum likelihood tree is a perfect
phylogeny.

If we are only interested in estimating 	 , then the maximum likelihood
approach can be thought of as criterion for choosing between competing
perfect phylogenies. If we are also interested in estimating both the tree
and the numerical parameters, then we can fit them in a two step proce-
dure that first restricts attention to the trees that are perfect phylogenies and
then carries out the required maximisation over the resulting smaller set of
possible trees and associated numerical parameters.

3.4. Algorithms for solving perfect phylogeny. Here we address the
problem of estimating the true evolutionary tree under the homoplasy-free
assumption. As discussed earlier in Section 2.4, given enough characters, it
may be possible to infer the tree on the basis of its four-leaf subtrees. We
describe here a specific polynomial time algorithm to do this which is guar-
anteed to be correct if enough characters exist to define the quartet on every
tree, but it may fail to solve the problem otherwise. (Alternatively, algo-
rithms which provably solve perfect phylogeny – always successfully con-
structing perfect phylogenies when they exist – are computationally expen-
sive; each runs in time exponential in some parameter for the input – such
as the number of characters or the maximum number of states per character,
since the problem is NP-complete (Steel, 1992; Bodlaender et al. , 1992).
Of the various such algorithms, the algorithm by Kannan and Warnow can
enumerate all perfect phylogenies on a given dataset (Kannan & Warnow,
1997).)

Heuristic for Perfect Phylogeny Reconstruction For each quartet of lan-
guages �&%2�(�*)+�(�*,-�(�/. , see if there is a character in the dataset that splits the
quartet into two sets; for example, a character � such that �����%��*�·����*)'����
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����*,'���������/.-� . If such a character exists, note that the true tree on these
four languages has to split ��%2�(�*) on one side, and �5,+�(�/. on the other.
(There cannot exist two characters splitting the four languages differently,
because then no perfect phylogeny exists.) Record the constraints on all
quartets. These constraints have to be then combined into a tree on which
all the constraints hold. Constructing a tree consistent with all these con-
straints is itself an NP-hard problem, but can often be done in practice in a
greedy fashion:� Step 1: find a pair of languages

T ��V which are always grouped
together, and make them siblings. If no such pair exists, return fail.� Step 2: remove

T
from the set of languages, and run the algorithm

recursively on the remaining languages.� Step 3: introduce
T

back into the tree on the other languages by
making it sibling to V within the tree.

This algorithm will work as long as the first step can be executed (such a
pair of languages may not exist in some cases). Thus, although a perfect
phylogeny may exist, the algorithm may fail and not produce it; any tree
produced by the algorithm will, however, be a perfect phylogeny.

Considering the problem from a theoretical perspective, given enough
data there will be (with high probability) a unique perfect phylogeny, and
so these perfect phylogeny reconstruction methods are statistically consis-
tent techniques for estimating the underlying unrooted tree, for all homo-
plasy free models, provided that rates of evolution are bounded away from B
and infinity. On the other hand, estimating the remaining parameters (edge
lengths in particular) requires additional techniques.

3.5. Reconstruction under a lexical clock model. We now turn to the
problem of estimating evolution under a lexical clock. In this case, rather
than using the computationally intensive perfect phylogeny techniques, we
can instead use fast lexicostatstical methods to estimate the true tree. If there
are enough data (i.e., enough characters), then the reconstructed rooted tree
will be correct. At this point, we may wish to estimate relative times at in-
ternal nodes. However, to do this we will need additional information about
how rates can vary across characters. Under the simplest model homoplasy-
free evolution there is no variation of rates across characters, and so under
the combined assumptions (all characters evolve under the same clock-like
model), we can both estimate the rooted tree and the relative times at inter-
nal nodes. Under more general models, however, these estimations may not
be statistically well-founded. For example, we indicate in Appendix 9 why
it can be impossible to obtain relative times for the no common mechanism
model with a lexical clock.
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4. PHYLOGENETIC MODELS THAT INCORPORATE BORROWING

After evolving from a common ancestor, languages may remain in close
contact and borrow from each other. To the extent that all such borrowing
can be clearly identified, a genetic tree can still be an appropriate model of
the evolutionary development of the family; however, if the contact cannot
be clearly identified, then trees are inadequate for modeling the evolutionary
history of such languages. In this section we describe how we can extend
the tree models of linguistic evolution to the case where languages continue
to remain in contact.

4.1. Networks - the graphical model of language evolution. When it is
reasonable to define an underlying genetic tree, so that evolution by contact
can be discriminated from genetic inheritance, the appropriate graphical
model is a rooted network ¸ , consisting of two components: the under-
lying “genetic tree” 	 , and a set ¹o> of additional “contact edges”. Since
borrowing between two languages may occur in both directions, contact
edges are bidirectional. See Figure 2 for an example of such a network.

(1,1) (1,0) (0,0) (0,1)

FIGURE 2. A phylogenetic network with a single contact
edge. Both characters labeling the leaves are compatible
on this network, since each is compatible on at least one of
the three trees contained inside the network (the three trees
shown in Figure 3).

Since contact occurs between two languages that co-exist in time, the ex-
istence of a contact edge between two nodes � and 
 in a network ¸ implies
that �������¢�º���
�� (this is why contact edges are always drawn horizontally).

4.2. Character evolution down networks. There are two modes of evo-
lution on networks:

(1) “genetic evolution”: evolution down the edges of the genetic tree,
and

(2) “horizontal transfer”: transmission of character states by contact.
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When the state » of character � is transmitted horizontally from language�&% to language �5) , then �5) replaces its current state of character � by state» . Therefore, the state » of a character � at a node � that has two parents is
transmitted from exactly one parent. Hence, a character is compatible on a
network ¸ if it is compatible on at least on the trees contained inside the
network. Figure 3 shows the three trees contained inside the network of
Figure 2. The first character is compatible on the tree in Figure 3(a), while
the second character is compatible on both trees in Figures 3(b) and 3(c).
Hence, both characters are compatible on the network in Figure 2.

(1,1) (1,0) (0,0) (0,1) (1,1) (1,0) (0,0) (0,1) (1,1) (1,0) (0,0) (0,1)

(a) (b) (c)

FIGURE 3. The three trees contained inside the phyloge-
netic network in Figure 2.

If we extend the homoplasy-free assumption to the network case, we will
assert that every character evolves without backmutation or parallel evolu-
tion, but may evolve down either tree edges, or contact edges. Note there-
fore that every character evolves down a tree contained within the network.
We can therefore extend the perfect phylogeny concept (which is defined
only for trees) to the network case, as follows:

Definition 4. We say ¸ is a perfect phylogenetic network (PPN) for a set� of languages described by a set U of characters if every character in U is
compatible on at least one of the trees contained inside ¸ .

The network in Figure 2 is a perfect phylogenetic network.

4.3. Parameters of network models. In addition to the parameters de-
scribing how characters evolve down the genetic tree, a full description of a
network model requires some additional parameters. In particular, for each
character and orientation of a contact edge, we need to define the probability
that the character will be transmitted on that contact edge in that orientation.
We will make the assumption that such probabilities can be written as the
product of two values:� 9D: : the probability of transmission via contact on edge � of the most

easily borrowed characters, and� 9D� � £d_�¬2> : the probability of transmission via contact of the character� .
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(In other words, the probability that a character � is transmitted on a contact
edge � is 9D� � £d_�¬2>¼GW9D: .)

Allowing for contact edges means we will need additional 8;\{¹1>2\�n½\{Uj\
parameters, where ¹§> denotes the set of contact edges, and U denotes the
set of characters.

Since every character must evolve down a tree contained within the phy-
logenetic network for the family, as long as we assume that evolution is
homoplasy-free, by definition the true phylogenetic network will by neces-
sity be a perfect phylogenetic network. This also means that the maximum
likelihood network for a dataset will be a perfect phylogenetic network.

4.4. Estimating the true phylogenetic network. Inferring perfect phylo-
genetic networks is a more complicated issue than the comparable problem
of inferring perfect phylogenies, for a number of reasons. One reason is that
we do not yet now the conditions under which the homoplasy-free network
models are identifiable; our initial research shows that for a very small num-
ber of contact edges the model is identifiable, but we do not know about the
general case. Another reason is computational: while finding perfect phy-
logenies (when they exist) is a computationally hard problem, it is not clear
how to go about constructing a good perfect phylogenetic network. (It is
easy to construct a perfect phylogenetic network with a lot of contact edges,
but, for example, constructing one with a minimum number of contact edges
is computationally hard.) Further research will need to investigate how to
address both those issues.

4.5. An Indo-European analysis. In (Nakhleh et al. , 2004), we analyzed
a dataset of 24 Indo-European languages, described by a set of 292 char-
acters. The methodology we used to analyze the dataset consisted of two
steps:

(1) Find the genetic tree
(2) Add a minimum number of contact edges to make all characters

compatible.

We examined several different candidate genetic trees (including two sug-
gested by Craig Melchert) during this analysis. Our analysis then compared
each of the minimal completions of each genetic tree to a perfect phylo-
genetic network, with respect to several mathematical criteria: number of
contact edges added, number of characters that must evolve on the contact
edges, and number of borrowing events; we also examined each perfect
phylogenetic network with respect to its feasibility with regard to estab-
lished historical records. The best of these perfect phylogenetic networks,
with respect to each of the criteria, is shown in Figure 4. Of the full set of
292 characters, 278 characters (or more than N�E�¾ ) are compatible with the
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genetic tree underlying the network. Two of the contact edges (both involv-
ing Germanic) are well-supported in this analysis, but the remaining contact
edge is questionable (it has less support, and is less feasible from a historical
perspective). Further research will attempt to clarify the IE history.

AL

VE

AV

PE

LI LT PR

OC

GK

AR
OE

OG

ONGO

OS UM

LA

OI

WE
TB TA

LY

LU
HI

FIGURE 4. A perfect phylogenetic network for the IE
dataset described in (Nakhleh et al. , 2004). The solid lines
represent the genetic tree, and the dashed lines represent the
three contact edges.

5. EXTENSIONS

Missing from this article is a discussion of how these models might be
extended to address various situations that arise in phylogenetic analyses in
historical linguistics:� Characters that evolve with homoplasy (specifically evolving in par-

allel, or with back mutation),� Polymorphic characters (exhibiting two or more states on some lan-
guage), and� Families that evolve in so much contact that our network models are
inappropriate.
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Modelling homoplasy is challenging; we need to understand the mecha-
nisms of real homoplasy, rather than simply identifying characters that are
incompatible with the genetic tree, since incompatibility can arise from bor-
rowing, undetected polymorphism, or other factors that we have not identi-
fied. One clear cause of polymorphism is simply insufficient understanding
of the family, so that true cognates cannot be established accurately. Clearly,
modelling homoplasy will require a serious linguistic study, before its fea-
tures can be then modelled mathematically. In an earlier paper we proposed
a model of how polymorphism arises (Bonet et al. , 1999), based upon se-
mantic shift; however, borrowing of lexemes provides an alternative expla-
nation that needs to be considered. The problem of inferring evolution when
there is a great deal of contact between lineages is formidable, and clearly
will require a different approach than what we have taken in (Nakhleh et al.
, 2004). A critical issue there is to determine the conditions under which
the underlying genetic tree can be clearly (or fairly well) identified, even
in the presence of significant borrowing. Here, techniques from molecular
systematics may be worth examining (in particular, attempts to identify a
phylogenetic tree for bacteria, despite all the horizontal gene transfer, may
have been successful - see (Lerat et al. , 2003)).

6. CONCLUSIONS

This paper has several purposes. First, we wish to make explicit what
is meant by a probabilistic model of evolution, so that the assumptions in
each model can be examined, and the consequences for evolutionary history
reconstruction examined in a scientific way. We hope that our discussion of
the difficulties in estimating times at nodes should make it clear that even
under these models, which are designed to reflect linguistic evolution, such
estimations may not be realistically sought – at least not until we have a
much better understanding of the stochastic processes underlying linguistic
characters. We therefore hope to caution researchers seeking to estimate
dates, and also help readers of the scientific literature to critique such at-
tempts. Finally, we hope that we have also demonstrated the potential for
a careful statistical inference, based upon a reasonable model, to elucidate
evolutionary histories better than purely traditional means have been able.
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8. APPENDIX: LIKELIHOOD COMPUTATIONS

We show how it is possible to compute likelihoods for the general model
introduced in Subsection 2.4.

Because of our simplifying assumption that characters evolve indepen-
dently, it suffices to calculate the likelihood for a single character. Recall
that the data for that character consist of a partition of the set ¿ of lan-
guages. (Recall further that a partition of ¿ is a collection of disjoint, non-
empty subsets of ¿ called blocks whose union is ¿ .) We declare that two
languages are in the same block if they exhibit the same state of the charac-
ter.

Now the collection of partitions of ¿ is a partially ordered set, where we
declare that a Àk"�Á if every block of À is contained in some block of Á
(that is, if the blocks of Á are unions of blocks of À ) and we say that À is a
refinement of Á .

Write Â for our observed partition (that is, our data). We want to compute
the probability of the event Y�Â��cÁ¢Z for each partition Á of ¿ .

Now Àa"·Â if and only if for each block of À there is no change on any
of the edges of the smallest subtree containing that block. For each block

T
of À , let 	e� T � be the smallest subtree containing

T
and denote by 	¡�yÀ¢� the

union of the subtrees 	¡� T � . Denoting by Ã¡�yÀ¢� the product of the 9?:@< > over
edges in 	¡�yÀ¢� , we haveÄ

Å�ÆdÇ
�5� YSÁ���ÂwZ���È�Y+ÀÉ"cÂwZ��PÃ¡�yÀ¢�(C

We can now use Moebius inversion (see, for example, (Stanley, 1997))
on the partially ordered set of partitions of ¿ to obtain the probabilities�5� YSÁÊ�½ÂwZ . If ÀË"bÁ , Á has A blocks, and the » th block of Á is the union
of _ � blocks of À , then the the value Ì*�yÀ*��ÁÍ� of the Moebius function isÎ �ÏªÐ % �=`e3�� -Ñ � % ��_ Ï `K3���� . By the dual form of the Moebius inversion formula
(see Proposition 3.7.2 of (Stanley, 1997)), we have

�5� Y+ÀK��ÂwZ�� ÄÅ�ÆdÇ Ì*�yÀ*��ÁÍ�
�&� YSÁÒ"�ÂwZ6� ÄÅ�ÆdÇ Ì*�yÀ*��ÁÍ�tÃ¡�Á��(C

9. APPENDIX: UNIDENTIFIABILITY OF THE NO COMMON MECHANISM

MODEL WITH A LEXICAL CLOCK

Recall that under the no common mechanism model with a lexical clock
we have that the probability of no substitution on an edge is � ���i�y� � , where| :=< >&� � >t	e����� . It might seem reasonable that if we have an infinite amount
of data, then we can determine the relative edge durations 	e���ShÓ�= S	¡��2h hÓ� for
any pair of edges � h �(� h h . This is in fact not the case.
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The crux of the matter is contained in the following set-up. Suppose that��[%'��ÔÕ%i���+���)-��Ô?)����-C-C-C is an infinite sequence of pairs of random variables
such that:� each � Ï and each Ô Ï take the value B or 3 ,� for some parameters Ö and ×D%2�m×�)-�-C-C-C ,�5� YS� Ï ��BMZ6�����dØ Ñ

and �5� YSÔ Ï ��BMZ6�����dØ ÑÚÙ �� the random variables �W%'��ÔÕ%'����)-��Ô?)-�-C-C2C are independent.
We think of � Ï (respectively, Ô Ï ) as the random variable that takes the valueB if there is no subsitution on edge � h (respectively, edge � h h ) for the »�ÛQÜ
character and 3 otherwise. Because of our freedom to multiply rates and
divide edge durations by the same constant, we take edge ��h to have length3 and edge �2h h to have lenth Ö . The “nuisance parameter” × Ï is the rate of
substitution for character » .

The question is, “To what extent can we recover Ö with arbitrary amounts
of data without any knowledge of the behaviour of the × Ï ?” As the following
shows, the answer is “Not at all.”

To see this, consider the situation where the × Ï are actually realisations
of an (unobserved) independent, identically distributed sequence Ý Ï . Then,
incorporating this randomness, we have that the likelihood of the sequence��[%'��ÔÕ%i���+���)-��Ô?)����-C-C-C is a product of terms for each » and the » ÛQÜ term just
involves the four terms�5� YS� Ï ��BD�mÔ Ï �cBMZ��c�1lÞ� ��ß � � Ù ß s���5� YS� Ï �PBD��Ô Ï ��3°Z6�P�wlÞ����ß��@3�`a��� Ù ß���s��5� YS� Ï �b3���Ô Ï ��BMZ6�P�wlª�@3§`a����ß��M��� Ù ß�s�
and �5� YS� Ï �k3���Ô Ï ��3°Z6�P�wlQ�=3o`à� ��ß ���@3§`Ê� � Ù ß ��s�
where Ý is a random variable with the same distribution as the Ý Ï .
These terms are in turn linear combinations of the three quantities �wlÞ� ��ß s ,�wlá� � Ù ß s , and �wlá� � � %�âDÙ � ß s . It is clear that estimation of Ö will be impossible
if we can find another rate ãÊ��cÖ and another random variable ¿ such that

�wlá� ��ß s��P�wlá� �Mä s�
�wlá� � Ù ß s��P�wlá� �då�ä s�

and �wlá��� � %�âDÙ � ßÕs��P�wlá��� � %�â å � ä�sC
We will take Ý and ¿ to each be the sum of two independent gamma

distributed random variables. By choosing the parameters of the gamma
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distributions appropriately, we can arrange for Ý and ¿ to have Laplace
transforms

�wlÞ����æ=ß?s����ç¢èwnc3��@�dé��yê¢èonº3��m�dé
and

�wlá����æ=ä�s����yë�è6nc3��m� % �ì�èwnc3��@� %
for £;�(ç&�mê&�më��(ì�¤ B . The question is thus whether we can find values ofÖí��cã and £;�(ç&�mê&�më��(ì such that

��çînº3�� é ��ê¥nc3�� é �q�yë�nc3��i��ì¼nc3����
��ç�Öenº3�� é �yê�Ö¡nº3�� é �b��ë?ã#nº3��i�ì�ãrnc3����

and

��ç��=30naÖ��Õnº3�� é ��ê0�=3&naÖ��unº3�� é �b��ëÍ�@30naã���nº3��i�ìM�=30nïã���nc3����
.

Fix Ö2ð2�(ç�ð+�@ê;ð with ç�ðÉ�� ê;ð . We can clearly solve the above equations
for ã��më��(ì when Öï��Ö2ð , çñ��ç�ð , ê��òê?ð , and £í�ó3 by setting ã���Ö2ð ,ëH�bç�ð , and ì#�·ê?ð . It is not hard to check that the Jacobian matrix of the
transformation

�ã��më��(ì��Íôõ �@��ëonÉ3��i�ì�ní3��(�-��ë?ã�ní3��i��ìSã§ní3��(�+�yë¢�=3un«ã���ní3��(��ì��@3Õn^ã���nÉ3��m�
is non-singular, and so for any choice of ��Ö���ç0�mê&��£�� near ��Ö+ð+�(ç�ð-�mê;ð-�-3�� the
above equations have a solution. The only thing we have to rule out is that
all such solutions have ãî�cÖ . If we again fix Ö at Ö+ð , then another Jacobian
calculation shows that the transformation

��ç&�mê&��£��Íôõ �@��ç¢n#3���é���ê¢nr3���é��+�ç�Ö'ðinr3���é��yê�Ö'ð�nr3���é��+�ç��=3Sn1Ö2ði�=nr3���é°��ê0�=3Sn1Ö2ð'�znr3���é+�
maps any open neighourhood of ��ç¢ð+�@ê;ð-�-3�� into a set with non-empty inte-
rior. Because the image of the transformation

��ë��(ì��¢ôõ �@��ëonÉ3��i�ì�ní3����+��ë;Ö'ð�ní3��i��ì+Ö'ð]ní3����+��ëÍ�=3un«Ö'ð���ní3��i��ì��@3Õn«Ö'ð'��ní3��@�
is a two-dimensional surface, it is clear that not all solutions of the above
equations will have ÖW�Pã .
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