Statistics 215a - 9/17/03 - D. R. Brillinger
OLS - multiple predictors
Goal: developing a descriptive relationship
Data matrices: \mathbf{y} is n by $1, \mathbf{x}$ is n by p
Explain \mathbf{y} via $\mathbf{x} \boldsymbol{\beta}, \boldsymbol{\beta}$ is p by 1
Fit via

$$
\min _{\beta}(y-x \beta)^{\prime}(y-x \beta)
$$

normal equations (may overparametrize)

$$
\mathbf{x}^{\prime} \mathbf{X b}=\mathbf{x}^{\prime} \mathbf{y}
$$

Solution

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}
$$

Write $\mathbf{y}-\mathbf{x} \boldsymbol{\beta}=\mathbf{y}-\mathbf{x b}+\mathbf{x}(\mathbf{b}-\beta)$
(Generalized inverse - more later)

Estimate $\mathbf{P} \beta$ by $\mathbf{P b}$
Fitted values

$$
\mathbf{X b}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathrm{Hy}
$$

hat matrix H, n by n

$$
\mathbf{H X}=\mathbf{X}, \mathbf{H}^{2}=\mathbf{H}, \quad r(\mathbf{H})=r(\mathbf{X})
$$

residuals

$$
\begin{aligned}
& \mathbf{r}=\mathbf{Y}-\mathbf{X b}=(\mathbf{I}-\mathbf{H}) \mathbf{Y} \\
& \mathbf{X}^{\prime} \mathbf{r}=0
\end{aligned}
$$

Evaluate univariate statistics, eg. stleaf
outliers?

SS identity

$$
\mathbf{y}^{\prime} \mathbf{y}=(\mathbf{X b})^{\prime} \mathbf{x b}+\mathbf{r}^{\prime} \mathbf{r}
$$

degrees of freedom

$$
n=r(\mathbf{X})+(n-r(\mathbf{X})), r(\mathbf{X}) \leq n, p
$$

Advantages of orthogonality

$$
\begin{aligned}
& \mathbf{x}=\left[\mathbf{x}_{1} \mathbf{x}_{2}\right], \text { with } \mathbf{x}_{1}^{\prime} \mathbf{X}_{2}=\mathbf{0} \\
& \mathbf{b}_{1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{x}_{1}\right)^{-} \mathbf{x}_{1}^{\prime} \mathbf{y} \\
& \mathbf{y}^{\prime} \mathbf{y}=\left(\mathbf{x}_{1} \mathbf{b}_{1}\right)^{\prime} \mathbf{x}_{1} \mathbf{b}_{1}+\left(\mathbf{x}_{1} \mathbf{b}_{1}\right)^{\prime} \mathbf{x}_{1} \mathbf{b}_{1}+\mathbf{r}^{\prime} \mathbf{r}
\end{aligned}
$$

ridge estimate

$$
\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

lsfit(), lm(), anova()

Residual plots
index
versus (possible) predictors versus fitted values
$H_{i i}$ leverage or influence of y_{i} on fitted y_{i}
fitted $Y_{i}=H_{i i} Y_{i}+\sum_{j \neq i} H_{i j} Y_{j}$
$0 \leq H_{i i} \leq 1$
leverage point $H_{i i}>2 r / n$
e.g.r $=2$

$$
\mathrm{H}_{\mathrm{ii}}=1 / \mathrm{n}+\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2} / \sum_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}-\bar{x}\right)^{2}
$$

Relates directly to how near x_{i} is to \bar{x}
lm.influence() \$hat [library (MASS)]
lurking variable - has an important effect, yet not included in predictors

Some x 's might be dummy variables or factors

SVD.

$$
\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\prime}
$$

A m by n, U orthogonal m by m, Λ diagonal m by n, v orthogonal n by n

Generalized inverse

$$
\begin{gathered}
\mathbf{A}^{-}=\mathbf{V N}^{-} \underline{U^{\prime}} \\
\Lambda^{-}=\operatorname{diag}\left\{1 / \lambda_{j} \mid \lambda_{j} \neq 0\right\} \\
\text { AA }^{-} \mathrm{A}=\mathrm{A} \\
\text { Solves consistent } \\
\mathbf{A x}=\mathbf{b} \\
\mathbf{x}=\mathbf{A}^{-} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{-} \mathbf{A}\right) \mathbf{z} \\
\text { solve(), } \operatorname{svd}()
\end{gathered}
$$

Statistics 215a - 9/17/03 - D. R. Brillinger
Robust/resistant fitting of a straight line

```
resistant - not strongly affected by
outliers
```

robust - remains effective with departures from assumptions

Often the two go together
Methods - L_{1}, L_{p}, three groups, bisquare, ...
Functions
l1fit (MASS), rbiwt (MASS), rreg(MASS), rlm(MASS)
line(eda), hubers (MASS), rlm(MASS)
Researchers - Bolt(1960), Huber (1973), Beaton \& Tukey (1974), Tukey (197?), ...

Three groups line. Tukey

$$
\begin{aligned}
& \text { Groups - low, middle, high } \\
& \text { summary points - medians } \\
& \text { slope and intercept } \\
& \text { (iterate) }
\end{aligned}
$$

Bisquare.

$$
\begin{aligned}
& \text { Iterative (IWLS) } \\
& \text { residuals, } r_{i} \\
& u_{i}=r_{i} / 6 \text { median }\left\{\left|r_{j}\right|\right\} \\
& w(u)=\left(1-u^{2}\right)^{2},|u| \leq 1 . \text { Graph }
\end{aligned}
$$

computation discussed below
Use weights to locate outliers (w $=0$)

Example - radioactive dating
Data - Bard et al. (1990). Nature 345, 405-410. $n=19$

Barbados corals dating back 125k yrs (bp)
Two dating methods: uranium-thorium (UTh) and radiocarbon, ${ }^{14} \mathrm{C}$

U-Th is more accurate
Fig. 1. ${ }^{14} \mathrm{C}$ age vs. U-Th age $y=x$ line

Calibrate ${ }^{14} \mathrm{C}$ ages
Fig. 2. ${ }^{14} \mathrm{C}$ age vs. U-Th age OLS line influence plot

Fig. 3. ${ }^{14} \mathrm{C}$ age vs. U-Th age OLS line residual plot

Fig. 4. ${ }^{14} \mathrm{C}$ age vs. U-Th age bisquare line residual plot

Fig. 5. Index plot of weights

Fit

$$
R C=1.106+.763 \mathrm{Th}
$$

Calibration equation

$$
\text { age }=(R C-1.106) / .763
$$

(Estimates of dating errors available)

M-estimates.
loss function ρ
$\rho(r) \geq 0$, nondecreasing for $r \geq 0$
$\rho(0)=0$
symmetric
cts for all but finite number of r

Robust regression

$$
\begin{aligned}
& \text { value } \min _{\beta} \sum_{i} \rho\left(\left(y_{i}-\mathbf{x}_{i}{ }^{\mathrm{T}} \beta\right) / \mathrm{s}\right), \quad \text { s scale } \\
& \text { E.g. } \\
& \rho(r)=r^{2} \text { (OLS) }
\end{aligned}
$$

$$
\begin{aligned}
& =|r|^{p}\left(L_{p}\right) \\
& =.5 r^{2} \text { if }|r| \leq H \text { and }=H|r|-.5 H^{2}
\end{aligned}
$$

otherwise (Huber)

$$
=\left[1-(1-r / B)^{2}\right]^{3} B^{2} / 6 \text { if }|r| \leq B \text { and }
$$ $B^{2} / 6$ otherwise (bisquare, biweight)

Evaluate by IRLS with $\psi=\rho^{\prime}, \mathrm{w}(r)=\psi(r) / r$ Fig 6. ρ and w

The IRLS approach
Seeking

$$
\min _{\beta} \sum_{i} \rho\left(\left(y_{i}-\mathbf{x}_{i}^{\mathrm{T}} \beta\right) / \mathrm{s}\right), \quad \mathrm{s} \text { scale value }
$$

Differentiate wry β and set to 0

$$
\sum_{i} x_{i}{ }^{T} \psi\left(\left(y_{i}-x_{i}{ }^{T} b\right) / s\right)=0
$$

A set of nonlinear equations
Solve for b iteratively
Need (good) set of starting values

Equations may be written
$\sum_{i} W\left(\left(y_{i}-x_{i}{ }^{T} b\right) / s\right) x_{i}{ }^{T}\left(y_{i}-x_{i}{ }^{T} b\right)=0$
or
$\sum_{i} W_{i} X_{i}{ }^{T}\left(y_{i}-x_{i}{ }^{T} b\right)=0$
with data dependent weights
$\mathrm{w}_{\mathrm{i}}=\mathrm{w}\left(\left(\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}{ }^{\mathrm{T}} \mathrm{b}_{-}\right) / \mathrm{s}\right)$

Use WLS until "convergence"
b_ comes from previous iteration

WIS
$\min _{\beta} \sum_{i} w_{i} x_{i}{ }^{T}\left(y_{i}-x_{i}{ }^{T} \beta\right)^{2}$

What can sequences do?

```
converge
diverge
have limit points
cycle
```

be chaotic

Mallows (1979). "A simple and useful strategy is to perform one's analysis both robustly and by standard methods and to compare the results. If the differences are minor, either set can be presented. If the differences are not, one must perforce consider why not, and the robust analysis is already at hand to guide the next steps."

Note: location problem corresponds to $\mathrm{x} \equiv 1$

