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Smoothing scatter plots

Replacing (x,y) by (x,yx) with yx smooth and
connect the points

     datum = smooth + rough

Purposes.

   Get clearer view, less detail

   See what the data are saying

   Reduce impact of isolated points

   Reduces irrelevant variation / noise

   Preparatory to further processing

   Separates rapid changes from less rapid

   May suggest simple closed form expression

   Variants preserve discontinuities
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Smoothing – some types

data (xi,yi)



I. Parametric regression

   e.g. regression line by OLS

   nonlocal, infinitely smooth

   variance small, 1/n

   “ bias”, (error for specific function),
can be large

II. Bin smoother

   cut points c k

   cells c k ≤ x i  < c k+1

   Rk = {i| c k ≤ x i  < c k+1}, c 0 = - inf, cK =inf
      approx equi-sized

   s(x) = ave{ y i |i ∈ Rk,x ∈ Rk}

   not smooth, step function

   cut(), stepfun(), ksmooth()

III. Running mean

   Average over points close to x

   s(x) = ave { y j |j ∈ N(x)}



N( x i ) = { max(i-k,1),…,i-1,i,i+1,…,min( i+k,n)}

   Moving/running average

   k controls appearance, smooth vs. jagged

   span: (2k+1)/n

   wiggly, biased, endpoint problem

   theory is “easy”

   might use r=2k+1 nearest neighbors

IV. Running-line smoother

   Replace average above by OLS line

   s(x) = a(x) +b(x)x

      a(x), b(x) OLS for data in N(x)

   good at ends

   jagged, points equal weight (big change
on shift)

   loess(), lowess()



V. Kernel smoothers

   K(.): kernel function, e.g. pdf

   Biweight – (1-u 2) 2

   Kb(x)=K(x/b), b bandwidth

   s(x) = Σj  y j  Kb(x- x j ) / Σj  Kb( x- x j )

   linear in y’s

   choice of b is important

   surprisingly effective/efficient

   endpoints

   ksmooth()

VI. Running medians

   replace running mean by running median

   resistant to outliers

   salt-and-pepper noise

   repeated running medians

VII. Equivalent kernels

   Many studied are linear



   s( x i )  =  Σj  Si j  y j

   S is the smoother matrix
      may have parameter λ

   S0j  : the equivalent kernel
      plot vs. x 0

   Degrees of freedom: tr (S), tr(SS T), …

VIII. Regression splines

   compromise between local and global

   piecewise polynomials, separated by knots

   smooth joins

   e.g. cubic

   s(x) = β0 + β1x + β2x2 + β3x3 + Σj  θj (x- ξj ) +
3

   s (3)  exists, s (2 )  continuous

   Find β, θ by OLS

   Knots more difficult

   bs() generates a basis

IX. Cubic smoothing splines



   solve extremal problem

       Σi  { y i  – f( x i )}
2 + λ ∫ f”(t) 2dt

   closeness to data + smoothness

      λ: relative weight

   smooth.spline()

X. Locally-weighted running-line

   Cleveland’s lowess (), loess()

   weighted least squares

   ∃ robust variant

XI. Supersmoother

   k- th nearest neighbor LS, k=n/2,n/5,n/20
      cross-validation used to choose k for
each x interpolating between the three

   “ fast”

   supsmu()

XI. Multiple predictors

   spatial data

   thin-plate spline



T. Hastie and R. Tibshirani (1990).
Generalized Additive Models. Chapman & Hall

Cross-validation. A method for estimating
prediction error and other things.
One tests the procedure on data different
from those used to estimate its parameters.
E.g. drop out one observation at a time.

Thin plate spline radial basis functions

d: dimension of space

r: radial distance

m: derivatives in roughness penalty

r2m-d log r ,   d even

r2m-d ,   d odd


