Statistics 215a - 10/1/03 - D. R. Brillinger

Two-way arrays.

two-way table
two-way layout
two-factor array
contingency tables

New data type/structure (for course)

Rectangular display

rows, columns, responses

different factors/classifications vary separately

response for each combination of levels of the factors

n = IXJ observations (cells)

y numerical

```
Factors may be labels, ordered, numerical
Interested in relation between response and
rows and columns
   wish summary highlighting relation
between response and each factor
Example - area burned in wildfires by month
and year
Question - prediction?
   the data
     row is month, column is year (92-02)
        I = 12, J = 10
     (months have differing numbers of days)
   boxplots for rows, columns
```

Conceptualization.

Response

≈ summary + row effect + column effect

$$y_{ij} \approx \mu + \alpha_i + \beta_j$$

Separate contribution for each factor

Additive dependence

(May need to transform. Later)

Old β is now $\theta = (\mu, \alpha_i, \beta_j)$

Paradigm.

data = fit + residual

Fitting.

OLS

$$\min_{\theta} \sum_{i,j} (y_{ij} - \mu - \alpha_i - \beta_j)^2$$

overparametrized

side conditions

$$\sum_{i} \alpha_{i}$$
 , $\sum_{j} \beta_{j}$ = 0

normal equations

 $m = \overline{y}$, $a_i = (\overline{y}_i - \overline{y})$, $b_j = (\overline{y}_{,j} - \overline{y})$

ANOVA identity

$$\Sigma_{i}\Sigma_{j} Y_{ij}^{2}$$

$$= \Sigma_{i}\Sigma_{j}(\overline{y})^{2} + \Sigma_{i}\Sigma_{j}(\overline{y}_{i}) - \overline{y})^{2} + \Sigma_{i}\Sigma_{j}(\overline{y}_{.j} - \overline{y})^{2}$$

from orthogonality relations

ANOVA TABLE

Source	SS	DF
mean	$\sum_{i}\sum_{j}(\overline{y})^{2}$	1
rows	$\sum_{i} \sum_{j} (\overline{y}_{i} - \overline{y})^2$	(I-1)
columns	$\sum_{i} \sum_{j} (\overline{y}_{j} - \overline{y})^2$	(J-1)
residual	$\sum_{i}\sum_{j}(y_{ij} - \overline{y}_{i} - \overline{y}_{,j} + \overline{y})^{2}$	(I-1)(J-1)

total
$$\sum_{i} \sum_{j} y_{ij}^{2}$$
 n = IJ

Wildfire example.

Plot effects a_i, b_j (parallel boxplots)

ANOVA TABLE

Source	SS	DF	
mean	14.912	1	
rows	17.270	11	
columns	3.720	9	
residual	10.642	99	
total	46.544	120	

twoway(trim=0), aov()

Response may be summary of a batch

Finding patterns difficult with large tables

If classical test rejects, what next? EDA can suggest