```
Statistics 215a - 10/1/03 - D. R. Brillinger
Two-way arrays.
    two-way table
    two-way layout
    two-factor array
    contingency tables
New data type/structure (for course)
Rectangular display
    rows, columns, responses
    different factors/classifications
        vary separately
    response for each combination of levels
of the factors
Yij i=1,...,I; j=1,...,J
n = IXJ observations (cells)
y numerical
```

Factors may be labels, ordered, numerical

Interested in relation between response and rows and columns
wish summary highlighting relation between response and each factor

Example - area burned in wildfires by month and year

Question - prediction?
the data

$$
\begin{aligned}
& \text { row is month, column is year }(92-02) \\
& I=12, J=10
\end{aligned}
$$

(months have differing numbers of days)
boxplots for rows, columns

Conceptualization.
Response

$$
\approx \text { summary }+ \text { row effect }+ \text { column effect }
$$

$$
y_{i j} \approx \mu+\alpha_{i}+\beta_{j}
$$

Separate contribution for each factor

Additive dependence
(May need to transform. Later)

Old β is now $\theta=\left(\mu, \alpha_{i}, \beta_{j}\right)$

Paradigm.

$$
\text { data }=\text { fit }+ \text { residual }
$$

Fitting.

ILS

$$
\min _{\theta} \sum_{i, j}\left(y_{i j}-\mu-\alpha_{i}-\beta_{j}\right)^{2}
$$

overparametrized
side conditions

$$
\sum_{i} \alpha_{i}, \sum_{j} \beta_{j}=0
$$

normal equations
$\mathrm{m}=\bar{y}_{\mathrm{y}}, \quad \mathrm{a}_{\mathrm{i}}=\left(\bar{y}_{\mathrm{i} .}-\bar{y}\right), \quad \mathrm{b}_{j}=\left(\bar{y}_{. j}-\bar{y}\right)$

ANOVA identity
$\sum_{i} \sum_{j} \mathrm{Y}_{\mathrm{ij}}{ }^{2}$

$$
=\sum_{i} \sum_{j}(\bar{y})^{2}+\sum_{i} \sum_{j}\left(\bar{y}_{i .}-\bar{y}\right)^{2}+\sum_{i} \sum_{j}\left(\bar{y} . j-\bar{y}_{j}\right)^{2}
$$

from orthogonality relations

ANOVA TABLE

Source	SS	DF
mean	$\sum_{i} \sum_{j}(\bar{y})^{2}$	1
rows	$\sum_{i} \sum_{j}\left(\bar{y}_{i .}-\bar{y}^{2}\right)^{2}$	$(I-1)$
columns	$\sum_{i} \sum_{j}\left(\bar{y}_{. j}-\bar{y}^{2}\right)^{2}$	$(J-1)$
residual	$\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i .}-\bar{y} . j+\bar{y}^{2}\right)^{2}$	$(I-1)(J-1)$

total $\quad \sum_{i} \sum_{j} Y_{i j}{ }^{2}$
$\mathrm{n}=\mathrm{IJ}$

Wildfire example.

Plot effects a_{i}, b_{j} (parallel boxplots)

ANOVA TABLE

Source	SS	DF
mean	14.912	1
rows	17.270	11
columns	3.720	9
residual	10.642	99
total	46.544	120

twoway(trim=0), aov()

Response may be summary of a batch

Finding patterns difficult with large tables

If classical test rejects, what next? EDA can suggest

