Statistics 215a - 11/3/03 - D. R. Brillinger

r^{2} and R^{2}. Squared coefficients of correlation and multiple correlation

Correlation and association are vague concepts
data, $\left(x_{i}{ }^{T}, y_{i}\right), i=1, \ldots, n$
first entry of vector x is 1

1. describe y by m

$$
\text { OLS } S S_{1}=\sum\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)^{2}
$$

2. describe y by $x^{T} \beta$

$$
\text { OLS } S S_{2}=\sum\left(y_{i}-x_{i}{ }^{T} b\right)^{2}
$$

3.

$$
\mathrm{R}^{2}=1-\mathrm{SS}_{2} / \mathrm{SS}_{1}
$$

Properties.

1. $\quad 0 \leq R^{2} \leq 1$
2. historical
measures of linearity
how well can y be approximated by linear function of x ?
3. $r=$

$$
\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sqrt{ }\left\{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}\right\}
$$

4. Tukey and Winsor's Society for the Suppression of Correlation Coefficients
5. Remember Cleveland, Diaconnis, McGill example
6. Identities - ANOVA

$$
\sum\left(\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}{ }^{\mathrm{T}} \mathrm{~b}\right)^{2}=\left(1-\mathrm{R}^{2}\right) \sum\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)^{2}
$$

Robust variants.
a) $\quad 1-\sum\left|y_{i}-x_{i}{ }^{T} b_{*}\right| / \sum\left|y_{i}-m_{*}\right|$
$m_{*}, b *$ being L_{1} variants
b) Splus has cor(,trim=)

Andrews data: (.02,.04), (.99,1.03), $(2.01,1.97),(2.98,2.96),(4.03,3.97)$, $(5.01,4.98),(6.05,6.07),(6.98,7.03)$, $(8.07,8.00),(9.03,8.96),(25.00,-25.00)$

With trim = . 1

$$
r=-.7325, r_{\text {robust }}=.9999
$$

c) biweight midcorrelation (NIST)
d) rank correlation

Statistics 215a - 11/3/03 - D. R. Brillinger

Exploratory time series analysis.

Time series - a succession of measurements of a quantity through time (or space, or ...)

Yt, t in a set \mathbf{T}, e.g. $\mathbf{T}=[0, T)$ or $\mathbf{T}=$ $\{0,1, \ldots, \mathrm{~T}-1\}$ or $\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$

A function, a wiggly line, ...
y is the response and t the explanatory or independent or exogenous variable.

Sometimes t is referred to as the parameter.

There are no repeated t's

Interests/goals:
to express the dependence of y on t prediction
model

The paradigm

$$
\begin{aligned}
& \text { response }=\text { fit }+ \text { residual } \\
& \mathrm{yt}_{\mathrm{t}}=\mathrm{m}_{\mathrm{t}}+\mathrm{r}_{\mathrm{t}}
\end{aligned}
$$

remains appropriate

Visualization.

Tufte (1983) "A time-series plot is the most frequently used form of graphic design."

There are various ways to display:

1. Connected symbols (e.g. points \& lines)
2. Symbols (e.g. points)
good for long term behavior
cannot appreciate middle and high frequency behavior
cannot perceive the order of the series over short time periods
3. Connected graph
good for smooth series
individual data points not unambiguously portrayed
irregular sampling can be unclear
4. Vertical graph
good when need to see individual values good when series long (can pack tightly) not good when strong trend good about central value

Which to use depends on the situation

The plots display characteristics
e.g. trend, cycles, seasonal, steps, ... m_{t} may be polynomial, trigonometric, \{yt-1, Yt-2, ..., Yt-p $\}$

One may seek a decomposition

Difficulties

```
T very large (speech)
strong trend
outliers
very rapid oscillations
missing values
```

A standardization

$$
\left(y_{t}-m_{t}\right) / s_{t}
$$

Methods. stacking (Buys-Ballot)
useful when there exists a special period (two-way table)
parallel boxplots
fitting description robustly

Vector case.
use several line types, colors
forces comparisons

