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Abstract: This paper presents a number of data analyses making use of the
concept of mutual information. Statistical uses of mutual information are
seen to include: comparative studies, variable selection, estimation of pa
rameters and assessment of model fit. The examples are taken from the
fields of sports, neuroscience, and forest science. There is an Appendix
providing proofs.
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1 INTRODUCTION

“... . This shows that the notion of information, which is more

closely related to the mutual information in communications the-

ory than to the entropy, will play the most fundamental role in

the future developments of statistical theories and techniques.”

Akaike (1972)

This paper is a study of the usefulness of the coefficient of mutual information
in statistical data analysis. The paper examines the utility in practice of
estimates.

Mutual information (MI) is a measure of statistical dependence. The
concept was introduced by Shannon (1948). Since then there has been sub-
stantial theoretical and practical development of the concept. For example
MI has been proposed as a criterion on which to base a test of independence,
Fernandes (2000) and as a quantity to maximize in order to estimate lag, Li
(1990), Granger and Lin (1994) and in the spatial case to register images,
Viola (1995). In particular in the bivariate case MI is the Kulback-Liebler
distance between a joint distribution and the product of its marginals, see
Joe (1989a,b), Cover and Thomas (1991) and the references therein. Depen-
dence and association analysis are basic to statistics and science. In particu-
lar regression analysis and canonical correlation analysis may be mentioned.



Some other questions to which MI would seem able to usefully contribute
are: change? trend? serial correlation? dimension? model fit? variable
selection?, model?, efficiency?, strength of association?

Re the last, the correlation coefficient is a long-standing measure of the
strength of statistical dependence; however MI has advantages over it. These
include that the variates involved do not have to be euclidian and that MI
measures more than linear dependence.

There seems to have been substantial practical investigation of the related
concept of entropy, including the introduction of some novel estimators. Pa-
pers concerned with the properties and estimation of entropy include: Miller
(1955), Parzen (1983), Moddemeijer (1989, 1999, 2000), Hall and Morton
(1993), Robinson (1991).

The paper begins with a brief discussion of the coefficient of determina-
tion, ρ2, to contrast its properties with the coefficient of mutual information.
Three empirical analyses are presented. There is discussion and then some
formal development in an Appendix. This paper focuses on the case of in-
dependent identically distributed variates. It further concerns distributions
described by a finite dimensional parameter.

2 CORRELATION ANALYSIS

Science studies relationships generally, while regression analysis studies the
dependence of a variate Y with X. One can ask the question: what is the
strength of a particular relationship? A common answer is the following:
given the bivariate random variable (X,Y ) employ the coefficient of deter-
mination,

ρ2
XY = corr{X,Y }2 (1)

This measure is is symmetric and invariant and useful for studying: 1) im-
plications of statistical independence, 2) explained variation, 3) strength of
linear dependence, and 4) uncertainty of estimates.

For real-valued variates, X and Y , ρ2
XY has long been estimated by

r2 = [
∑

(xi − x̄)(yi − ȳ)]2 /
∑

(xi − x̄)2
∑

(yi − ȳ)2

There appears to be no such natural estimate for mutual information al-
though several will be proposed.



3 MUTUAL INFORMATION

3.1 Definition and properties

For the bivariate r.v. (X,Y ) with pdf or pmf p(x, y) the MI is defined as

IXY = E{log p(X,Y )

pX(X)pY (Y )
} (2)

The units of MI are sometimes referred to as nats.
In the case of a bivariate discrete distribution with pmf

Prob{Xj = j, Yk = k} = pjk, j = 1, ..., J ; k = 1, ..., K

expression (2) becomes

IXY =
∑

j,k

pjk log
pjk

pj+p+k

where pj+ = Prob{X = j} and p+k = Prob{Y = k} and the sum is over
pjk 6= 0.

Consider a hybrid discrete-continuous variate with pj(y) given by

Prob{X = j, Y ε ∆} ≈ pj(y)|∆|

with ∆ a small interval including y of length |∆|. Then the MI is

IXY =
∑

j

∫

pj(y) log
pj(y)

pj+pY (y)
dy, pj(y) 6= 0 (3)

pj+ and pY (.) being the marginals.
Properties of IXY include:
1) Non-negativity, IXY ≥ 0
2) Invariance, IXY = IUV if u = u(x) and v = v(y) are individually 1-1

measureable transformations,
3) Measuring strength of dependence in that,
i) IXY = 0 iff X is independent of Y
ii) For the continuous case, IXY = ∞ if Y = g(X)
iii) IXZ ≤ IXY if X independent of Z given Y
iv) For the bivariate normal, IXY = .5 ∗ log(1 − ρ2

XY )
v) There are ANOVA like decompositions



A conditional form

IXY = E{log pY |X(Y )

pY (Y )
}

is sometimes employed.
A useful inequality is,

E{Y − g(X)}2 ≥ 1

2πe
exp{2(IY Y − IXY )} (4)

where g is measurable and IY Y is the entropy of Y , E{log pY (Y )}, see Cover
and, Thomas (1991) supplementary problems. An implication of (4) is that
the larger IXY the smaller will be the lower bound for predicting Y via
a function g(X) of X. It is thus useful for investigating the efficiency of
proposed estimates.

Another basic result has the form,
∫ ∫

p(x, y) log
p(x, y)

pX(x)pY (y)
dxdy ≥

∫ ∫

p(x, y) log
q(x, y)

qX(x)qY (y)
dxdy (5)

for (X,Y ) continuous and q a general density function. This follows directly
from Jensen’s Inequality. The RHS of (5) is maximized by taking q = p.
For example taking q to be bivariate normal, gives,

IXY ≥ .5 ∗ log(1 − ρ2
XY )

with ρXY = corr{X,Y }. One can employ estimates of each side of (5) to
study the efficiency of a particular parametric model, q(x, y|θ).

Joe(1989a,b) proposes the use of

1 − exp{−2IXY }
as a ρ2 or R2 like measure.

3.2 Estimation

In a study of model identification Akaike (1972,1974) has shown that there
are important connections between the likelihood function and the Kullback-
Liebler “distance”, from the true model to any model. Taking the K-L dis-
tance from the model of independent marginals leads to the coefficient of
mutual information, the K-L ‘distance” of p to q being

EU{log p(U)/q(U)}
where U is a random variable with density or pmf p(u).



3.2.1 The parametric case

Consider a parametric model p(x, y|θ) where p is a pdf or a pmf or a hy-
brid depending on the circumstance. For the bivariate r.v. (X,Y ) suppose
realizations (xi, yi), i = 1, ..., n are available. Suppose that one wishes to
estimate the mutual information of X and Y ,

IXY (θ) = E

{

log
p(X,Y |θ)

pX(X|θ) pY (Y |θ)

}

(6)

With θ̂ an estimate of θ, e.g. the mle, a natural estimate of the MI is

IXY (θ̂) (7)

This estimate has in mind that the expected value (6) can be well-evaluated
numerically for any given θ.

3.2.2 Two particular examples

To begin consider two particular cases. The first example involves a bivariate
discrete chance quantity (X,Y ) with X taking on the values 1, ..., J and Y
the values 1, ..., K and

Prob{X = j, Y = k} = pjk

Write the marginals as pj+, p+k. The MI here is

IXY (θ) =
∑

j,k

pjk log
pjk

pj+p+k

(8)

Represent the variate (X,Y ) by V = {Vjk} with Vjk = 1 if the result
(j, k) occurs and Vjk = 0 otherwise. The probability mass function is

1
∏

j,k vjk!

∏

j,k

pjk
vjk , vjk = 0 or 1,

∑

j,k

vjk = 1

Suppose next that there are n independent realizations, {vjkl, l = 1, ..., n},
of V . Suppose that θ, the unknown parameter, is {pjk}. The maximum
likelihood estimates of the pjk are the p̂jk =

∑

l vjkl/n and the plug-in
estimate of the MI is

IXY (θ̂) =
∑

j,k

p̂jk log
p̂jk

p̂j+p̂+k

(9)



Some statistical properties will be considered below.
Next consider now the likelihood ratio test statistic of the null hypothesis

of the independence of X and Y , namely

G2 = 2n
∑

j,k

p̂jk log
p̂jk

p̂j+p̂+k

(10)

see Christensen (1997). The quantity G2 is seen to be proportional to the
estimate (9). Further from classical statistical theory in the case that X and
Y are independent the asymptotic null distribution of (10) is χ2

(J−1)(K−1).
One can conclude that the large sample distribution of the estimate (9) is
χ2

(J−1)(K−1)/2n in the null case of independence.
The non-null large sample distribution is more complicated. It is normal

with mean (8) and variance

1

n





∑

j,k

pjk[log
pjk

pj+p+k

]2 − [
∑

jk

pjklog
pjk

pj+p+k

]2



 (11)

according to Moddemeijer (1989). One notes that expression (11) is 0 when
the variables are independent, consistent with the χ2 expression above. The
non-null distribution arises in power computations. There are a number
of studies of power considering Pitman alternatives, see for example Mitra
(1958).

As a second example consider the vector Gaussian case. Let Σ be the
covariance matrix of the column variate V = (X ′, Y ′)′ with X r-vector-
valued and Y s-vector-valued. The (differential) entropy is

E{log pV (V )} =
1

2
log(|2πeΣ|) (12)

with |.| denoting the determinant, see Cover and Thomas (1991).
From (12) then the MI of X and Y is

IXY (θ) = − 1

2
log(|Σ|/|ΣXX ||ΣY Y |) (13)

having partitioned Σ as
[

ΣXX ΣXY

ΣY X ΣY Y

]



One can write
|Σ|/|ΣXX ||ΣY Y | =

∏

i

(1 − ρ2
i )

with the ρi the canonical correlations and expresion (13) becomes

−1

2

∑

i

log(1 − ρ2
i ) (14)

The absence of much of the structure of Σ from (14) is to be noted. This
follows from the invariance of IXY (θ) under linear transformations of X and
Y indicated in Section 3.1 above.

In what follows let the parameter θ be Σ. When the experiment is re-
peated n times the maximum likelihood estimate of Σ is

Σ̂ =
1

n

n
∑

i=1

(vi − v̄)(vi − v̄)′

and the plug-in estimate (13) becomes

ÎXY (θ) = − 1

2
log(|Σ̂|/|Σ̂XX ||Σ̂Y Y |) (15)

whose statistical properties will be considered below.
For this Gaussian case, consider the log-likelihood ratio criterion for test-

ing the independence of X and Y . It is

n

2
log |Σ̂|/|Σ̂XX ||Σ̂Y Y | (16)

see Kendall and Stuart (1966), section 42.12. From classical likelihood ratio
test theory the large sample null distribution of (15) is χ2

rs. (It may be worth
noting that some ‘better” approximations have been proposed, ibid.) The
statistic (16) is proportional to the plug-in estimate (15).

Turning to the large sample distribution in the non-null case, using (14)
the statistic (15) may be written

−1

2

∑

i

log(1 − ρ̂2
i )

with the ρ̂i’s the sample canonical correlations. In the case that they are dis-
tinct and non-zero the ρi’s are asymptically independent normal with means



ρi and variances 1
n
(1 − ρ2

i )
2, see Hsu (1941). It follows that, in this case,

the estimate (15) is asymptotically normal with mean IXY (θ) and variance
∑

i ρ
2
i /n.

In summary, for these two circumstances the plug-in estimate of the MI
is essentially the likelihood ratio statistic for testing independence. Distri-
butional results that are available for the latter are directly applicable.

3.2.3 Approximate distributions

There are some general results.
Suppose that a sample of values (xi, yi), i = 1, ..., n is available. Let θ0

denote the true parameter. Let θ̂ denote the maximum likelihood estimate.
Write I0 for IXY (θ0) and ∂I0/∂θ

′ for ∂IXY (θ)/∂θ′ evaluated at θ0. Write JXY

for the Fisher information of (X ′, Y ′)′ at θ0 and JX , JY for that of X and Y
respectively.

Both the cases of independent and dependent X and Y are considered in
the theorem. Assumptions and derivations are provided in the Appendix.
Theorem 1. Suppose that Assumption A.2 holds.
a) In the case that X and Y are dependent and that ∂I0/∂θ is not 0, the
variate

√
n(IXY (θ̂) − IXY (θ0)) is asymptotically normal with mean 0 and

covariance matrix
∂I0
∂θ

′

J−1
XY

∂I0
∂θ

b) In the case of independence, nIXY (θ̂) is distributed asymptotically as

1

2
Z ′J

−1/2
XY [JXY − JX − JY ]J

−1/2
XY Z (17)

where the entries of Z are independent standard normals.
The variate (17) will be 1

2
χ2

ν when J
−1/2
XY [JXY −JX−JY ]J

−1/2
XY is idempotent

with trace ν.
In particular, the estimate, IXY (θ̂), is consistent in both cases a) and b).
A second estimate of IXY (θ) is provided by

1

n

∑

i

log
(

p(xi, yi|θ̂) / pX(xi|θ̂) pY (yi|θ̂)
)

(18)

with θ̂ again the overall maximum likelihood estimate. No integral needs to
be evaluated in this case; however there are difficulties in developing its prop-
erties analagous to those arising in the estimation of entropy, see Robinson



(1991), Granger and Li (1994), Hall and Morton (1993). Modified estimates
of entropy are proposed in those papers.

As indicated by the discrete and multivariate normal examples above,
another type of estimate of IXY is sometimes available. Suppose that the
parameter θ has the form θ = (φ, ψ) and that the marginal distributions
px(.), py(.) only involve φ. Let φ̂∗ denote the mle of φ under the null hy-
pothesis of independence. Consider the estimate

1

n

∑

i

log
(

p(xi, yi|θ̂) / pX(xi|φ̂∗) pY (yi|φ̂∗)
)

(19)

with θ̂ the full model mle. Expression (19) is the classic log(likelihood ratio)/n
test statistic for the hypothesis of independence.

Provided φ̂∗ → φ in probability generally, the statistic (19) will tend to
IXY (θ0) in probability, i.e. (19) provides a consistent estimate of the MI.
However the distinction is that the distribution of φ̂∗ is to be considered
under the full distribution of (X,Y ), not just the null.

An advantage when this situation obtains is that classical maximum like-
lihood theory indicates an asymptotic null distribution of

χ2
ν / 2n, ν = dim(ψ) (20)

for (19).
Theorem 2. Suppose Assumption A.3 holds. Suppose that φ̂∗ converges

in probability to φ. Then,
a) the quantity (19) converges to IXY (θ0) in probability.
b) Suppose that X and Y are independent, then the large sample distribution
of (19) is (20).

The statistic (19) has the advantage of being obtainable directly from the
output of various mle programs.

3.2.4 The non-parametric case

Various inferential results have been developed for entropy. To mention one
class of estimates studied, consider p̂(x, y) an estimate of p(x, y), e.g. the
histogram or a kernel-based one. Now one can consider plug-in estimates of
mutual information, namely,

ÎXY =
∑

j,k

p̂(uj, vk) log
p̂(uj, vk)

p̂X(uj)p̂Y (vk)
, (21)



with (uj, vk) a grid of nodes, or

ÎXY =
∫ ∫

k(x, y)p̂(x, y)log
p̂(x, y)

p̂X(x)p̂Y (y)
dxdy (22)

k being a kernel introduced to improve asymptotic properties. There are
difficulties for p̂ near 0.

A variety of authors have considered properties of this and related esti-
mates. Antos and Kontoyiannis (2000) show that while plug-in estimates are
uniformly consistent, under mild conditions, the rate of convergence can be
arbitrarily slow, even in the discrete case. Beirlant et al (2001) provide a
review of plug-in estimates of entropy of the type: integral, resubstitution,
splitting data and cross-validation. Fernandes (2000) studies MI-like statis-
tics for testing the assumption of independence between stochastic processes.
The series are mixing. Robinson (1991) considered kernel-based estimates, as
did Skaug and Tjostheim (1993). Joe (1989b) obtained consistency results for
the estimates of type 1 and 2 above and obtained asymptotic mean-squared
error results. Hall and Morton (1993) studied properties of Joe’s estimates
with emphasis on tail behavior, distribution smoothness and dimensional-
ity. Hong and White (2000) develop asymptotic distributions of estimates of
Robinson (1991) and Granger and Li (1994). In a series of papers Modde-
meijer (1989,1999,2000) studies various large sample properties of estimates
of entropy.

3.3 Bias and statistical uncertainty

One needs statistical properties of estimates in order to make statistical infer-
ences. As indicated above in certain cases the approximate null distribution
of ÎXY is chi-squared. In the case of (9) it is

χ2
ν / 2n, where ν = (J − 1) ∗ (K − 1)

For example approximate p-values of the hypothesis of independence may be
computed.

Both asymptotic developments and simulation experiments have shown
that bias can be a problem in the estimation of entropy. This could have
been anticipated because of the nonlinear character of mutual information as
a function of its parameters. Miller (1955) proposed an elementary correction



to (9). Woodfield (1982) studies estimate based on transforming marginals
to uniforms and finds bias problems in a simulation study.

Because of the messiness of the expressions involved, nonparametric un-
certainty procedures are often very helpful. These include the δ-method of
propagation of error, the jackknife and the bootstrap. In particular the latter
two can both reduce bias and provide estimates of uncertainty.

4 EXAMPLES

The histogram estimate (9) is used throughout when the data form a con-
tingency table and the R/Splus function kde2d when X and Y are jointly
continuous. It is assumed that the explanatory, X, is stochastic.

4.1 An example with two discrete variables

This is an example of the use of MI in a comparative study.
Soccer fans have often discussed the home team advantage and there are

controversies. To study an interesting aspect of this, consider the specific
question: in which country is the relationship strongest between the number
of goals a team scores and and the circumstance that it is playing at home?

Lee (1997) used Poisson regression in a study of the English Premier Di-
vision specifically. He includes a home-away effect in the model. In contrast
this paper presents a study of countries, not teams.

Data for the world’s Premier Leagues of many countries are available at

sunsite.tut.fi/rec/riku/soccer2.html

The analysis that follows considers the 2001-2002 season and the coun-
tries: Argentina, Brazil, Canada, Chile, France, Germany, Italy, Portugal,
Spain, Uruguay. These countries were studied because the example was de-
veloped for talks in Brazil.

The variates, X and Y , were defined as follows: Y = 0, 1, 2, 3, 4+ gives
the number of goals a team scored in an away game while X = 1, 0 indicates
whether the team was playing at home or away. The value 4+ represents 4
or more goals scored by a team.

The estimate (9) is employed and the formula for the independent iden-
tically distributed case has been used to obtain the upper 95% level.
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Figure 1: Estimated MI between goals a team scored in a game and whether
the team was playing at home or away. The heights of the grey bars provide
the approximate 95% of the null points. The Canada value is below the line
because it would have been hidden by the grey shading above.



The results are given in Figure 1. One sees France standing above all the
other countries with a strong home effect and Canada showing none to speak
of.. One colleague suggested that France stood out because its stadiums were
such that the fans were particularly close to the field. In the case of Canada,
its Premier Division is minor league.

The assumption of independence may be problematic because often a
suite of games is played on a given day and, for example, weather conditions
may be in common.

4.2 A real-valued time series example

This example involves checking a real-valued stationary time series for inde-
pendence.

The data studied are based on a spike train of 951 firings of the neuron
L10 of the sea hare, Aplysia californica, when it was firing spontaneously.
Supposing the times of the spike train to be {τk} Let {Zk = τk+1 − τk}
denote the intervals between the firings.

When a neuron is firing spontaneously many of the proposed models
imply that intervals are independent and identically distributed, i.e. the
point process is renewal. An estimate of the MI was computed to address
the question of whether the series of interspike intervals may be viewed as
white noise.

Supposing Xi = Zi and Yi = Zi+h the MI is estimated as a function of
lag h. The results are shown in Figure 2.

The 99% critical level is estimated by repeating the MI estimation for
random permutations of the intervals. It is the dashed line in the second
panel.

The figures provide evidence against the assumption of a renewal process.
Specifically there is a suggestion in both the top two panels of relationship
at the very low lags.

What is different here from traditional studies is that serial association of
the interval sequence has been examined over a broader range of possibilities.

4.3 A discrete-continuous example

This example involves selecting the variable most strongly associated with a
given binary response variate and checking on the efficiency of some para-
metric models..
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Figure 2: From the bottom, the panels are respectively: a plot of the series,
the estimated mutual information as a function of lag and the estimated
coefficient of determination.



Estimates of the risks of wildfires are basic to governments’ preparations
for forest fires and their handling once detected. The problem is important
because in many cases there are deaths and very large financial losses.

In dealing with the problem so called fire indices are often computed
and promulgated. For example there are the Keetch-Byram Drought, the
Fire Potential, the Spread Component and the Energy Release Component
Indices, see Preisler et al (2004).

One question of concern is whether a fire once started will become large.
Mutual information will be employed to infer which of the four indices is
most highly associated with a fire becoming large. Further the efficiencies of
three parametric models of generalized linear model form will be studied.

The data employed are for the federal lands in the state of Orgeon for the
years 1989 to 1996. They are discussed in Brillinger et al. (2003), Preisler et
al (2004). The state is divided into 1km by 1km pixels. The times and pixels
in which fires occurred are recorded. Further the size of the fire is estimated.

For the mutual information analysis the response variable, Y , is defined
to be 1 if a fire becomes large and 0 otherwise. The explanatory variable, X,
is the value of the 4 indices in turn, i.e. four separate analyses are carried
out.

The results are provided in Figure 3. The final panel is the nonparametric
estimate while the previous three refer to the specific Bernoulli models em-
ploying the probit, logit and the complimentary loglog link respectively. The
third, the so-called spread index lives up to its name and appears the most
pertinent for inferring whether a fire becomes large. Turning to the question
of the efficiency of the three parametric models, when their estimated MIs
are compared with those of the nonparametric, they all appear to have per-
formed reasonably. When focus is on the spread index, the complimentary
loglog link looks the better. The dashed line in the final panel represents the
approximate 95% point of the null distribution. The MIs for the parametric
models are estimated via expression (19).

4.4 Discussion of the examples

A range of questions motivated the work carried out. The first example was
a comparative study. The second involved model assessment. The third was
concerned with both prediction and the efficiency of some specific parametric
models.
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Figure 3: The estimated MI as a function of four fire indices used in prac-
tice. The problem is that of infering which of these indices is most strongly
associated with a fire becoming large.



Analyses might have been carried out using second-order moments; hy-
potheses of dependence have been examined against a much broader class of
possibilities. Further the efficiencies of some parametric models have been
examined.

5 DISCUSSION AND SUMMARY

Mutual information is a concept extending correlation, substituting for ρ2

and R2. It has a simple definition and a variety of uses.
Conclusions such as

“The hypothesis of independence is rejected.”

become

“The estimated strength of dependence is M̂I.”

The mutual information provides another motivation for the use of ρ2 in
Gaussian case and for G2 in the contingency table case. The efficiency of
an estimate may be studied by considering parametric and nonparametric
estimates as in Example 3.

There are some operational questions. Various estimates of MI have been
proposed. Their practical properties need to be studied, in particular bias.
Simulation studies can provide some guidance.

The mutual information is ‘just” a non-negative number. In the examples
it seemed that functional forms were to be preferred - MI as a function of
country, or of lag, or of index, or of speed. Such thoughts can suggest new
parameters for consideration.

The analysis is not complete for once a large value of the MI has been
found in many cases one needs to look for an expression of the cause of the
relationship, i.e. a model.

There are lots of problems to be worked upon. These include practi-
cal aspects of extensions to X in Rp and Y in Rq, higher-order analogs,
robust/resistant variants for example based on M-estimates of θ.

There are other measures of independence and entropies, see Fernandes
(2000), Hong and White (2000).

Joe’s measure
1 − exp{−2IXY }



has been mentioned. Nagelkirke (1991) proposes the use of an expression like
this with 2IXY replaced by the deviance. The discussion around Theorem
2 suggests that this may not be a reasonable quantity generally for the null
estimate’s distribution needs to be considered under the full distribution, not
just the null.
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APPENDIX

A single variable problem is considered to begin.
Let V be a random variable with distribution depending on a finite di-

mensional parameter θ. Consider the problem of estimating

Ψ(θ) = E{g(V |θ)}

for some measureable function g. Assume that for given θ this expected value
can be approximated numerically arbitrarily closely. (There is no problem
in the finite discrete case.)

Assuming that the derivative involved exists, let JV denote the Fisher
information,

E{∂
2l(V |θ)
∂θ∂θ′

}

evaluated at the point θ0 where l(v|θ) denotes the log of the pdf (or the pmf)
of the variate V .

Suppose that a sample of values, {v1, ..., vn}, is available and that θ̂ is the
maximum likelihood estimate of θ. Consider as an estimate of Ψ(θ)

Ψ(θ̂) (23)



where θ̂ is the maximum likelihood estimate of θ. Large sample properties
of (23) may be studied via the Taylor approximation

Ψ(θ̂) ≈ Ψ0 +
∂Ψ0

∂θ

′

(θ̂ − θ0) +
1

2
(θ̂ − θ0)

′ ∂
2Ψ0

∂θ∂θ′
(θ̂ − θ0) (24)

with θ0 the true parameter value, Ψ0 = Ψ(θ0), ∂Ψ0/∂θ is the first derivative
evaluated at θ0, and ∂2Ψ0/∂θ∂θ

′ is the matrix of second derivatives evaluated
at θ0.
Assumption A.1. The second derivatives of Φ exist and are continuous
except in a set whose measure is 0. The matrix JV is nonsingular. Further
the large sample distribution of θ̂ is normal with mean θ0 and covariance
matrix JV

−1/n.
Now one has as n → ∞,

Theorem A.1. Let the true parameter value be θ0, and suppose that As-
sumption A.1 holds. Then
a) In the case that the ∂Ψ0/∂θ is not 0, the variate

√
n(Ψ(θ̂) − Ψ(θ0)) is

asymptotically normal with mean 0 and covariance matrix

∂Ψ0

∂θ

′

JV
−1∂Ψ0

∂θ

b) In the case that ∂Ψ0/∂θ is 0, (as it is in the case of independence), the
variate n(Ψ(θ̂) − Ψ(θ0)) has as large sample distribution that of

1

2
Z ′J

−1/2
V

∂2Ψ0

∂θ∂θ′
J
−1/2
V Z (25)

Z being a vector of independent standard normals.
Corollary. Under Assumption A.1, the estimate (23) is consistent.

Consideration now truns to the mutual information case V = (X,Y ).
Here

Ψ(θ) = IXY (θ) = E

{

log
p(X,Y |θ)

pX(X|θ) pY (Y |θ)

}

(26)

Note that because IXY (θ) is invariant under 1-1 transforms of X and Y ,
IXY (θ) will sometimes not depend on all the coordinates of θ, i.e. ∂I/∂θ will
be of reduced rank.
Assumption A.2. Derivatives up to order 2 exist. One can interchange
the orders of integration and differentiation as necessary. The large sample



distribution of the maximum likelihood estimate, θ̂, is normal with mean θ0

and covariance matrix J−1
XY /n.

Then one has,
Lemma A.1. Under Assumption A.2 and with Ψ given by (26) the gradient
∂Ψ/∂θ vanishes in the case that X and Y are independent. Also in that case
the Hessian matrix, ∂2Ψ/∂θ∂θ′, is given by JXY − JX − JY , where the J are
Fisher information matrices of the distributions (X,Y ), X, Y respectively.

The quantity JXY −JX −JY has an interpretation as the Fisher informa-
tion re θ in (X,Y ) minus that in X and further minus that in Y .
Proof of Lemma A.1. That the gradient vanishes is no surprise since
the MI is minimized at independence. Still a proof is given. There is much
changing of the order of differentiation and integration.

Consider the case that the random variable (X,Y ) is continuous. The
other cases follow similarly. Write, with abbreviated notation, pX(x)dx as p.
The quantity in question, (26), may be written

∫ ∫

p log p −
∫

pX log pX −
∫

pY log pY

with derivative
∫ ∫

∂p

∂θ
[log p + 1] −

∫

∂pX

∂θ
[log pX + 1] −

∫

∂pY

∂θ
[log pY + 1] (27)

Since
∫ ∫

p,
∫

pX ,
∫

pY = 1 one has

∫ ∫

∂p

∂θ
,

∫

∂pX

∂θ
,

∫

∂pY

∂θ
= 0

and the +1 terms drop out. Next from
∫

pdy = pX

∫ ∂p

∂θ
=

∂pX

∂θ
(28)

and so
∫ ∫

log pX
∂p

∂θ
=

∫

log pX
∂pX

∂θ
(29)

There is a similar result for pY . The gradient is thus

∫ ∫

∂p

∂θ
[log p − log pX − log pY ] (30)

which is 0 at independence as p = pXpY .



Turning to the Hessian, taking ∂/∂θ′ of (27) leads to
∫ ∫

∂2p

∂θ∂θ′
[log p − log pX − log pY ] +

∂p

∂θ
[
1

p

∂p′

∂θ
− 1

pX

∂pX
′

∂θ
− 1

pY

∂pY
′

∂θ
]

and from (28)
∫ ∫ ∂p

∂θ

1

pX

∂pX
′

∂θ
dxdy =

∫ 1

pX

∂pX

∂θ

∂pX
′

∂θ
dx

So when p = pXpY

∂2Ψ

∂θ∂θ
=

∫ ∫

[
1

p

∂p

∂θ

∂p′

∂θ
− 1

pX

∂pX

∂θ

∂p′X
∂θ

− 1

pY

∂pY

∂θ

∂p′Y
∂θ

]

i.e.
JXY − JX − JY

as claimed.
Proof of Theorem A.1. Both parts follow from the representation (24)
and Corollary 3 of Mann and Wald (1943).
Proof of Theorem 1. Part a) follows directly from Theorem A.1 part a).

Consider next part b). In the case of independence, following Lemma
A.1, the estimate nIXY (θ̂) is asymptotically distributed as

1

2
Z ′J

−1/2
XY [JXY − JX − JY ]J

−1/2
XY Z (31)

where Z is a vector of independent standard normals. In the case that the
inner matrix of (31) is idempotent the large sample distribution of IXY (θ̂) is

χ2
ν / 2n

with ν = the trace of J
−1/2
XY [JXY − JX − JY ]J

−1/2
XY .

Assumption A.3. Suppose that Assumption A.2 holds and that θ has been
parametrized as (φ, ψ) and that the marginals of X and Y only depend on
φ.
Proof of Theorem 2.

In the case that X and Y are independent the asymptotic distribution of
(19) is χ2

ν/2n with ν = dim(ψ). In the case that they are not

expression (9) → E{log p(X,Y |θ)} − E{log pX(X|φ∗)pY (Y |φ∗)}
in probability where φ∗ maximizes

E{log pX(X|φ)pY (Y |φ)}
and one has the stated theorem.
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