Supervised Feature Selection in Graphs with Path Coding Paities
and Network Flows*

Julien Mairal JULIEN@STAT.BERKELEY.EDU
BinYu' BINYU @STAT.BERKELEY.EDU
Department of Statistics

University of California

Berkeley, CA 94720-1776, USA.

Abstract

We consider supervised learning problems where the feaane embedded in a graph, such as
gene expressions in a gene network. In this context, it isudhmnterest to take into account the
problem structure, and automatically select a subgraph avgmall number of connected compo-
nents. By exploiting prior knowledge, one can indeed imprthe prediction performance and/or
obtain better interpretable results. Regularization araftg functions for selecting features in
graphs have recently been proposed but they raise newthlgdcichallenges. For example, they
typically require solving a combinatorially hard selectjoroblem among all connected subgraphs.

In this paper, we propose computationally feasible stiageip select a sparse and “well con-
nected” subset of features sitting on a directed acycliply(®AG). We introduce structured spar-
sity penalties over paths on a DAG called “path coding” peesil Unlike existing regularization
functions, path coding penalties can both model long rantg@actions between features in the
graph and be tractable. The penalties and their proximaboges involve path selection problems,
which we efficiently solve by leveraging network flow optiraiion. We experimentally show on
synthetic, image, and genomic data that our approach iatseshnd lead to more connected sub-
graphs than other regularization functions for graphs.

Keywords: Convex and non-convex optimization, network flow optimiaaf graph sparsity.

1. Introduction

Supervised sparse estimation problems have been the topicath research in statistical machine
learning and signal processing. In high dimensional gttimestoring a signal or estimating the
weight vector of a classifier is often difficult without a pignowledge of the data. When the so-
lution is known beforehand to be sparse—that is, has onlwanfin-zero coefficients, regularizing
with a penalty encouraging sparsity has proven to be usefahprove both the quality of the pre-
diction and its intepretability. To that effect, non-coryeenalties and greedy algorithms have been
proposed (sefkaike, 1973 Schwarz 1978 Rissanen1978 Mallat and Zhang1993 Fan and Lj
2007, Needell and Trop2009. More recently, convex relaxations such as#fx@orm (Tibshiranj
1996 Chen et al.1999 and efficient algorithms have been develop@dliorne et al.200Q Efron

et al, 2004 Nesteroy 2007 Beck and Teboulle2009 Wright et al, 2009.

arXiv:1204.4539v1 [stat.ML] 20 Apr 2012

x. A preliminary version of this paper was presented duriegit International Workshop on Optimization for Machine
Learning (OPT 2011) at the Neural Information Processirgt&y (NIPS) conferencéairal and Yy 2011).
t. Also in the department of Electrical Engineering & Conguiicience.

http://arxiv.org/abs/1204.4539v1

We consider in this paper supervised learning problems evhreare information is available
than just sparsity of the solution. More precisely, we asstinat the features (or predictors) can
be identified to the vertices of a graph, such as gene expressi a gene network. In this context,
it can be desirable to take into account the graph structutbe regularizationRapaport et al.
2007. In particular, we are interested in automatically idiginig a subgraph with a few connected
components Jacob et aJ.2009 Huang et al. 2011), groups of genes involved in a disease for
example. There are two equally important reasons for ththereconnectivity of the solution is
good prior information which might improve the predictioarfpormance, or connected components
may be easier to interpret than isolated variables.

Formally, let us consider a supervised sparse estimatioblgm involving p features (or pre-
dictors), and assume that an undirected or directed dgaplfV, E) is given, wheré&/ is a vertex set
identified to{1,...,p}, andE CV xV is an arc (edge) set. Classical empirical risk minimization
problems can be written as

min [L(w) +AQ(w)], 1)

weRP
wherew is a weight vector inRP we wish to estimatel : RP — R is a convex loss function,
andQ : RP — R is a regularization function. Typical choices f@rto obtain a sparse solution are
the ¢op- (cardinality of the support) of1-penalties. In this paper, we are interested in penaltiats th
also encourage the sparsity pattermofthe set of non-zero coefficients) to form a subgrapksof
with a small number of connected components. We give a siexdenple of a “well connected”
sparsity pattern in Figurgaillustrating this “graph sparsity” regularization effect

To the best of our knowledge, penalties in the literaturemmiing connectivity of sparsity pat-
terns in a graph fall into two categories. The first one casgigregularization functions involving
pairwise interactions terms between vertices linked by ran(@ehver et al.2008 Jacob et a).
2009 Chen et al.2011), each term encouraging two neighbors in the graph to belsineously
selected. Such penalties usually lead to tractable omiiniz problems, but do not model long
range interactions between variables in the graph, and toramote large connected components.
Penalties from the second category are more complex, aectifinddress subgraph selection prob-
lems Huang et al.2011), which are combinatorially hard. As such, they requireragimnations to
be used in practice. The problem of finding penalties thatocdin model long range interactions in
the graph while being tractable is therefore acute. The wmamtribution of our paper is a solution
to this problem when the graph is directed and acyclic.

Of much interest to us are the non-convex and convex pesadtepectively introduced byuang
et al. (2011 andJacob et al(2009. Given a pre-defined set of (possibly overlapping) gréugds
variablesg, these two structured sparsity-inducing regularizationctions encourage a sparsity
pattern to ben the union of a small number of group$hese penalties induce a similar regular-
ization effect and are strongly related. In fact, we showeat®n3 that the penalty ofacob et al.
(2009 can be interpreted as a convex relaxation of the non-copeerlty ofHuang et al(2011),
even though these two works were independently proposdikatame timé. These two penal-
ties go beyond classical unstructured sparsity, but theyalso more complex and they raise new
challenging combinatorial problems. As suggestedHoyang et al(2011), defining G as the set
of all connected subgraphs G would lead to well connected solutions. Unfortunately tiienn
ber of connected subgraphs is exponential in the graph siddéhis approach leads to intractable

1. What we call “group of variables” is formally defined as 4eneent of the powerset(®--P} .
2. They were presented at the International Conference ahidea Learning, ICML, in 2009.

optimization problems, which are approximately addresseduang et al(2011) with greedy al-
gorithms. Another strategy used Bgicob et al(2009 is to defineG as the pairs of vertices linked
by an arc, which, as a result, encourages neighbors in tiph gocbe simultaneously selected. This
last formulation is computationally tractable, but does madel long range interactions between
features. Another possibility suggested acob et al(2009 andHuang et al(2011) consists of
defining G as the set of connected subgraphs up to aksitwever, the number of such subgraphs
is exponential irk, making this approach difficult to use even for small subgrsiges k=3,4) as
soon as the graph is largp4 10000) and connected enougi.hese observations naturally raise
the questionCan we replace connected subgraphs by another structurehwhiis rich enough to
model long-range interactions in the graph, and (ii) leadsdmputationally feasible penalties?

When the graplt is directed and acyclicwe propose to the above question a solution relying
on two main ideas. First, we use in the penalty frameworBaafob et al(2009 andHuang et al.
(2011 a novel group structur€, which containsall the path$ in G. The second key component
of our strategy is the choice of appropriate costs for eatt e “price” one has to pay to select
a path), which, as we show in the sequel, allow us to leveragieank flow optimization. We call
the resulting regularization functions “path coding” pkiea. They go beyond pairwise interac-
tions between vertices and model long-range interactiebsden the variables in the graph. They
encourage sparsity patterns forming subgraphs that camverex! by a small number of paths,
therefore promoting connectivity of the solution. To iliie the “path coding” concept for DAGS,
we present an example in Figui®, where a subgraph with two connected components is repre-
sented by two paths. Even though the number of paths in a DA&R@snential in the graph size,
we map thepath selectiorproblems our penalties involve to network flow formulatigaseAhuja
et al, 1993 Bertsekas1998, which can be solved in polynomial time. As shown in Secfipthe
main idea is to build minimum cost flow formulations such tbanbding a positive amount of flow
along a path (for minimizing a cost) is equivalent to setegtihe path in the context of the path
coding penalties. This allows us to efficiently compute thrglties and their proximal operators, a
key tool to address regularized problems (Beeh et al. 2012 for a review).

We therefore design in this paper a new link between stradtgraph penalties in DAGs and
network flow optimization. The development of network flowtinopzation techniques has been
very active from the 60’s to the 90’s (s€®rd and Fulkersgnl956 Goldberg and Tarjanl986
Ahuja et al, 1993 Goldberg 1997 Bertsekas1998. They have attracted a lot of attention during
the last decade in the computer vision community for theiitalo solve large-scale combinatorial
problems typically arising in image segmentation tadksykov et al, 2001). Concretely, they
provide efficient dedicated tools to solve particular linpeograms, the most famous one being
probably themaximum flow problerfiFord and Fulkersqril956. Thus, by mapping a problem at
hand to a network flow formulation, one can possibly obtast &dgorithms to solve the original
problem. Of course, such a mapping does not always existrobealifficult to find. This is made
possible in the context of our path coding penalties thankietomposability properties of the path
costs, which we make explicit in Secti@n

3. This issue was confirmed to us in a private communicatigh baurent Jacob, and this was one of our main motiva-
tion for developing new algorithmic tools overcoming thisiglem.

4. A path is defined as a sequence of vertipgs...,vk) such that for all i <k, we have(vj,vi+1) €E. This is
in fact the classical definition of walks in a graph. A pathrisaddition not supposed to contain any repetition of
vertices (sedhuja et al, 1993, but for directed acyclic graphs, walks and paths are theesa

3

(a) Sparsity pattern in an undirected graph. (b) Selected paths in a DAG.

Figure 1: Left(a): an undirected graph with 12 nodes. A sparsity pattern fognai subgraph with
two connected components is represented by gray nodest [Righvhen the graph is a DAG, the
sparsity pattern is covered by two pat2s3,6) and(9,11,12) represented by bold arrows.

We remark that different network flow formulations have ddsen used recently in other sparse
estimation contexts@ehver et al.2008 Chambolle and Darbqr2009 Hoefling 201Q Mairal
etal, 2011). Cehver et al(2008 combine for example sparsity and Markov random fields fgnai
reconstruction tasks. They introduce a non-convex peigaltgisting of pairwise interaction terms
between vertices of a graph, and their approach alternatesbn two steps: the optimization of a
Markov random field model by solving a maximum flow problddoykov et al, 2001), and a sparse
signal estimation step. It has also been show@bgmbolle and Darbof2009 andHoefling(2010
that for the anisotropic total-variation penaltyalso called “fused lasso” in statistics, the solution
of problem () could be obtained by solving a sequenc@afametric maximum flow problerfidn
the context of graph sparsity, the total-variation pene#ty be useful to obtain piecewise constant
solutions on a graph (seéhen et al. 2011). Finally, Mairal et al. (2011 have shown that the
structured sparsity-inducing regularization functiordehatton et al2011) was related to network
flows in a similar way as the total variation penalty. Notet tiie penalties oflacob et al(2009
andJenatton et ali2011) share the same terminology of “group Lasso with overlaggroups”,
leading to some confusion in the literature. Yet, they agmificantly different and are in fact
complementary: given a group structuge the penalty oflacob et al(2009 encourages solutions
whose sparsity pattern isumion of a few groups, whereas the penalty Jehatton et al(2011)
promotes arintersectionof groups. Whereas it is natural to use the frameworklafob et al.
(2009 to encourage connectivity of a problem solution in a gragl.(by choosing; as the pairs
of vertices linked by arc), it is not obvious how to obtainstleffect with the penalty odenatton
et al.(2011). We discuss this question in Appendixin more detalils.

To summarize the contributions of our paper, we have dedigreev penalty functions along
with an optimization framework to do feature selection iredted acyclic graphs. Unlike existing
ones, our penalties can model long-interactions betweeablas while leading to tractable prob-

5. The anisotropic total-variation penalty for two-dimiemal images is a sum of pairwise terms between adjacent
pixels encouraging the pixel values to be equal. It prodpéesewise constant images.

6. By definition, a parametric max-flow problem consists ivisg, for every value of a parameter, a max-flow problem
on a graph whose arc capacities depend on this parameter.

4

lems. We propose unified optimization tools to deal with tha-nonvex and convex variants of
our penalties based on network flows. Our flow formulatioreésus to deal with the exponential
number of paths/groups ig,, and, as far as we know, are unrelated to other flow formulatio
appearing in the sparse estimation literature.

The paper is organized as follows: Sectpresents preliminary tools, notably a brief intro-
duction to network flows. SectioB formally proposes the path coding penalties and devisés opt
mization technigques for solving the corresponding spastienation problems. Sectichpresents
experiments on synthetic, genomic and image data to derateshe connectivity benefits of path
penalties over existing ones and the scalability of our @gg, and Sectiof concludes the paper.

2. Preliminaries

As we show later, our path coding penalties are intimatekeld with the concept of flow in a graph.
Since this concept is not widely used in the machine learlitegature, we provide a brief overview
of this topic in Sectior2.1. The other tool we present in Sectid@rRis a proximal gradient method,
which has become on the other hand very popular for solvigglagized problems (segach et al,
2012.

2.1 Network Flow Optimization

The concept of flow has been well studied in the computer seieommunity and has led to ef-
ficient dedicated algorithms for solving particular lingaograms (seé\huja et al, 1993 Bert-
sekas 1998. Let us consider a directed gra@= (V,E) with two special nodes andt, respec-
tively dubbedsourceandsink A flow f on the graphG is defined as a non-negative function on
arcs[fu)uv)ce that satisfies two sets of linear constraints:

« capacity constraints the value of the flowf,, on an arg(u,v) in E should satisfy the con-
straintl, < fu, < 0w, wherel,, andd,, are respectively called lower and upper capacities;

» conservation constraints the sum of incoming flow at a vertex is equal to the sum of outgo
ing flow except for the sourceand the sink;

We denote in this paper the set of flows on a gr&hby #. For illustration purposes, we give
two simple examples of flows in Figurés and 2b. More generally, it is possible to show that
with appropriate graph transformations, this basic flowrtddin can handle in fact several variants
which we have omitted for simplicity. When desired, it iseed possible to define several source
and sink nodes, define capacity constraints on the amounvwfdgbing through vertices, and/or
have several arcs with different capacities between twicesr (seéAhuja et al, 1993.

Some network flow problems have attracted a lot of attentemabse of their wide range of ap-
plications, for example in engineering, physics, tranggimm or telecommunications (sédéuja
et al, 1993. In particular, themaximum flow problenconsists of computing how much flow
can be sent from the source to the sink through the networkewbspecting the capacity con-
straints Ford and FulkersariL956. In other words, it consists of finding a flolvin F maximizing
Y uevisu)cE fsu. Another more general problémwhich is of interest to us, is theinimum cost
flow problem in addition to capacities, there exists some nonnegatigésc,, in R, for every arc

7. A maximum flow problem is in fact a particular instance of mimum cost flow problem on a network with unit
costs on the aros, u) in E, and zero costs elsewhere.

5

(a) A flow in a DAG. (b) A flow in a directed graph with a cycle.

o e
S@ooNo@ Pote
1 o

(c) (s,t)-path flow in a DAG. (d) A cycle flow in a directed graph.

Figure 2: Two examples of flows in a graph.): the flow on the DAG can be interpreted as two units
of flow sent fromsto t along the pathss, 1,3,4,t) and(s,2,3,4,t). (b): the flow can be interpreted
as two units of flow sent fromtot on the same paths as in Figyes plus a unit of flow circulating
along the cyclg1,3,2,1). (c): example of(s,t)-path flow along the patls, 2,3,4,t). (d): example

of cycle flow along(1,3,2,1).

(u,v) in E. The minimum cost flow problem consists of finding a flbtwn & minimizing the linear
Costy (yv)ce Cuv fuv. Both the maximum flow and minimum cost flow problem are lingagrams,
and one could therefore solve them using generic linearranogning tools, e.g., interior points
methods (se®oyd and Vandenbergh004 Nocedal and Wright2006§. However, dedicated al-
gorithms exploiting the special structure of network flovesdn proven to be much more efficient.
It has indeed been shown that minimum cost flow problems doeisblved in strongly polynomial
time—that is, an exact solution can be obtained in a finite memof steps which is polynomial
in V| and|E| (seeAhuja et al, 1993 Goldberg and Tarjgnl989. More importantly these dedi-
cated algorithms are empirically efficient and can oftendhatarge-scale problem&éldberg and
Tarjan 1986 Goldberg 1997 Boykov et al, 2001).

Among linear programs, flow problems have a few distincteatdires. The most striking one
is the “physical” interpretation of a flow as quantities alating in the network. This intuition
can be formalized through tHeow decomposition theore(@eeAhuja et al, 1993 Theorem 3.5).
This theorem says that every flow vector can always be decsadpioto a sum ofs,t)-path flows
(units of flow sent fronstot along a path) and cycle flows (units of flow circulating alongyale
in the graph). We give examples ¢d,t)-path and cycle flow respectively in Figur@s and 2d,
and simple examples of flows in Figurda and2b along with their decompositions ifs,t)-path
and cycle flows. Built upon the interpretation of flows as dil@s circulating in the network,
efficient algorithms have been developed, e.g., the clsaigmenting pathalgorithm of Ford
and Fulkersor(1956 for solving maximum flow problems. Another specificity offflgoroblems

6

compared to generic linear programs is the locality of qamnsis, each of them only involving
neighbors of a vertex in the graph. This locality is also eitpt to design algorithms3oldberg and
Tarjan 1986 Goldberg 1997. Finally, minimum cost flow problems have a remarkahbtegrality
property. a minimum cost flow problem where all capacity constraimésiategers can be shown to
have an integral solution (sééuja et al, 1993 Theorem 9.10).

Later in our paper, we will map path selection problems tavodt flows by exploiting the
flow decomposition theorem. In a nutshell, this apparenthpte theorem has an interesting con-
sequence, which is that minimum cost flow problems can be fseentwo equivalent viewpoints.
One is either looking for the valug,, of a flow on every arcu,v) of a graph minimizing the cost
¥ (uv)<E Cuvfuy; Or one should decide how much flow should circulate on eysmy-path and cy-
cle flow to minimize the same co$tWe will define flow problems such that selecting a path in
the context of our path coding penalties is equivalent talsgnsome flow along a corresponding
(s,t)-path. Interestingly, we will also exploit thietegrality propertyto develop tools that work both
with non-convex and convex penalties, respectively inmgh\discrete and continuous optimization
problems. We will also consider variants of minimum cost flaneblems with non-linear convex
costs, which will be discussed later. The concept of flow difctly enable us to deal with a simple
class of optimization problems involving our path codingng@ées. To deal with probleni), we
need additional tools, which we now present.

2.2 Proximal Gradient Methods

Proximal gradient methods are iterative schemes designedrimize objective functions of the
same form as1), when the functiorlL is convex and differentiable with a Lipschitz continuous
gradient. More precisely they can be seen as an extensioradiegt-based techniques when the
objective function to minimize has a nonsmooth part.

The simplest version of this class of methods linearizesel &eration the functioh around
a current estimat@, and this estimate is updated as the (unique by strong cityierlution of:

min [L() + OL() " (w—)+ 2w — &3+ Aow)], @)
we ——

linear approximation ot non-smooth part

guadratic term

which is assumed to be easier to solve than the original @nolfl). The quadratic term keeps the
update in a neighborhood whekeis close to its linear approximation, apd> O is a parameter
which is an upper bound on the Lipschitz constantbf. When Q is convex, this scheme is
known to converge to the solution of problefr) and admits variants with optimal convergence rates
among first-order method&Nésteroy 2007 Beck and Teboulle2009. WhenQ is non-convex,
the guarantees are weak (finding the global optimum is oueach), but it is easy to show that
these updates can be seen as a majorization-minimiZgtiocedure (seklunter and Lange2004
iteratively decreasing the value of the objective functfdvright et al, 2009. WhenQ is the/;-
or {g-penalty, the corresponding optimization scheni®sfe respectively known as iterative soft-
and hard-thresholdingd@ubechies et gl2004 Blumensath and Davie2009.
Another insight about these methods can be obtained bytiegvsub-problemZ) as:
min
weRP

%Hw— %DL(W) —sz+ %Q(W)] ,

8. Note that when the graphis a DAG, cycle flows do not exist.
9. Majorization-minimization techniques can also be seegemeralizations of EM algorithmBémpster et al1977).

7

and whenh = 0, the solution amounts to a classical gradient step- W — (1/p)0L(W). Thus,
proximal gradient methods can be interpreted as a geratiatizof gradient descent algorithms
when dealing with a nonsmooth term. They are, however, otigrésting when problen2) can be
efficiently solved. Formally, we wish to be able to computeploximal operatordefined as:

Definition 1 (Proximal Operator.)
The proximal operator associated with a regularizatiomeyQ, which we denote by Prgy, is the
function that maps a vectar € RP to the unique (by strong convexity) solution of

1)
min | {lu —wlj3+AQ(w)| . ®3)

Computing efficiently this operator has been shown to beiplestor many penaltie€) (seeBach
et al, 2012. We will show in the sequel that it is also possible for outhpeoding penalties.

3. Sparse Estimation in Graphs with Path Coding Penalties

We now present our path coding penalties, which exploitthetired sparsity frameworks dacob
et al. (2009 andHuang et al.(2011) originally defined for any group structurg. Because we
choose a group structurg, with an exponential number of groups (one for every pathémgtaph),
challenging combinatorial problems are raised, and thienigdtion techniques presented bgcob
et al.(2009 or Huang et al(2011) can not be used. We introduce flow definitions of our pathrapdi
penalties, leading to efficient optimization tools to sgiveblem (1) and compute the penalties.

3.1 Path Coding Penalties

The so called “block coding” penalty éfuang et al(2011) can be written for a vectar in RP and
any group structuré; as

d5(w) £ min Ng s.t. Suppw) C | Jg¢, (4)
§ jgg{g; 9 QEUJ }

where theng’s are non-negative weights, anfdis a subset of groups (of features) whose union
covers the support af. When the weightgy are well chosen, this non-convex penalty encourages
solutions whose set of non-zero coefficients is in the unioa emall number of groups, in other
words the cardinality of should be small. We remark thiduang et al(2011) originally introduce
this regularization function under a more general infofaratheoretic point of view wherg is

a code length (seBarron et al. 1998 Cover and Thoma=2009 and the weights)4 represent the
number of bits encoding the fact that a grayjs selected® One motivation behind this approach
is that when the predefined groups are semantically meanjrigé selection of a few groups might
be more interpretable than the selection of isolated viesalT his formulation extends non-convex
group sparsity regularization by allowing any group stnuetto be considered. However, a major
drawback is that computing this non-convex pendlgy(w) for a general group structug is diffi-
cult. Equation 4) is indeed an instance of a set cover problem, which is NB{z@eCormen et a.
2007, and appropriate approximations, e.g., greedy algosthimave to be used in practice.

10. Note thaHuang et al(2011) do not directly use the functiap; as a regularization function. The “coding complex-
ity” they introduce for a vectow counts the number of bits to code the supporvotvhich is achieved by s, but
also use arig-penalty to count the number of bits encoding the valuesehtin-zero coefficients iw.

8

As often when dealing with non-convex penalties, one coitliee try to solve directly the
corresponding non-convex problems, or look for a convexxation. As we empirically observe in
Section4, having both non-convex and convex variants of a penaltybeaa significant asset. One
variant can indeed outperform the other one in some situstiohile being the other way around in
some other cases. It is therefore interesting to look forre@o relaxation ofp ;. We denote by

the vectorfnglgeg i R'f‘, and byN the binary matrix in{0, 1}P*|5| whose columns are indexed by

the groupgy in G, such that the entridq is equal to one when the indgxs in the groupg, and
zero otherwise. Equationt) can be rewritten as a boolean linear program, a form whidhbei
more convenient in the rest of the paper:

dg(w)= min {nTx s.t. Nx > Supp(w)}, (5)
x€{0,1}/4!

where, with an abuse of notation, Sypp is here a vector if0,1}P such that itsj-th entry is one

if j is in the support ofv and 0 otherwise. Let us also denote |y the vector in]Rﬁ obtained by

replacing the entries of by their absolute value. We can now consider a convex retaxaf ¢ ;:

Wg(w) = min {nTx s.t. Nx >]w\}, (6)
xeR‘f‘
where not only the optimization problem above is a lineagpam, but in addition); is a convex
function (in fact it can be shown to be a norm). Such a relaxais classical and corresponds to
the same mechanism relating the to the/1-penalty (replacing Sugp) by |w|). The next lemma
tells us that we have in fact obtained a variant of the pernattpduced bylacob et al(2009.

Lemma 1 (Relation betweenj; and the penalty ofJacob et al.(2009).)
Suppose that any pattern if0,1}P can be represented by a union of groupsgn Then, the
functiony defined in 6) is equal to the penalty afacob et al (2009 with /.,-norms.

Note thatJacob et al(2009 have introduced their penalty from a different perspectnd the
link between §) and their work is not obvious at first sight. In addition, ithgenalty involves a
sum of/;-norms, which needs to be replaceddynorms for the lemma to hold. Henagg is a
“variant” of the penalty oflacob et al(2009. We omit this detail here for simplicity but give all
details, as well as the proof of this lemma in Appendix*

Now that¢ ; andyg have been introduced, we are interested in automaticdytsgg a small
number of connected subgraphs from a directed acyclic g&aph(V,E). We have already dis-
cussed in Sectiof group structures;, and introduced;, the set of paths in G As a result, the
path coding penaltie§;, andyg, encourage solutions which are sparse while forming a spbgra
that can be covered by a small number of paths. As we showsrsé#tion, this choice leads to
tractable formulations when the weiglntg for every pathg in G, are appropriately chosen.

11. Note that at the same time as Gfozinski and Bacl2012 have studied a larger class of non-convex combinatorial
penalties and their corresponding convex relaxationgioioig in particular a similar result as Lemrha

12. Interestingly, this solution is reminiscent of some kvan kernel methods for graphs (in a nutshell, a kernel foplgsa
can be seen as a similarity measure between two graphs)x&woipée, thesubgraph kernetonsists of enumerating
all possible subgraphs from two graphs, and counting howyrtteey have in common. As shown I@artner et al.
(2003, computing this kernel is NP-hard but a solution to thishpem is to considewalksinstead ofsubgraphs
leading to kernels which could be computed in polynomiaktiieeKashima et al.2004 Mahé et al, 2005. These
works have in common with our approach the replacement ofameration of subgraphs by an enumeration of
paths (paths and walks in a DAG are the same), transforminge giifficult problems into tractable ones. Despite
this similarity, these works and our approach are, to thédfesur knowledge, unrelated.

We will show in the sequel that a natural choice is to definafog in G,

Ng =vy+1gl, @)

whereyis a new parameter encouraging connectivity of the solwtibareasg| encourages sparsity.
Itis indeed possible to show that whe# 0, the functionsb ;, andyl;, respectively become thig-
and the/;-penalties, therefore encouraging sparsity but not cdivitgc On the other hand, whepn
is large and the terng| is negligible, g, (w) simply “counts” how many paths are required to cover
the support ofv, thereby encouraging connectivity regardless of the ggakw.

In fact, the choice) is a particular case of a more general class of weiggtsvhich our
algorithmic tools can handle. Let us enrich the originaédied acyclic grapks by introducing a
source nods and a sink nodé. Formally, we define a new graj@ = (V' E’) as

V' £V U{st},
E'2EU{(sv):veV}u{(ut):ueV}.

In plain words, the grapl&’ (which is a DAG) contains the grapB and two nodes,t that are
linked to every vertex o6. Let us also assume that some cagisn R are defined for all arcgu, v)
in E’. Then, for a pathly = (uy, Uy, ...,) in Gp, we define the weightq as

k—1
Ne2 Coy + (S Cuy) +Cut = Cuv, (8)
B (i;) Cut (UN);SQJ) "

where the notatiorts,g,t) stands for the patls us,up, ..., U,t) in G'. This decomposition of the
weightsng as a sum of costs ofs,t)-paths ofG’' (namely the pathgs, g,t) with g in Gp) is a key
component for using the algorithmic tools we will presenttné’he construction of the grap®
is illustrated in FigureSaand3b for two cost configurations. We remark that the simple choice
weights {7) corresponds to the choic8)(with the costxs, = yfor all uinV andc,, = 1 otherwise
(see Figure3a). Being able to design particular costg, and go beyond the simple choicé) (
can be useful whenever one has additional knowledge abewgrtph structure. For example, we
experimentally exploit this property in Sectidn2 to privilege or penalize pathgin G, starting
from a particular vertex. This is illustrated in Figudé where the cost on the afs, 1) is much
smaller than on the ards, 2), (s,3), (s,4), therefore encouraging paths starting from vertex 1.
Another interpretation connecting the path-coding pégmlvith coding length and random
walks can be drawn using information theoretic argumentwet from Huang et al(2011). We
find these connections interesting, but for simplicity gmlgsent them in Appendik. After having
defined the path coding penalties, we address in the nexbsgdhe following algorithmic issues:
(i) how to compute the penaltiels;, and Y, given a vectomw in RP? (ii) how to optimize the
objective function defined inlj? (iii) in the convex case (whe@2 = y5,) can we obtain practical
optimality guarantees via a duality gap? All of these questiwill be answered using network flow
and convex optimization and/or algorithmic tools on graphs

3.2 Computing the Penaltiesh;, and Y4, with Network Flow Optimization

We now proceed to map the problend é&nd @) to network flow formulations. Before precisely
stating these mappings, let us sketch the main ideas. Théddiyscomponent, which is obvious

10

(a) GraphG’ with arcs costs and a pagjin bold red. (b) GraphG' with different arcs costs and a pagh

Figure 3: Left(a): G’ is obtained by adding a soursand sinkt to a DAG with four nodes. The
cost configuration is such that the weightssatisfyng = y+|g|. For example, fog = (4,2,3), the
sum of costs alongs, g,t) is ng = y+ 3. Right(b): same graplG’ as(a) but with different costs.
The weightng associated to the path= (1,2) is the sum of costs along, 1, 2,t)—that is,ng = 4.

only in hindsight, is to transform the optimization probkerd) and @) over the paths irG into
optimization problems ovdis, t)-path flowsn G'. We recall that thés, t)-path flows are defined as
flow vectors carrying the same positive value on every arcpdth betweers andt. It intuitively
corresponds to sending frogto t a positive amount of flow along a path, an interpretation weha
presented in Figurg from Section2.1. The main tool we extensively use is tthew decomposition
theorem(see Sectio2.1). As a consequence, there exists two equivalent viewp@intsolving a
minimum cost flow problem on a DAG. One should be either logKior the valuef,, of a flow on
every arqu, V) of the graph, or one should decide how much flow should be sesnery(s,t)-path.

We assume that a cost configuration] v’ is available and that the weightg are defined
according to Equation8j. We denote byF the set of flows orG’. The second key component of
our approach is the fact that the cost of a flbin F sending one unit frorstot along a patty in G,
defined asy (yv)cer fuvCuv = 3 (uv)e(sgt) Cuv IS €Xactlyng, according to Equatior8]. This enables
us to reformulate our optimization problem® @nd) on paths inG as optimization problems
on (s,t)-path flows inG’, which in turn are equivalent to minimum cost flow problems aan be
solved in polynomial time. Note that this equivalence doashold when we have cycle flows (see
Figure2d), and this is the reason why we have assu@dd be acyclic.

We can now formally state the mapping betwels), and Y, and network flow formula-
tions. We introduce constraints and/or costs on the amolfibw going through a vertexy
inV={1,...,p}, which we denote byg;(f) = Yuev(ujee’ fuj- It is easy to show that a vertex
with a capacity/cost can be equivalently replaced in thevort by two vertices, linked by an arc
that carries the capacity/cogtt{uja et al, 1993. Thus, minimum cost flow solvers can handle such
constraints. The main propositions are presented belahtrenproofs are given in Appendix:

11

Proposition 1 (Computingé,.)
Letw be inRP. Consider the network ‘Glefined in Sectiofi. 1 with costs|Cuy](y)ce/, and defingg
asin @). Then,

bg, (W) = fei;]{ Z fucCuw s.t. §(f) > 1, Vje Sup[(w)}, 9)

(uv)eE’

where ¥ is the set of flows on’GThis is a minimum cost flow problem with some lower-capacity
constraints®, which can be computed in strongly polynomial titfie.

Given the definition of the penalty; in Eq. (5), computingd 5, seems challenging for two reasons:
(i) Eqg. (5) is (for a general group structurg) an NP-hard boolean linear program wiith| variables;
(ii) the size ofGy is exponential in the graph size. Interestingly, Proposititells us that these two
difficulties can be overcome whep= G, and that the non-convex penady;, can be computed in
polynomial time by solving the convex optimization probldefined in Eq.9). The key component
to obtain the mapping a4, to a network flow problem is the decomposability property e t
weightsng defined in §). This allows us to identify the cost of sending one unit offio G’ from s
tot along a patfg to the cost of selecting the paghin the context of the path coding penaty;,.
We now show that the same methodology applies to the conveadtye s, :

Proposition 2 (Computing Y, .)
Letw be inRP. Consider the network ‘Glefined in SectioB.1with costs/cu](u.v)ce/, and defineg
asin @). Then,

Lngp(W) = fEii;']{ Z fUVCUV S-t' %(f) 2 |WJ|7 VJ S {177p}}7 (10)

(u,v)eE’

where ¥ is the set of flows on ‘G This is a minimum cost flow problem with some lower-capacity
constraints which can be computed in strongly polynomrakti

From the similarity between Equation8) @nd (L0), it is easy to see thal, and¢, are closely
related, one being a convex relaxation of the other as fdynshlown in Sectior3.1. The main
consequence of Propositi@ris that the network flow mapping we obtain allows us to solvedly-
nomial time the convex optimization problem of E),(which originally involved an exponential
number of variables. We have thus shown here ¢hgtand s, can be computed in polynomial
time and will discuss in SectioB.4 practical algorithms to do it in practice. Before that, weass
the problem of optimizing problemni).

3.3 Solving Regularized Problems Using Proximal Gradient Mthods

To solve the regularized probler)(we make use of proximal gradient methods, which we have
presented in SectioB.2. The main requirement to use these techniques isp fgrand Yz, to
compute the proximal operators given in Definitian We now show that this operator can be
mapped to network flow formulations and be efficiently conaplut

13. We recall thas; () denotes the amount of flow going through a verfexV = {1,..., p}.
14. See the definition of “strongly polynomial time” in Segti2. 1.

12

Proposition 3 (Computing the Proximal Operator of ¢ ¢,.)
Letu be inRP. Consider the network ‘Glefined in Sectiof. 1 with costs|Cuy](v)ce/, and defingg
as in @). Let us define

P
f* € argmin fuvG
{(uz uv-uv Z

feF V)EE/

S(1-s;(f)), 0)}7 (11)

NII—‘

where is the set of flows on'GThis is a minimum cost flow problem, with piecewise lineats,0
which can be computed in strongly polynomial time. Denckipgr* £ Pro><<|,gp [u], we have for all
jinV ={1,..., p} thatwj = uj if s¢(f*) >0 and0 otherwise.

Note that even though the formulatiof) (s non-convex whef2 is the function¢g,, its global
optimum can be found by solving the convex problem describdequation (1). As before, the
key component to establish the mapping to a network flow proki$ the decomposability property
of the weightsng. More details are provided in the proofs of Appendix Note also that any
minimum cost flow problem with convex piecewise linear casis be equivalently recast as a
classical minimum cost flow problem with linear costs (#dwija et al, 1993, and therefore the
above problem can be solved in strongly polynomial time. \&ie present similar results fapg,:

Proposition 4 (Computing the Proximal Operator of Yi5,.)
Letu be inRP. Consider the network ‘Glefined in Sectiofi. 1with costs[Cyy](yv)ce/, and defineg
as in @). Let us define

f*eargmin{ Z fuvCuv+ i% ax(Juj| —si(f)0)2}7 (12)
(u =1

feF V)EE/

where ¥ is the set of flows on’GThis is @ minimum cost flow problem, with piecewise quadrati
costs, which can be computed in polynomial time. Denoting’b$ Prox{pgp [u], we have for all |
inV ={1,....p}, w; = sign(u;) min(|u;|,s; (f*)).

The proof of this proposition is presented in AppendidVe remark that we are dealing in Proposi-
tion 4 with a minimum cost flow problem with quadratic costs, whislslightly more complicated
to solve than if the costs were linear. Such problems withdoate costs can indeed be solved in
weakly (instead of strongly) polynomial time (se®chbaum 2007—that is, a time polynomial

) to obtain are-accurate solution of problemi®), wheree can possibly
be set to the machine precisidh.We have therefore shown that the computationg of, Wg,,
Prox ép and Prozg,gp can be done in polynomial time. More importantly, we now dgspractical
algorithms, which have empirically shown to be efficient andlable in various context&6ldberg
1997 Ahuja et al, 2003.

3.4 Practical Algorithms for Solving the Network Flow Problems

The minimum cost flow problems involved in the computatiohsg,, Ws, and Proy,, can be
solved with a worst-case complexity &f((|V|log|V|)(|E|+ [V|log|V|)) operations (seéhuja

15. Note that it as been shown blairal et al.(2011) that the proximal operator associated to the penalfeohtton et al.
(2011 with the f»-norm can also be obtained by solving a quadratic minimunt fb@ms problem. However, their
quadratic minimum cost flow problem is easier to solve thais since it can be reduced to a parametric maximum
flow problem, for which strongly polynomial time algorithrexist.

13

et al, 1993. However, this analysis corresponds to the worst-cassildesand the empirical com-
plexity of network flow solvers is often much bettddykov et al, 200]). Instead of a strongly
polynomial algorithm, we have chosen to implement the sggbush-relabel algorithmZoldberg
1997 because of its empirical efficiency despite its weakly polypial worst-case complexity. It
requires transforming the capacities and costs of the mimingost flow problems into integers
with an appropriate scaling and rounding procedure, andtaenby C the (integer) value of the
maximum cost in the network its worst-case complexit@{$V |2|E|log(C|V|)). This algorithm is
appealing because of its empirical efficiency when the rghiristics are usedspldberg 1997).
We choose&C to be as large as possible (using 64 bits integers) not tankaseerical precision, even
though choosing according to the desired statistical precision and thestoiass of the proximal
gradient algorithms would be more appropriate. It has idde=n shown recently §chmidt et al.
(2011 that proximal gradient methods (in the context of convetineization) are robust to inexact
computations of the proximal operator, as long as the pogtisf these computations iteratively
increases with an appropriate rate.

Computing the proximal operator Pigx [u] requires dealing with piecewise quadratic arc
costs. A classical strategy consists of approximating tdmyex cost functions using piecewise lin-
ear functions (seAhuja et al, 1993 Chapter 14) with segments of unit lengths. As before, arggal
procedure allows an approximation up to an arbitrary precisThen, it is easy to show (séduja
et al, 1993 Bertsekas1998 that an arc with a piecewise linear cost can be equivaleafilaced
by several arcs, one for each segment, with appropriatarlcests and capacities. Such explicit arc
duplication is of course cumbersome in practice since tmebau of arcs in the network becomes
unbounded. Nevertheless, some algorithms have the atuilityiplicitly handle these additional
arcs and keep a polynomial complexity. We have chosen inxpgraments a similar strategy using
a modification of the scaling push-relabel algorithm preuabbyAhuja et al.(2003. We now dis-
cuss algorithms to compute the dual normigf , which is an important quantity to obtain a duality
gap and optimality guarantees.

3.5 Computing the Dual-Norm of Y5,

The dual normp;; of the normyg, , is defined for any vectocin RP asyy; (k) = maxpgp(w)gleK
(seeBoyd and Vandenbergh004). This is a key quantity which has different theoretical and
practical values. It can be useful for monitoring the cogeece of proximal methods through
duality gaps, and/or for implementing active set methods #éine adapted to very large-scale very
sparse problems (séxach et al. 2012, as shown in Sectioi.6. We now show thatp*gp can be
computed by solving a sequence of shortest-path proble@s in

Proposition 5 (Computing the Dual Norm lIJ*gp.)

Letk be inRP. Consider the network ‘Glefined in Sectioi. 1with costs[Cyy](yv)ce/, and defineg
asin@). Fort >0, and all jin{1,...,p}, we define an additional cost for the vertex j to be
—|K;|/1. We then define for every path gdj, the length{(g) to be the sum of the costs along the
corresponding(s,t)-path from G. Then,

Wg, (k) = min {T s.t. minl(g) > 0},

TeRy 9€Gp

and l]J*gp(K) is the smallest factor such that the shortegs, t)-path on G has nonnegative length.

14

The proof is given in Appendi®. We note that the above quantity(g) satisfiesl;(g) = ng—
|Kgll1/T, for everyt > 0 andk in RP. We present a simple way for computitp@p in Algorithm 1,
which is proven in Propositiofi to be correct and to converge in polynomial time.

Algorithm 1 Computation of the Dual Norrqu*gp.

input K € RP such thak # 0.

: Choose any path € G, such thakg # 0;

¢ O —00;

while d < 0do
g« arg mir}]egp I:(h); (shortest path problem in a directed acyclic graph);
0+ I¢(9);

end while

: Return: 1= llJ*gp(K) (value of the dual norm).

© N A~ wWDNR

Proposition 6 (Correctness and Complexity of Algorithm1.)
For Kk in RP, the algorithm1 computeap*gp(K) in at most @p?) operations.

The proof is also presented in Appendix We note that this worst-case complexity bound might
be loose. We have indeed observed in our experiments thantipérical complexity is close to
linear in p. To concretely illustrate why computing the dual norm canubeful, we now give
optimality conditions for problemlj involving lIJ*gp. The following lemma can immediately be
derived from Bach et al. 2012 Proposition 1.2):

Lemma 2 (Optimality Conditions for Problem (1) with Q = y;.)
A vectorw be inRP is optimal for problem 1) with Q = i if and only if

W (OL(w)) <A and —OL(w) 'w =g (w).

The next section presents an active-set type of algoritle@Bach et al, 2012 Chapter 6) building
upon these optimality conditions and adapted to our pemajty

3.6 Active Set Methods for Solving Problem 1) whenQ = Yg,

As experimentally shown later in Sectigh proximal gradient methods allows us to efficiently
solve medium-large/scale problems < 100000). Solving larger scale problems can, however,
be more difficult. Algorithm2 is an active-set strategy which can overcome this issue \then
solution is very sparse. It consists of solving a sequencarailler instances of Equatiof)(on
subgraphs5 = (V,E), with V C V andE C E, which we callactive graphs It is based on the
computation of the dual—normp*gp which we have observed can empirically be obtained in a time

linear or close to linear ip. Given such a subgrap®, we denote b)ép the set of paths i5. The
subproblems the active set strategy involve are the foligwi

min {L(w) +A@z (W) s.t.wj=0 forallj ¢V}, (13)

weRP

15

The key observations are that (i) whéris small, subprobleml@) is easy to solve; (i) after solv-
ing (13), one can check optimality conditions for problein gsing Lemm&, and updatés accord-
ingly. Algorithm 2 presents the full algorithm, and the next proposition esstat it is correct.

Algorithm 2 Active-set Algorithm for Solving Equatiorij with Q = Wg,.

1: Initialization w < 0; G «— (0,0) (active graph);
2: loop
3: Updatew by solving subprobleml) (using the current value @f as a warm start);

g+« arg min‘legp Ii(g) (shortest path problem in a directed acyclic graph);
V++Vug E+ EU{(uv)cE:ueg andve g} (update of the active graph);
10: endif

11: end loop

12: Return: w* < w, solution of EquationX).

4: Computert « lIJ*gp(DL(W)) (using Algorithm1);
5. if t<Athen

6: exit the loop;

7. else

8:

9:

Proposition 7 (Correctness of Algorithm 2.)
Algorithm 2 solves Equationl) whenQ = g, .

The proof is presented in Appendix It mainly relies on Lemma&, which require computing the
guantity lIJ*gp(DL(W)). More precisely, it can be shown that whenis a solution of a subprob-

lem (13) for a subgraphG, Whenevertp*gp(DL(w)) < A, it is also a solution of the original large
problem (). Note that variants of Algorithn2 can be considered: one can approximately solve
subproblems(3), select more than a single pajtio update the subgrapﬁ. For simplicity, we do
not discuss these possibilities here.

With the optimization tools we have introduced, we now pnésarious experiments, illustrat-
ing how the different penalties and algorithms behave ictira.

4. Experiments and Applications

We now present experiments on synthetic, genomic and imaige @ur algorithms have been im-
plemented in C++ with a Matlab interface, they will be madailable in the open-source software
package SPAMS, originally accompanyiltgiral et al.(2010.° The proximal gradient algorithms
we have implemented are the FISTA algorithmBafck and Teboull¢2009 for convex regulariza-
tion functions and ISTA for non-convex ones. When available use a relative duality gap as
a stopping criterion and typically stop the optimizationemhthe relative duality gap is smaller
than 104, In our experiments, we often need to solve Equatinfgr several values of the pa-
rameter\, typically chosen on a logarithmic grid. We proceed with atcwation strategy: first we
solve the problem for the largest valuegfivhose solution is usually 0 wheis large enough; then
we decrease the value df and use the previously obtained solution as initializatidhis strategy

16. http:/iwww.di.ens.friwillow/SPAMS/

16

http://www.di.ens.fr/willow/SPAMS/

acts as a warm restart, allowing us to quickly follow the tagmation path of the problem. For
non-convex problems, it provides us with a good initiali@atfor a givenA. The algorithm ISTA
with the non-convex penalty;, is indeed only guaranteed to iteratively decrease the \afltiee
objective function. As often the case with non-convex peaid, the quality of the optimization is
subject to a good initialization, and this strategy has @now be important to obtain good results.
All other implementation details are provided in each expental section.

4.1 Synthetic Experiments

In this first experiment, we study our penaltieg, andy, in a controlled setting. Since generating
synthetic graphs that reflect similar properties as realigtworks is difficult, we have considered
three “real” graphs of different sizes, which are part of ¥ DIMACS graph partitioning and
graph clustering challengdé:

* the graphiazz was compiled byGleiser and Dano(R003 and represents a community net-
work of jazz musicians. It contains= 198 vertices anth= 2742 edges;

« the graphemail was compiled byGuimera et al(2003 and represents e-mail exchanges in a
university. It containgp = 1133 vertices anth= 5451 edges;

* the graphPGP was compiled byBogufia et al(2004 and represents information interchange
among users in a computer network. It contgins 10680 vertices anch= 24 316 edges.

We choose an arbitrary topological ordering for all of thgsaphs, orient the arcs according to
this ordering, and obtain DAGS. We generate structured sparse linear models with measnteme
corrupted by noise according to different strategies mteskin the sequel, and compare the ability
of different regularization functions to recover the ntése model. More precisely, we consider
a design matrixX in R™P with less observations than predictors¥ | p/2]), and whose entries
are i.i.d. samples from a normal distributied(0,1). For simplicity, we preprocess each column
of X by removing its mean component and normalize it to have dgraitorm. Then, we generate
sparse vectora/y with k non-zero entries, according to different strategies whighdescribed in
the sequel. We synthesize an observation vecterXwg + € in R", where the entries afare i.i.d.
draws from a normal distribution((0, /k/na), with different noise levels:

« high SNR: we choosar = 0.2 corresponding to a signal noise ratio (SNR)f about 26. We
note that foro < 0.1 almost all penalties almost perfectly recover the truesstyepattern;

* medium SNR: for 0 = 0.4, the SNR is about 6;
* low SNR: for 0 = 0.8, the SNR is about.6.

Choosing a good criterion for comparing different penaltgedifficult, and a conclusion drawn
from an experiment is usually only valid for a given criterioFor example, we present later an
image denoising experiment in Sectidr?, where non-convex penalties outperform convex ones
according to one performance measure, while being the ethgraround for another one. In the
case of sparse linear models, one can be interested inrpatiewvery—that is, if one obtains an

17. http:/lwww.cc.gatech.edu/dimacs10/archive/clusterin g.shtml .

18. A topological ordering< of vertices in a directed graph is such that if there is an emmfvertexu to vertexv,
thenu < v. A directed graph is acyclic is and only if it possesses altgpcal ordering (seéhuja et al, 1993.

19. The signal noise ratio (SNR) is defined [¥wo||3/|/€[|3.

17

http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

estimate using one penalty, are the signsiofn {—1,0, 1}P consistent with those afy regardless
of the magnitude of the coefficients? One could consideeatsthe relative difference #3-norm
between¥ andwyo, or the mean square error in terms of predictiph — Xw||3. Another question
we shall ask is: Once a penalty produces an estimvathould one refit the model using ordinary
least square (OLS)? refit using a ridge regression modetgatdst of having an extra parameter)?
In this section, we choose the relative mean square errorcagedaon, and use OLS to refit the
models. Whereas OLS does not change the results obtainedheitnon-convex penalti€swe
consider here, it changes significantly the ones obtaindial tive convex ones. In practice, OLS
counters the “shrinkage” effect inherent to these permalted empirically improves the results
guality for low noise regimes (high SNR), but deterioratdsii high noise regimes (low SNR).

For simplicity, we also assume (in this experiment only)t tha oracle gives us the optimal
regularization parameter, and therefore the conclusions we draw from the experimendly the
existence or not of good solutions on the regularizatioh fat every penalty. A more exhaustive
comparison would require testing all combinations (withS)without OLS, with OLS+ridge) and
all criteria, with internal cross-validation to select tiegularization parameters. This would require
a much heavier computational setting, which we have chosetorimplement in this experiment.
After obtaining the matrix, we propose several strategies to generate “true” madggls

« in the scenaridlat we randomly seledt entries without exploiting the graph structure;

 the scenariggraph consists of randomly selecting 5 entries, and iterativelleting new
vertices that are connected @ to at least one previously selected vertex. This produces
fairly connected sparsity patterns, but does not exploitiections;

« the scenarigath is similar to graph, but we iteratively add new vertices following single
paths inG. It exploits arc directions and produces sparsity pattdrascan be covered by a
small number of paths, which is the sort of patterns that atinpoding penalties encourage.

The number of non-zero entries\v is chosen to b& 2 |0.1p| for the different graphs, resulting
in a fairly sparse vector. The values of the non-zero ensiegandomly chosen if-1,+1}. We
consider the formulationl] wherelL is the square losd:(w) = %Hy — Xw|3 andQ is one of the
following penalties:

« the classicalp- and/1-penalties;
» the penaltyp; of Jacob et al(2009 where the groupg are pairs of vertices linked by an arc;
* our path-coding penaltiefsg, or Y, with the weightag defined in ().

 the penalty ofHuang et al(2011), and their strategy to encourage sparsity pattern with a
small number of connected components. We use their implaten of the greedy algorithm
StructOMPL. This algorithm uses a strategy dubbed “block-coding” tpregimately deal
with this penalty (sed¢duang et al.2011), and has an additional parameter, which we also
denote by, to control the trade-off between sparsity and connegtivit

For every penalty except the last one related to the algor8tructOMP, the regularization parame-
ter is chosen among the valueé®2wherei is an integer. We always start by a high valueifand
decrease its value, following the regularization path.tRerpenaltie® , andyg,, the parametey

20. With the non-convex penalties we consider, the estitdétés orthogonal to the residugl— Xw.
21. http://ranger.uta.edu/ ~ huang/R_StructuredSparsity.htm

18

http://ranger.uta.edu/~huang/R_StructuredSparsity.htm

is simply chosen i{1/4,1/2,1,2,4}. Since the algorithm StructOMP is greedy and iteratively in
creases the model complexity, we record every solutionimddaon the regularization path during
one pass of the algorithm. Based on information-theorejoraents Huang et al(2011) propose

a default value for their parametemhich is calibrated to be 1 in their formulation. Since chiagg
this parameter value empirically improves the results iyake try the values(1/4,1/2,1,2,4}
for a fair comparison with our penaltigs;, andyg, .

We report the results for the three graphs, three scenar@doeratingwg, three noise levels
and the five penalties in Figur® We report on these graphs the ratio between the prediction
mean square error and the best achievable error if the gppediern was given by an oracle. In
other words, denoting bw°2% the OLS estimate if an oracle gives us the sparsity patteen, w
report the valug|Xw — Xwg||3/||Xw°%e — Xwp||3. The best achievable value for this criterion is
therefore 1, which is represented by a dotted line on alllggapVe reproduce the experiment 20
times, randomizing every step, including the way the veuwtglis generated to obtain error bars
representing one standard deviation.

We make pairwise comparisons and statistically assessonghusions using error bars or when
needed paired one-sided T-tests with a 1% significance. €&l comparisons are the following:

* convex vs non-convex{p vs (1 and ¢, vs Yg,): For high SNR, non-convex penalties do
significantly better than convex ones, whereas it is therotltay around for low SNRThe
differences highly significant for the grapbsail andPGP. For medium SNR, conclusions
are mixed, either the difference between a convex penattytamon-convex counterpart are
not significant or one is better than another.

* unstructured vs path-coding (o vs ¢, and /1 vs Yg,): In the structured scenarigraph
and path, the structured penaltiegg, and Y, respectively do better thafy and /1. In the
unstructuredflat scenario,?y and ¢; should be preferred.More precisely, for the scenarii
graph andpath, ¢, andWg, respectively outperfornip and/; with statistically significant
differences, except when: (i) for high SNR, bdth, and/, achieve perfect recovery; (i) with
the smallest grapjazz, the p-values obtained to discriminatgg, vs ¢; are slightly above
our 1% significance level. In thigat scenario /g and(l)gp give similar results, whereapgp
performs slightly worse thafy in general even though they are very close.

« Jacob et al.(2009 vs path-coding (b5 with pairs vs Yg,): in the scenarigath, Yg, out-
performsyg (pairs). It is generally also the case in the scenagiaph. The differences are
always significant in the low SNR regime and with the largeapgPGP.

* Huang et al.(201]) vs path-coding (StructOMP vsb;,,Wg,): For the scenarigath, either
¢, (for high SNR) oy, (for low SNR) outperform StructOM#2 For the scenariagraph,
the best results are shared between StructOMP and our pesdédtr high and medium SNR,
and our penalties do better for low SNKore precisely in the scenargsaph: (i) there is no
significant difference for high SNR betwegg, and StructOMP; (ii) for medium SNR, Struc-
tOMP does slightly better with the gratGP and similarly asp; for the two other graphs;
(iii) for low SNR, our penalties do better than StructOMPmwihe two largest graphsmail
andPGP and similarly with the smallest gragwez.

22. Note that the scenarpath is specifically tailored to our path coding penalties.

19

To conclude this experiment, we have shown that our pesatiifer a competitive alternative to
StructOMP and the penalty dfacob et al(2009, especially when the “true” sparsity pattern is
exactly a union of a few path in the graph. We have also idedtififferent noise and size regimes,
where a penalty should be preferred to another. Our expatiaigo shows that having both a non-
convex and convex variant of a penalty can be interestintpWrSNR, convex penalties are indeed
better behaved than non-convex ones, whereas it is thewthyearound when the SNR is high.

graph: jazz, high SNR graph: email, high SNR graph: PGP, high SNR

[Cphi-path
[Mpsi-path
WlstructOMP

flat graph path 0 flat graph path flat graph path
graph: jazz, medium SNR graph: email, medium SNR graph: PGP, medium SNR

flat graph path 0 flat graph path flat graph path
graph: jazz, low SNR graph: email, low SNR graph: PGP, low SNR

graph flat graph path

flat graph path

Figure 4. Every bar represents the ratio between the meamesgtror estimate and the oracle mean
square error estimate (see main text for an explicit fornanié the full experimental setting). The
error bars represent one standard deviation. Each rowspmmnels to a specific noise level, and
every column to a different graph. For a specific noise lemdl specific graph, the results for three
scenarii,flat, graph andpath are reported. Each group of six bars represents the resilsed
with six penalties, from left to rightéo, £1, P (with G being the pairs of vertices linked by an arc),
bg,, Wg, and the method StructOMP. A legend is presented in the toyp figure.

20

4.2 Image Denoising

State-of-the-art image restoration techniques are oftsedbon a good modelization of small image
patches, for instance X0 pixels Elad and Aharon2006 Dabov et al.2007 Mairal et al, 2009.
We consider here the task of denoising natural images deduyy white Gaussian noise, using an
approach introduced bylad and Aharor{200§. It consists of the following steps:

1. extract all overlapping patchég)i—1 . m from a noisy image;

2. compute a sparse approximation of every individual pgch

Tl i i
Z|ly' = Xw'|3 + AQ(w 14
min | S]ly' = Xw3+r2(w)]. (14)
where the matrixX = [x%,...,xP] in R™P is a predefined “dictionary’AQ is a sparsity-
inducing regularization and the tetdw!' is the clean estimate of the noisy patc¢h

3. since the patches overlap, each pixel admits severai@sis. The last step consists of aver-
aging the estimates of each pixel to reconstruct the fulgena

Whereaslad and Aharorf2009 learn an overcomplete basis set to obtain a “good” matrix
in the step2 above, we choose a simpler approach and use an orthogonegtdi€osine trans-
form (DCT) dictionaryX (Ahmed et al. 1974 for which there exists a natural directed acyclic
graph structure. Such dictionary is classically used inrttege processing literature (se&ad and
Aharon 2006; We present such a dictionary in Figusdor 8 x 8 image patche§® DCT elements
can be organized on a two-dimensional grid and ordered bigdmial and vertical frequencies.
We use the DAG structure presented in Fighi@nnecting neighbors on the grid, going from low
to high frequencies. Note that since the diction&rys orthogonal, the non-convex problems we
address here are solved exactly. The experiment is intetlodzdtress the following questions:

(A) Interms of optimization, is our approach efficient for thigperiment?Because the number
of problems to solve is large (several millions), the tastiffcult.

(B) Do we get better results by using the graph structure thah eldassical/p- and/1-penalties?
(C) How does the method compare with the state of the art?

Since the dictionarx in R™P is orthogonal, it can be shown that Equatidd)(is equivalent to

min [S1X7Y —wi[g+raw)].
and therefore the solution admits a closed favih2 Prox,o (X 'y'), which we know how to com-
pute wherQ is thelo, /1, ¢ 5, or Y, penalties. Fofp and/y, the solution is indeed respectively ob-
tained by hard and soft-thresholding, and we have intradigsoene tools in Sectiodto compute the
proximal operators of 5, andyis,. We considee x eimage patches, wita€ {6,8,10,12, 14,16},
and a parametex on a logarithmic scale with steg’8. We also exploit the variant of our penalties
presented in Sectiokthat allows choosing the costs on the arcs of the gfaphVe choose here a

23. Note that an overcomplete DCT dictionary is already @sed baseline bi¢lad and Aharor2009.

21

Figure 5. Orthogonal DCT dictionary with= 8 x 8 image patches. The dictionary elements are
organized by horizontal and vertical frequencies.

small cost on the ar(s, 1) of the graphG’, and a large one for every afs, j), for j in {2,...,p},
such that all paths selected by our approach are encouragedrt by the variable 1 (equivalently
the dictionary element® with the lowest frequencies). We use a dataset of 12 cld$sgtaquality
images (uncompressed and free of artifact). We optimize#nameterd ande on the first 3 im-
ages, keeping the 9 last images as a test set and reportidgn@sults on Tabld. Even though
this dataset is relatively small, it is relatively standarthe image processing literature, making the
comparison easy with competitive approactfes.

We start by answering questigA): we have observed that the time of computation depends on
several factors, including the problem size and the spap$ithe solution (the sparser, the faster).
In the settingo =10 ande=8 we were able to denoise approximately 4000 patches pendeco
using¢g,, and 1800 in the setting=50 ande= 14 with our laptop 1.2Ghz CPU (core i3 330UM).
The penaltydg, requires solving quadratic minimum cost flow problems, ared wlower to use
in practice: The numbers 4000 and 1800 above respectivelgnbe 70 and 130. Our approach
with ¢ 5, proves therefore here to be fairly efficient for our taskowlhg us to process an image
with about 250000 patches in between one and three minutes.

Moving now to questiorfB), the best performance among the penaltigg;, ¢ 5, andg, was
obtained byd,. This difference is statistically significant: We measuve ihstance an average
improvement of B8+ 0.21 dB over{y for o > 20. For this denoising task, it is indeed typical
to have non-convex penalties outperforming convex ones N&gral, 201Q Section 1.6.5, for a
benchmark betweeéy and/1-penalties), and this is why the original methodedéd and Aharon
(2009 uses thep-penalty. Interestingly, this superiority of non-conveanglties in this denoising
scheme based on overlapping patches is usually only olukafier the averaging st€p When one
considers the quality of the denoising of individual pahathout averaging—that is, after stp
opposite conclusions are usually drawn (see alyiimal, 201Q Section 1.6.5). We therefore report

24. This dataset can be found for examplé/airal et al.(2009.

22

o | 5 | 10 | 15 | 20 | 25 | 50 | 100 |
Our approach

lo 37.04| 33.15| 31.03| 29.59| 28.48| 25.26 | 22.44
{1 36.42| 32.28| 30.06 | 28.59| 27.51| 24.48| 21.96
bg, 37.01| 33.22| 31.21| 29.82| 28.77| 25.73 | 22.97
W, 36.32| 32.17| 29.99| 28.54| 27.49| 24.54 | 22.12

State of the art approaches
Portilla et al, 2003(GSM) 36.96| 33.19| 31.17| 29.78| 28.74 | 25.67 | 22.96
Elad and Aharon2006(K-SVD) | 37.11| 33.28 | 31.22| 29.81| 28.72| 25.29| 22.02
Dabov et al.2007(BM3D) 37.24| 33.60| 31.68| 30.36| 29.36| 26.11| 23.11
Mairal et al, 2009(LSSC) 37.29| 33.64| 31.70| 30.36| 29.33| 26.20| 23.20

Table 1: Denoising results on the 9 test images. The numbergsent the average PSNR in dB
(higher is betterf® Pixel values are scaled between 0 and 255 arfthe standard deviation of
the noise) is between 5 and 100. The top part of the table miesiee results of the denoising
scheme we have presented with different penalties. Theragbart presents the results obtained
with various state-of-the-art denoising methods (see iteainfor more details). Best results are in
bold for both parts of the table.

mean-square error results for individual patches witheetaging in Table2 whene = 10. As
expected, the penalty g, turns out to be the best at this stage of the algorithm.

We also present the performance of state-of-the-art imageising approaches in Tableto
address questiofC). We have chosen to include in the comparison several methatibave suc-
cessively been considered as the state of the art in the phesiGaussian Scale Mixture (GSM)
method ofPortilla et al.(2003, the K-SVD algorithm ofElad and Aharon2006, the BM3D
method ofDabov et al.(2007) and the sparse coding approachMdiral et al.(2009 (LSSC). We
of course do not claim to do better than the most recent appesaofDabov et al(2007) or Mairal
et al.(2009 which in addition to sparsity exploit non-local self sianities in imagesBuades et a|.
2005. However, given the fact that we use a simple orthogonal @d€lionary, (unlikeElad and
Aharon (2009 who learn overcomplete dictionaries adapted to the imamge&)approach based on
the penalty¢ g, performs relatively well. We indeed obtain similar reswdsElad and Aharon
(2006 andPortilla et al.(2003 which were the state of the art for image denoising a fews/agpo,
and show that structured parsimony could be a promisingitidatage processing.

4.3 Breast Cancer Data

One of our goal was to develop algorithmic tools improving #pproach ofacob et al(2009. It

is therefore natural to try one of the dataset they used taimlain empirical comparison. On the
one hand, we have developed tools to enrich the group steutitat the penalty; could handle,
and thus we expect better results. On the other hand, thé grdbis experiment is undirected and
we need to use heuristics to transform it into a DAG.

25. One possible explanation of the bad results obtainedbyex penalties after the averaging step could possibly be
due to the shrinkage effect of these penalties. It seemshaathrinkage is helpful for individual patches, but hurts
after the averaging process.

23

| o | 5] 10 [15 | 20 | 25 | 50 | 100 |
o |3.60]10.00| 16.65| 23.22| 29.58| 57.97 | 95.79
(, | 2.68] 7.65 | 13.42] 19.22] 25.23| 52.38] 87.90
dg, | 3.26| 8.36 | 13.62] 18.83| 23.99| 47.66| 84.74
Wg, | 266 7.27 | 12.29] 17.35] 22.65| 45.04] 76.85

Table 2: Denoising results for individual 2010 image patches on the 9 test images. The numbers
represent mean-squared error for the image patches (lbedetter). Best results are in bold.

We use in this task the breast cancer datasefamf De Vijver et al.(2002. It consists of
gene expression data from 8141 genes4n295 breast cancer tumors and the goal is to classify
metastatic samples versus non-metastatic. Followampb et al(2009, we use the gene network
compiled byChuang et al(2007), obtained by concatenating several known biological neta: As
argued bylacob et al(2009, taking into account the graph structure into the regeddion has two
objectives: (i) possibly improving the prediction perf@ante by using a better prior; (ii) identifying
connected subgraphs of genes that might be involved in thasta¢ic form of the disease, leading
to more interpretable results than the selection of isdlgtenes. Even though prediction is our
ultimate goal in this task, interpretation is equally imjaott since it is necessary in practice to
design drug targets. In their papdgcob et al(2009 did succeed in the sense that their penalty
was able to extract more connected patterns thaitihegularization, even though they could not
statistically assess significant improvements in termgrediption. FollowingJacob et al(2009,
we also assume that connectivity of the solution is an assehterpretability. The questions we
address here are the following:

(A) Despite the heuristics described below to transform th@kyiato a DAG, does our approach
lead to well connected solutions in the original (undireltgraph? Do our penalties lead to
better connected solutions than other penalties?

(B) Do our penalties lead to better classification performarttantlacob et al(2009 and other
classical unstructured and structured regularizationdtions? Is the graph structure useful
to improve the prediction? Does sparsity help prediction?

(C) How efficient is our approach for this taskPhe problem here is of medium/large scale but
should be solved a large number of times (several thousdriosas) because of the internal
cross validation procedure.

The graph of genes, which we denote ®y, contains 42587 edges, andJob et al(2009, we
keep thep=7910 genes which are presentGg. In order to obtain interpretable results and select
connected components &, Jacob et al(2009 have used their structured sparsity penalty
where the groupsg; are all pairs of genes linked by an arc. Our approach reqail28G, but we
will show in the sequel that we nevertheless obtain goodtseatter heuristically transforminGg

into a DAG. To do so, we first treddy as directed by choosing randomly directions on the arcs,
and second remove some arcs along cycles in the graph. ltsréswa DAG containing 33303
arcs, which we denote bg. This pre-processing step is of course questionable simcpanalties
are originally not designed to deal with the gra@h. We of course do not claim to be able to
individually interpret each path selected by our method, &s we show, it does not prevent our
penaltiesh g, andyg, to achieve their ultimate goal—that is connectivity in thigimal graphGeo.

24

We consider the formulatiorL) whereL is a weighted logistic regression loss:

n

L(w) = Zx =l log(1+e W *),

where they;’s are labels in{—1,+1}, thexj’s are gene expression vectorsi®. The weightn;

is the number of positive samples, whereag the number of negative ones. This model does not
include an intercept, but the gene expressions are cent€hedregularization functions which are
included in the comparison are the following:

* our path-coding penaltiesg, andyg, with the weightsg defined in 7)
the squared,-penalty (ridge logistic regression);

the/1-norm (sparse logistic regression);

the elastic-net penalty @fou and Hasti€2005, which has the formv — ||w||1 + (1/2) ||w||3,
wherep is an additional parameter;

the penaltyy; of Jacob et ali2009 where the groupsg; are pairs of vertices linked by an arc;

a variant of the penalty; of Jacob et al(2009 whose form is given in EquatioriLf) of
AppendixB, where the/>-norm is used in place of thi,-norm;

the penalty(; of Jenatton et a{201]) given in AppendixA where the groups are all pairs of
vertices linked by an arc;

the penalty(; of Jenatton et a(2011) using the group structure adapted to DAGs described
in Appendix A. This penalty was empirically problematic to use directlyhe number of
groups each variable belongs to significantly varies fronadable to another, resulting in
overpenalization for some variables and underpenalizdtiosome others. To cope with this
issue, we have tried different weighting strategies to skdbe weights)q for every group in
the penalty (similarly as those describedJgnatton et al. 20),1but we have been unable to
obtain sparse solutions in this setting (typically the fgreelects here more than a thousand
variables). A heuristic which has proven to be much bett¢o isdd a weighted;-penalty

to {s to correct the over/under-penalization issue. Denotingafeariablej in {1,...,p}

by d; the number of groups the variabjebelongs to—in other wordd; = Ygegigsj 1 we
add the tern P_, (maxcdk — d;)|w;| to the penalty ;.

The parametel in Eq. (1) is chosen on a logarithmic scale with stepé*2 The elastic-net pa-
rametery is chosen in{1,10,100}. The parametey for the penaltieshg, and Y, is chosen

in {2,4,8,16}. We proceed by randomly sampling 20% of the data as a teskeseping 80%
for training, selecting the parameterqy y using internal 5-fold cross validation on the training set,
and we measure the average balanced error rate betweendlotasses on the test set. We have
repeated this experiment 20 times and we report the averagatis in Table.

We start by answering questigf). We remark that our penaltigs;, andy g, succeed in select-
ing very few connected components@g, on average .B for Y, and 16 for ¢ 5, while providing
sparse solutions. This significantly improves the conmitgtdf the solutions obtained using the
approach oflacob et al(2009 or Jenatton et a2011). To claim better interpretable results, one
has of course to trust the original graph. J&ob et al(2009, we assume that connectivity @y is
a good prior information. We also study the effect of the ppepssing step we have used to obtain

25

a directed acyclic grap& from Go. We report in the row 5 -random” in Table3 the results we
obtain when randomizing the pre-processing step betweety @xperimental run (providing us a
different graphG for every run). We observe that the outco&oes not significantly change the
sparsity and connectivity i, of the sparsity patterns our penalty select.

As far as the prediction performance is concerned, our pengj), seems to be the only one
that is able to produce sparse and connected solutions pioigding a similar average error rate
as thel;-penalty. The non-convex penalfy;, produces a very sparse solution which is connected
as well, but with an approximately 6% higher classificatioerate. Note that because of the high
variability of this performance measure, clearly assestie statistical significance of the observed
difference is difficult. As it was previously observedJgcob et al(2009, the data is very noisy and
the number of samples is small, resulting in high variapilas Jacob et al(2009, we have been
unable to test the statistical significance rigorously-tthawithout assuming independence of the
different experimental runs. We can therefore not clearly answer the first part of queBynThe
second part of the question is however more clear: neittasip, nor the graph structure seem to
help prediction in this experiment. We have for exampledti® use the same gragh but where
we randomly permute the predictors (genes) at every run, making the graph struatwlevant to
the data. We report in Tableat the row 5, -permute” the average classification error rate, which
is not significantly different than without permutation.

Our conclusions about the use of structured sparse estimiati this task are therefore mixed.
On the one hand, we are able to select a well connected spaasiern which is good for the inter-
pretability of the results (assuming the original graphutide trusted). On the other hand, none
of the tested method was shown to statistically do betterediption than simple ridge regulariza-
tion.?® Another question we would like to investigate is the stapjtiroperties of the selected spar-
sity patterns, which is often an issue with features salaatiethodsleinshausen and Bithimann
2010. By introducing strong prior knowledge in the regulariaat structured sparse estimation
seems to provide more stable solutions tlianFor instance, 5 genes are selected/byn more
than half of the experimental runs, whereas this number &ntid14 for the penalties dacob et al.
(2009, and 33 fonyg,. Whereas we believe that stability is important, it is hogrelvard to claim
direct benefits of having a “stable” penalty without furtlsudy. By encouraging connectivity of
the solution, variables that are highly connected in the@lytend to be more often selected, im-
proving stability of the solution, but not necessarily th&erpretability in the absence of biological
prior knowledge that prefers connectivity.

In terms of computational efficiency of our implementatioomputing one proximal operator
of g, for the selected parameters was relatively fast, appraeiyn®.17 seconds on a.2GHz
laptop cpu (Intel core i3 330UM), but tends to be significarslower when the solution is less
sparse, for instance with small values far Since solving an instance of probler) fequires
computing about 500 proximal operators to obtain a readprmbcise solution, our method was
fast enough to conduct this experiment in a reasonable anobtime.

27. Pairwise T-tests would suggest that our penalties dofsigntly better tharf1 or the approach afacob et al(2009.
However, a T-test requires independence of the experimemts, which would be a wrong assumption here.

28. This is due in part to the fact that statistical testindificult here, because of few samples and a lot of noise m thi
dataset.

26

| test error (%)| sparsity| connected components

I 310+6.1 7910 58
01 36.0+6.5 326 309
02+ 101 315+6.7 9296 3552
Jacob et al(2009-/., 359+6.8 684 132
Jacob et al(2009-/, 36.0+7.2 585 111
Jenatton et al2017) (pairs) 345+5.2 334 288
Jenatton et al2011) (DAG)+weighted/; 356+7.0 54.6 284
bg, 36.0+6.8 102 16
Vg, 30.2+6.8 69.9 13
Pg,-permute 332+76 1432 17
Yg,-random 31.6+6.0 785 14

Table 3: Experimental results on the breast cancer datésete Vijver et al, 2002 for different
penalties. Column “test error”: average balanced classifin error rate on the test set in percents
with standard deviations; the results are averaged oveurZdand the parameters are selected for
each run by internal 5-fold cross validation (see main textetails). Column “sparsity”: average
number of selected genes. Column “connected componenatage number of selected connected
components irG.

5. Conclusion

Our paper proposes a new form of structured penalty for sigset learning problems where pre-
dicting features are sitting on a DAG, and where one wisha@sitomatically select a small number
of connected subgraphs of the DAG. The computational féigibf this form of penalty is estab-
lished by making a new link between supervised path selegioblems and network flows. Our
penalties admit non-convex and convex variants, which eansed within the same network flow
optimization framework. These penalties are flexible ingbiase that they can control the connec-
tivity of a problem solution, whether one wishes to encoaragge or small connected components,
and are able to model long-range interactions betweenblasia

Some of our conclusions show that being able to provide bathaonvex and convex variants of
the penalties is valuable. In various contexts, we have bb&nto find situations where convexity
was helpful, and others where the non-convex approach wealdl to better solutions than the
convex one. Our experiments show that when connectivity sibasity pattern is a good prior
knowledge our approach is fast and effective for solvinfedént prediction problems.

Interestingly, our penalties seem to empirically perforrallvon more general graphs than
DAGs, when heuristically removing cycles, and we would lik¢he future to find a way to better
handle them. We also would like to make further connectioitlk image segmentation techniques,
which exploit different but related optimization technégu(sedBoykov et al, 2001, Couprie et al.
2011), and kernel methods, where other type of feature problen®AiGs occur Bach 2008.%°

29. The hierachical kernel learning (HKL) problemEdich (2008 involves features organized in a DAG. However, the
purpose of the regularization in HKL is not to induce coniwityt of a sparsity pattern, but to select a feature if and
only if all its ancestors in the DAG are selected as well. Thistype of sparsity similar to the sparsity regularization
for trees ofZhao et al(2009.

27

Acknowledgments

This paper was supported in part by NSF grants SES-08355@E-@©39370, DMS-1107000,
DMS-0907632, and by ARO-W911NF-11-1-0114. Julien Mairald like to thank Laurent Ja-
cob, Rodolphe Jenatton, Francis Bach, Guillaume Obozes#iGuillermo Sapiro for interesting
discussions and suggestions leading to improvements ofrtanuscript, and his former research
lab, the INRIA WILLOW and SIERRA project-teams, for lettitgm use computational resources
funded by the European Research Council (VideoWorld and&spgojects). He would also like to
thank Junzhou Huang for providing the source code of hiscBIMP software.

Appendix A. The Penalty of Jenatton et al.(2011) for DAGs

The penalty oflenatton et al(2011) requires a pre-defined set of possibly overlapping gragips
and is defined as follows:

ZgwW) 23 ngliwgly. (15)
9eg

where the vectowy in R!9 records the coefficients af indexed byg in G, the scalars\y are
positive weights, and typically equals 2 ore. This penalty can be interpreted as thenorm of
the vector[ng||wy|lv]ge g, therefore inducing sparsity at the group level. It extethe@sGroup Lasso
penalty Turlach et al, 2005 Yuan and Lin 2006 by allowing the groups to overlap.

Whereas the penalty; of Jacob et al(2009 encourages solutions whose set of non-zero
coefficients is ainion of a few groups, the penal§; promotes solutions whose sparsity pattern is
in theintersectionof some selected groups. This subtlety makes these twodfrvesrk significantly
different. It is for example unnatural to use the pendlgyto encourage connectivity in a graph.
When the groups are defined as the pairs of vertices linkechlyr@ it is indeed not clear that
sparsity patterns defined as the intersection of such gneapkl lead to a well connected subgraph.
As shown experimentally in Sectighthis setting indeed performs poorly for this task.

However, when the graph is a DAG, there exists an appropyratep settingG when the spar-
sity pattern of the solution is expected to be a single caigezomponent of the DAGet us indeed
define the groups to be the sets of ancestors, and sets ohdeste for every verteX. The cor-
responding penalty; encourages sparsity patterns which are intersectionsoofgrin G, which
can be shown to be exactly the connected subgraphs of the®AGis penalty is tractable since
the number of groups is linear in the number of vertices, buitaon as the sparsity pattern of the
solution is not connex (contains more than one connectecgponant), it is unable to recover it,
making it useful to seek for a more flexible approach. For gn@up structureg, the penalty(s
also suffers from other practical issues concerning thepavalization of variables belonging to
many different groups. These issues are empirically dimin Sectionrl on concrete examples.

30. The set of descendents of a vertex a DAG are defined as all verticesuch that there exists a path franto v.
Similarly the set of ancestors contains all vertices suahttiere is a path fromto u.

31. This setting was suggested to us by Francis Bach, Roeldgatatton and Guillaume Obozinski in a private discussion.
Note that we have assumed here for simplicity that the DAGimected—that is, has a single connected component.

28

Appendix B. Links BetweenHuang et al. (2011) and Jacob et al.(2009

Similarly as the penalty of ; of Huang et al(2011), the penalty oflacob et al(2009 encourages
the sparsity pattern of a solution to be the union of a smatilmer of predefined groups. Unlike
the function g, it is convex (it can be shown to be a norm), and is defined émfel

W;(w) £ min { > ngll&h st.w= 3 & and Vge G, Supre®) gg}, (16)

(ERP)ocq | gy 4G

where||.||y typically denotes thé;-norm @ =2) or £,-norm (@ =c0).>? In this equation, the vectav
is decomposed into a sum of latent vect§fsone for every groug in G, with the constraint that
the support of? is itself in g. The objective function is a Group-Lasso penalygn and Linp
2006 Turlach et al. 2005 as presented in Equationd) which encourages the vectot$ to be
zero. As a consequence, the supponva$ contained in the union of a few grouggorresponding
to non-zero vectorg?, which is exactly the desired regularization effect. We rgive a proof of
Lemmal relating this penalty to the convex relaxationdaf given in Equation) whenv = .
Proof. We start by showing thap’g is equal to the penalty defined in Equationd) on]Riﬁ. We

consider a vectow in Rﬂ and introduce for all groupgin G appropriate variable&® in RP. The
linear program defining); can be equivalently rewritten

Ygw)= min <n'x st > &9 =w, Nx > > &andvge G, Sup&®) C gy,
xeR | g9eg 9eqG
(EgGRp)geg

where we use the assumption that for all veetdn R, there exist vectorg® such thafy o ; €% =
w. Let us consider an optimal p&x, (§%)geg). For all indicesj in {1,..., p}, the constrainNx >
Y geg &° leads to the following inequality

> %EH+ Y x-§=0

EYR 3 93X <&}

rJ*zO 1, <0

wherexgy denotes the entry of corresponding to the group and two new quantitiefsfr andt; are
defined. For alfyin G, we define a new vect@® such that for every paif, j) in G x {1,...,p}:

1 ifj¢gEl2o;

2. if j € gandxg > &, then&? £ x;;

+
3. if j € gandx, < &, theng? £ & — (g — &)L
Note that if there exist§ andg such thatg < &, thent; is nonzero and the quantitj/Tj‘ is well
defined. Simple verifications show that for all indigei® {1,..., p}, we havey - Xg — E’jg = TJ-+ +

T, = Sgj% — &}, and thereforg o &9 = 5. - £ = w. The pair(x, (§9)4c) is therefore also

32. Note that in factJacob et al(2009 do only consider the case=2 in their paper.

29

optimal. In addition, for all groupgin G and indexj in {1,..., p}, itis easy to show thag; — E’jg >0
and that we have at optimality si@f) = sign(w;) = 1 for any nonzerti?. Therefore, the condition
1€9]|. < Xq is satisfied, which is stronger than the original constrhint> zgegi’g. Moreover, it

is easy to show thal&'?||. is necessary equal iq at optimality (otherwise, one could decrease the
value ofxg to decrease the value of the objective function). We can mowite (W) as

Wg(w) = {(min % ngl&%. st. 5 &9=w, andvge G, Supf&’) Qg},

FeRgcg 4 4y

and we have shown thql’g =g on Rﬁ. By noticing that in Equationg) a sqution(Eg)geg nec-
essary satisfies sig&?) = sign(w;) for every groupg and indexj such thai.‘ZJg =# 0, we can extend
the proof fromR” to RP. u

Appendix C. Interpretation of the Weights ng with Coding Lengths

Huang et al(2011) have given an interpretation of the penajty defined in Equation4) in terms
of coding length. We use similar arguments to interpret tathqgoding penaltyp, from an
information-theoretic point of view. For appropriate wetigng, the quantityd;,(w) for a vec-
tor w in RP can be seen as a coding length for the sparsity pattem—efthat is, the following
Kraft-MacMillan inequality (see€Cover and Thoma006§ MacKay, 2003 is satisfied:

2-%6p(9 < 1. a7
sefoyp

It is indeed well known in the information theory literatuieat there exists a binary uniquely de-
codeable code ove0, 1}P with code lengthp g, (S) for every patterr§in {0, 1}P if and only if the
above inequality is satisfied (s&@over and Thoma006. We now show that a particular choice
for the weightag leads to an interesting interpretation.

Let us consider the grap@’ with source and sink verticesandt defined in Sectior8. We
assume that a probability matrix transitioiu,v) for all (u,v) in E’ is given. With such matrix
transition, it is easy to obtain a coding length for the sgiathsGy:

Lemma 3 (Coding Length for Paths.)
Let cly for a path g= (v1,...,W) in Gp be defined as

k-1
clg £ —log,T(s,v1) — (leog2 n(vi,vi+1)> —log, (Vi t).
i=

Then ¢} is a coding length org,.

Proof. We observe that for every patl, ...,) in G, corresponds a unique walk of leng¥f| of
the form(s,vy,...,Vp,t,t,...,t), and vice versa. Denoting by (s,t) the probability that a Markov
chain associated to the probability transition matristarting at the vertex is at the vertex at
timet, it is easy to show that

and therefore glis a coding length o). [

the term—log, 11(s,v1) represents the number of bits used to indicate that agathrts with the
vertex vi, whereas the bits corresponding to the term®g, (i, Vi+1) indicate that the vertex
following v is vi+1. The bits corresponding to last termlog, T(vi, t) indicate the end of the path.
To define the weightgg, we now define the following costs:

c é{ 1-log,m(u,v) ifu=s
W —log,m(u,v) otherwise.

The weightng therefore satisfiegg = ¥ (,v)ce’ Cuv = Clg + 1, and as shown biiuang et al(2011),
this is a sufficient condition fap g, (w) to be a coding length fof0, 1}P.

We have therefore shown that (i) the different terms conqapie weights)y can be interpreted
as the number of bits used to encode the paths in the grapli; i§ipossible to use probability
transition matrices (or random walks) on the graph to dessigrweights.

Appendix D. Proofs of the Propositions
D.1 Proofs of Propositionsl and 2

Proof. We start by proving Proposition Let us consider the alternative definitiondaf, given in
Equation §). This is an optimization over all paths @, or equivalently alls,t)-paths inG’ (since
these two sets are in bijection). We associate to a vecior{0,1}P a flow f on G/, obtained by
sending one unit of flow on evelg,t)-pathg satisfyingxd = 1 (X9 denotes the entry of associated
to the group/patig). Each of thesés, t)-path flow has a cosfy and the total cost of is exactlyn " x.

We also observe that within this network flow framework, tleastraintNx > Supgw) in
Equation b), is equivalent to saying that for ajlin {1,..., p}, the amount of flow going through
the vertexj (denoted bys;(f)) is greater than one if/; # 0. We have therefore shown thiag, (w)
is the minimum cost achievable by a fldwsuch that the constraisf(f) > 1 is satisfied for alfj in
Supgw) and such that can be decomposed into bingiyt)-path flows.

To conclude the proof of Propositidny we show that there exists an optimal flow which admits
a decomposition into binargs,t)-path flows. We notice that all arc capacities in Equati®nafe
integers. A classical resulAfuja et al, 1993 Theorem 9.10) says that there exists an optimal
integer minimum-cost flow (a flow whose values on arcs areyar®. We denote by such a so-
lution. Then, the flow decomposition theoreBeftsekas1998 Proposition 1.1) tells us thdtcan
be decomposed int@,t)-path flows, but it also says that ffis integer, therf can be decomposed
into integer(s,t)-path flows3* We conclude the proof by noticing that sending more than ariie u
of flow on a path is not optimal (one can reduce the cost by sgnalnly one unit of flow, while
keeping the capacity constraints satisfied), and therdfae exists in fact a decomposition bf
into binary (s,t)-path flows. The quantity presented in Equatiéhi¢ therefore equal td g, (w).

The proof of Propositior2 builds upon the definition ap; given in Equation) and is similar
to the one of Propositiof. [|

33. To be more precise, this theorem tells us that a flow veetorbe decomposed betwest)-path flows and cycle
flows (units of flow sent along a cycle in the graph). Howeve,ake dealing here with acyclic graphs. This point is
one of the difficulties to extend our framework to graphs weithles.

31

D.2 Proof of Proposition 3

Proof. Using the definition of the proximal operator in Equatié?) é&nd the definition ofp; in
Equation b), there exists a patter@in {0,1}P such that the solutiow™ of the proximal problem
satisfies for allj, wj = uj if jis in S andwj = 0 otherwise. We therefore rewrite Equatid), (
using the result of Propositich

. 1 2 .
Se{oT}lngey { 5 jgsuj + (u.\;eE' fuwCuw S.t. 5(f) >1LVje S}.
When Sis fixed, minimizing the above expression is a minimum cost fiwoblem with integer
capacity constraints. Thus, there exists an integer flowtisol, and we can, without loss of gen-
erality constrainf to be integer, and replace the constraigtsf) > 1 by s;(f) > 0. After this
modification, forf is fixed, minimizing with respect t& gives us the following closed form: for
all jin{1,...,p}, § =1if sj(f) > 0 and 0 otherwise. With this choice f& we have in addi-
tion zj¢su12 = zf’zl maX(sz(l—Sj(f)),O), and denoting byfi: the set of integer flows, we can
equivalently rewrite the optimization problem

b1
min fuvCuv + —max(uz(l—sj(f)),o)}.
fefim {(U,\;EE’]Zl 2 J

It is easy to transform this minimum cost flow problem withqaeise linear costs to a classical
minimum cost flow problem (seBertsekas1998 Exercise 1.19) with integral constraints. There-
fore, it is possible to remove the constraine %, and replace it byf € F without changing the
optimal value of the cost function, leading to the formwatproposed in Equatiori (). [|

D.3 Proof of Proposition 4

Proof. Without loss of generality, let us suppose thas in]Riﬁ.34
According to Propositior2, we can write the proximal problem as

. 12) _
min = Uy —w;)“+ f s.t.si(f) >wj,Vje{l,..., .
weR&fef{Zgl(J i) (mgeE’ uvCuv i(F) >wj,vje{ p}}

Whenf is fixed, minimizing with respect tw yields for all j, wj = min(uj,s;j(f*)). Plugging this
closed form in the above equation yields the desired fortimula |

D.4 Proof of Proposition5

Proof. We recall that according to Lemmiawe have for alv in R :

Wg, (W) = min {nTx s.t. Nxzw}.

G
xeR!9P

34. Letus denote by* £ Proxy,, [u]. Itis indeed easy to see that the signs of the entries"aire necessary the same
as those ofu, and flipping the signs of some entrieswfesults in flipping the signs of the corresponding entries
inw*.

32

This is a linear program, whose dual (9¢ecedal and Wright2009 gives us another definition
for Yg, on]Riﬁ. Since strong duality holds here, we have

Wg, (W) = max{WTK st.N'k< n}.

keRP

It is easy to show that one can extend this definitiolR@rsuch that we have

T [IKgll2
wW)=maxqw K S.t. max——= <1;. 18
b, () = maxfwc st mand Ol < (18)
wherekg denotes the vector of sizg| containing the entries & corresponding to the indices in the
groupg. Note that a similar formula appears ira¢ob et a).2009 Lemma 2), when thé,-norm is
used in place of thé,. We now define for a vectar in RP,

* ”Kg”l

P (K) £ max—1=.

gp() geGp Mg
Itis easy to see that it is a norm, and by Equatib) (this is in fact the dual norm of the nonr .
We can now rewrite it as

) . [IKgll2 }
K)=min{T s.t. max—— <71,
Vg, (K) Teﬂh{ e =
. K
= min {r s.t. maxH oll Ng < O},
TeRy gegp T
=min< T s.t. minl >0
re]lh{ 9€Gp T(g) - }’
where we have identified the groupsgi to their correspondings, t)-paths inG'. [|

D.5 Proof of Proposition 6

Proof.

Correctness:

We start by showing that when the algorithm converges, urnst the correct solution. We re-
mark that the choice of in the algorithm ensures that there always exists a gfoup G, such
thatl;(h) = 0 and therefore we always hage< 0. Therefore, when the algorithm convergés,
is equal to zero. Moreover, the functi@: T — minncg, I:(h) is non-increasing with since the
functionst — I;(h) are themselves non-increasing fortalh G,. Itis also easy to show that there
exists a unique such thaiG(t) = 0, which is the desired solution. We conclude by noticing #éta
convergence, we havg(t) =6 =0.

Convergence and complexity:

We now show that the algorithm converges and give a worg-casplexity (which is not neces-
sarily tight). We denote by, gk and &g the respective values afg andd at the iteratiork of the
algorithm. The definition of, ; implies that

11
1 (00) = 0= I (0 + kg (- —).
v Tk Tk
x<0
—0k>0

33

Moreover,

1 1
B2 = lyeps (G 1) = I (1) + Hng“Hl(T_k N E>

Sincely, (gk+1) > Ok (O is the length of the shortest path), we can show that

K
6k+1 Z 6k(1_ H gk+1||1)‘
[Kgill2

Sincedy1 < 0, we remark that necessarilkg, ., ||1 < ||Kg|/1, @and we have two possibilities

1. either||Kg,,, ||1 = ||Kg, /|1 @nddx,1 = O, meaning that the algorithm has converged.

2. either||Kg,,|l1 < ||Kg|/2 @and it is easy to show that is implies thgj,,, < ng,.

Sincenn = y+ |h|, we obtain thang, is strictly decreasing with before the convergence of the
algorithm. Since it can have at mgsdifferent values, the algorithm converges in at mp#era-
tions. Updating the path in the algorithm can be done by solving a shortest path pnolihethe
graphG’, which can be done i®(p) operations since the graph is acyclih(ja et al, 1993, and
the total worst-case complexity &(p?), which concludes the proof. |

D.6 Proof of Proposition7

Proof. We denote by the quantityk = OL(w), and respectively big andw the vectors recording
the entries ok andw that are inV.

Convergence of the algorithm:

Convergence of the algorithm is easy to show and consistissafreing thats is strictly increasing.
After solving subproblemi(3), we have from the optimality conditions of Lemmehattp*ép(r?) <A.
By definition of the dual-norm given in Propositi@and using the same notation we have that for
allgin ép, [»(g) > 0. We now denote by the quantityt = lIJ*gp(K), if T <A, the algorithm stops.
If not, we have that for aly in Gp, lx(g) > 0 (sincet > A andly(g) > 0 for all g in Gp). The step
g« arg mirbegp l:(g) then selects a groug such that(g) = 0 (which is easy to check given the
definition of yj; in Proposition5. Therefore, the selected paghis not in G, and the size ofs
strictly increases, leading to convergence of the algarith

Correctness:

We want to show that when the algorithm stops, it returns tineect solution. First, if we havé =

G, it is trivially correct. If it stops withG # G, we have thalL|J*gp(K) < A, and according to

Lemma2, we only need to check thatk'w = A, (w). We remark that we haviy, (w) <
Awép(w) = kK'W=—-k'w< l]J*gp(K)lngp(W),Whel’e the first inequality is easy to show when ob-
serving thatg, C Gp, and the last inequality is the generalized Holder ineiguédr a norm and its
dual-norm. Sinca:jJ*gp(K)ngp (W) <Agg,(w) we have in fact equality, and we conclude the praibf.

References

N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine taansflIEEE Transactions on Comput-
ers C-23(1):90-93, 1974.

34

R.K. Ahuja, T.L. Magnanti, and J.B. OrlilMletwork Flows Prentice Hall, 1993.

R.K. Ahuja, D.S. Hochbaum, and J.B. Orlin. Solving the congest integer dual network flow
problem.Management Sciencd9(7):950-964, 2003.

H. Akaike. Information theory and an extension of the maximlikelihood principle. InSecond
International Symposium on Information Theovglume 1, pages 267-281, 1973.

F. Bach. Exploring large feature spaces with hierarchiaalkipie kernel learning. IrAdvances in
Neural Information Processing Systems (NIFPZR)08.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optinopatvith sparsity-inducing penalties.
Foundation and Trends in Machine Learning1-106, 2012.

A. Barron, J. Rissanen, and B. Yu. The minimum descriptimgtle principle in coding and model-
ing. IEEE Transactions on Information Theo#4(6):2743—-2760, 1998.

A. Beck and M. Teboulle. A fast iterative shrinkage-thrddimag algorithm for linear inverse prob-
lems. SIAM Journal on Imaging Sciengex1):183—-202, 2009.

D.P. BertsekasNetwork Optimization: Continuous and Discrete Modeéishena Scientific, 1998.

T. Blumensath and M.E. Davies. lterative hard thresholdorgcompressed sensind\pplied and
Computational Harmonic Analysi27(3):265-274, 2009.

M. Bogufia, R. Pastor-Satorras, A. Diaz-Guilera, and fenas. Models of social networks based
on social distance attachmethysical Review E70(5):056122, 2004.

S. P. Boyd and L. Vandenbergh€onvex OptimizationCambridge University Press, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate enengjyimization via graph cutslEEE
Transactions on Pattern Analysis and Machine Intelliger&$11):1222-1239, 2001.

A. Buades, B. Coll, and J.M. Morel. A review of image denajsalgorithms, with a new one.
SIAM Multiscale Modelling and Simulatipr(2):490, 2005.

V. Cehver, M. Duarte, C. Hedge, and R. G. Baraniuk. Sparsebkigcovery using Markov random
fields. InAdvances in Neural Information Processing Systems (N F®)8.

A. Chambolle and J. Darbon. On total variation minimizatmm surface evolution using parametric
maximal flows.International Journal of Computer Visip84(3):288—-307, 2009.

S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decontipasby basis pursuit. SIAM
Journal on Scientific Computin@0(1):33-61, 1999.

X. Chen, Q. Lin, S. Kim, J. Pena, J.G. Carbonell, and E.P. Xiggnoothing proximal gradient
method for general structured sparse learningProceedings of the Twenty-Seven Conference
on Uncertainty in Artificial Intelligence (UA])2011.

H.Y. Chuang, E. Lee, Y.T. Liu, D. Lee, and T. Ideker. Netwdwksed classification of breast cancer
metastasisMolecular Systems Biolog$(140), 2007.

35

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stdirtroduction to algorithms MIT Press,
2001.

C. Couprie, L. Grady, H. Talbot, and L. Najman. Combinatociantinuous maximum flowSIAM
Journal on Imaging Science4:905-930, 2011.

T.M. Cover and J.A Thomaglements of information thearyiley, 2006. 2nd edition.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image d&mag by sparse 3D transform-
domain collaborative filtering EEE Transactions on Image Processii$(8):2080-2095, 2007.

|. Daubechies, M. Defrise, and C. De Mol. An iterative thidding algorithm for linear inverse
problems with a sparsity constraif@ommunications on Pure and Applied Mathematig11):
1413-1457, 2004.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelia from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society. Series B (Methagloal), 39(1):1-38,
1977.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Leagl@regressionAnnals of Statistics32
(2):407-499, 2004.

M. Elad and M. Aharon. Image denoising via sparse and redin@@resentations over learned
dictionaries.|IEEE Transactions on Image Processiag(12):3736-3745, 2006.

J. Fan and R. Li. Variable selection via honconcave peralikelihood and its oracle properties.
Journal of the American Statistical Associati@®(456):1348-1360, 2001.

L.R. Ford and D.R. Fulkerson. Maximal flow through a netw@knadian Journal of Mathematics
8(3):399-404, 1956.

T. Gartner, P. Flach, and S. Wrobel. On graph kernels: lemsiresults and efficient alternatives. In
Proceedings of the 16th Annual Conference on Learning fhaad 7th Kernel WorkshgR2003.

P. Gleiser and L. Danon. Community structure in jaadvances in Complex Systeri§4):565—
573, 2003.

A.V. Goldberg. An Efficient Implementation of a Scaling Mimum-Cost Flow AlgorithmJournal
of Algorithms 22(1):1-29, 1997.

A.V. Goldberg and R.E. Tarjan. A new approach to the maximunv firoblem. InProceedings of
the ACM Symposium on Theory of Computib@g6.

A.V. Goldberg and R.E. Tarjan. Finding minimum-cost ciatidns by canceling negative cycles.
Journal of the ACM36(4):873—-886, 1989.

R. Guimera, L. Danon, A. Diaz Guilera, F. Giralt, and A. Aas. Self-similar community structure
in a network of human interaction®hysical Review E68(6):065103, 2003.

D.S. Hochbaum. Complexity and algorithms for nonlineaiirojgtation problemsAnnals of Oper-
ations Researchl53(1):257-296, 2007.

36

H. Hoefling. A path algorithm for the fused lasso signal agpmator. Journal of Computational
and Graphical Statistics19(4):984—-1006, 2010.

J. Huang, Z. Zhang, and D. Metaxas. Learning with structgpadsity.Journal of Machine Learn-
ing Researchl12:3371-3412, 2011.

D.R. Hunter and K. Lange. A tutorial on MM algorithm$he American Statisticiarb8(1):30-37,
2004.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso withlapeand graph Lasso. IRroceedings
of the International Conference on Machine Learning (ICIV2Q09.

R. Jenatton, J-Y. Audibert, and F. Bach. Structured vagiablection with sparsity-inducing norms.
Journal of Machine Learning Researct:2777-2824, 2011.

H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graph&rnel methods in computational
biology, 2004.

D.J.C. MacKay. Information theory, inference, and learning algorithm€ambridge University
Press, 2003.

P. Mahé, N. Ueda, T. Akutsu, J.L. Perret, and J.-P. Vert. pikernels for molecular structure-
activity relationship analysis with support vector madsin Journal of Chemical Information
and Modeling 45(4):939-951, 2005.

J. Mairal. Sparse coding for machine learning, image processing andn-co
puter vision PhD thesis, Ecole Normale Supérieure de Cachan, 2010.
http://tel.archives-ouvertes.fr/tel-00595312

J. Mairal and B. Yu. Path coding penalties for directed dcygtaphs. Indth NIPS Workshop on
Optimization for Machine Learning (OP;12011.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. -Iblcal sparse models for image
restoration. InProceedings of the IEEE International Conference on Coep\ision (ICCV)
20009.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learnimgrfatrix factorization and sparse
coding. Journal of Machine Learning Researctl:19-60, 2010.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex ratdork flow optimization for
structured sparsityournal of Machine Learning Researct2:2649-2689, 2011.

S. Mallat and Z. Zhang. Matching pursuit in a time-frequeddagtionary. IEEE Transactions on
Signal Processingd1(12):3397-3415, 1993.

N. Meinshausen and P. Buhlmann. Stability selectidournal of the Royal Statistical Society:
Series B (Statistical Methodology)2(4):417-473, 2010.

D. Needell and J. A. Tropp. CoSaMP: Iterative signal recp\fesm incomplete and inaccurate
samples Applied and Computational Harmonic Analys#6(3):301-321, 2009.

37

http://tel.archives-ouvertes.fr/tel-00595312

Y. Nesterov. Gradient methods for minimizing compositeecbye function. Technical report,
CORE Discussion paper, 2007.

J. Nocedal and S.J. Wrightlumerical optimizationSpringer Verlag, 2006. 2nd edition.

G. Obozinski and F. Bach. Convex relaxations for combinaltpenalties. Technical report, INRIA,
2012. To appear.

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lassdtartlial. Journal of Computational
and Graphical Statistics9(2):319-37, 2000.

J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simonicdlhage denoising using scale mixtures
of Gaussians in the wavelet domalBEE Transactions on Image Processiig(11):1338-1351,
2003.

F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot, and J.Mert. Classification of microarray data
using gene network BMC Bioinformatics 8(1):35, 2007.

J. Rissanen. Modeling by shortest data descriptiutomatica 14(5):465-471, 1978.

M. Schmidt, N. Le Roux, and F. Bach. Convergence rates oficigaroximal-gradient methods for
convex optimization. IAdvances in Neural Information Processing Systems (NIZEH)L.

G. Schwarz. Estimating the dimension of a modghnals of Statistics6(2):461-464, 1978.

R. Tibshirani. Regression shrinkage and selection via #&st. Journal of the Royal Statistical
Society: Series B8(1):267-288, 1996.

B.A. Turlach, W.N. Venables, and S.J. Wright. Simultaneearsable selectionTechnometrics47
(3):349-363, 2005.

M.H. Van De Vijver et al. A gene-expression signature as dipter of survival in breast cancer.
The New England Journal of Medicing7(25):1999-2009, 2002.

S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstadby separable approximatiolEEE
Transactions on Signal Processirtgy(7):2479-2493, 20009.

M. Yuan and Y. Lin. Model selection and estimation in regi@ssvith grouped variableslournal
of the Royal Statistical Society: Series@:49—-67, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penédiieily for grouped and hierarchical
variable selectionAnnals of Statistics37(6A):3468-3497, 2009.

H. Zou and T. Hastie. Regularization and variable selectiarihe elastic netJournal of the Royal
Statistical Society: Series, B7(2):301-320, 2005.

38

	1 Introduction
	2 Preliminaries
	2.1 Network Flow Optimization
	2.2 Proximal Gradient Methods

	3 Sparse Estimation in Graphs with Path Coding Penalties
	3.1 Path Coding Penalties
	3.2 Computing the Penalties Gp and Gp with Network Flow Optimization
	3.3 Solving Regularized Problems Using Proximal Gradient Methods
	3.4 Practical Algorithms for Solving the Network Flow Problems
	3.5 Computing the Dual-Norm of Gp
	3.6 Active Set Methods for Solving Problem (1) when =Gp

	4 Experiments and Applications
	4.1 Synthetic Experiments
	4.2 Image Denoising
	4.3 Breast Cancer Data

	5 Conclusion
	A The Penalty of jenatton for DAGs
	B Links Between huang and jacob
	C Interpretation of the Weights g with Coding Lengths
	D Proofs of the Propositions
	D.1 Proofs of Propositions 1 and 2
	D.2 Proof of Proposition 3
	D.3 Proof of Proposition 4
	D.4 Proof of Proposition 5
	D.5 Proof of Proposition 6
	D.6 Proof of Proposition 7

