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SPECTRAL CLUSTERING AND THE HIGH-DIMENSIONAL
STOCHASTIC BLOCKMODEL1

BY KARL ROHE, SOURAV CHATTERJEE AND BIN YU

University of California, Berkeley

Networks or graphs can easily represent a diverse set of data sources that
are characterized by interacting units or actors. Social networks, representing
people who communicate with each other, are one example. Communities or
clusters of highly connected actors form an essential feature in the structure
of several empirical networks. Spectral clustering is a popular and computa-
tionally feasible method to discover these communities.

The stochastic blockmodel [Social Networks 5 (1983) 109–137] is a social
network model with well-defined communities; each node is a member of
one community. For a network generated from the Stochastic Blockmodel,
we bound the number of nodes “misclustered” by spectral clustering. The
asymptotic results in this paper are the first clustering results that allow the
number of clusters in the model to grow with the number of nodes, hence the
name high-dimensional.

In order to study spectral clustering under the stochastic blockmodel, we
first show that under the more general latent space model, the eigenvectors of
the normalized graph Laplacian asymptotically converge to the eigenvectors
of a “population” normalized graph Laplacian. Aside from the implication for
spectral clustering, this provides insight into a graph visualization technique.
Our method of studying the eigenvectors of random matrices is original.

1. Introduction. Researchers in many fields and businesses in several indus-
tries have exploited the recent advances in information technology to produce
an explosion of data on complex systems. Several of the complex systems have
interacting units or actors that networks or graphs can easily represent, provid-
ing a range of disciplines with a suite of potential questions on how to produce
knowledge from network data. Understanding the system of relationships between
people can aid both epidemiologists and sociologists. In biology, the predator-
prey pursuits in a natural environment can be represented by a food web, help-
ing researchers better understand an ecosystem. The chemical reactions between

Received July 2010; revised December 2010.
1Supported by Army Research Office Grant ARO-W911NF-11-1-0114; an NSF VIGRE Graduate

Fellowship; NSF Grants CCF-0939370, DMS-07-07054, DMS-09-07632 and SES-0835531 (CDI);
and a Sloan Research Fellowship.

MSC2010 subject classifications. Primary 62H30, 62H25; secondary 60B20.
Key words and phrases. Spectral clustering, latent space model, Stochastic Blockmodel, cluster-

ing, convergence of eigenvectors, principal components analysis.

1878

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/11-AOS887
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


CLUSTERING FOR THE STOCHASTIC BLOCKMODEL 1879

metabolites and enzymes in an organism can be portrayed in a metabolic network,
providing biochemists with a tool to study metabolism. Networks or graphs conve-
niently describe these relationships, necessitating the development of statistically
sound methodologies for exploring, modeling and interpreting networks.

Communities or clusters of highly connected actors form an essential feature
in the structure of several empirical networks. The identification of these clusters
helps answer vital questions in a variety of fields. In the communication network
of terrorists, a cluster could be a terrorist cell; web pages that provide hyperlinks
to each other form a community that might host discussions of a similar topic; and
a community or cluster in a social network likely shares a similar interest.

Searching for clusters is algorithmically difficult because it is computation-
ally intractable to search over all possible clusterings. Even on a relatively small
graph, one with 100 nodes, the number of different partitions exceeds some es-
timates of the number of atoms in the universe by twenty orders of magnitude
[Champion (1998)]. For several different applications, physicists, computer sci-
entists and statisticians have produced numerous algorithms to overcome these
computational challenges. Often these algorithms aim to discover clusters which
are approximately the “best” clusters as measured by some empirical objective
function [see Fortunato (2010) or Fjällström (1998) for comprehensive reviews of
these algorithms from the physics or the engineering perspective, resp.].

Clustering algorithms generally come from two sources: from fitting proce-
dures for various statistical models that have well-defined communities and, more
commonly, from heuristics or insights on what network communities should look
like. This division is analogous to the difference in multivariate data analysis be-
tween parametric clustering algorithms, such as an EM algorithm fitting a Gaussian
mixture model, and nonparametric clustering algorithms such as k-means, which
are instead motivated by optimizing an objective function. Snijders and Nowicki
(1997), Nowicki and Snijders (2001), Handcock, Raftery and Tantrum (2007) and
Airoldi et al. (2008) all attempt to cluster the nodes of a network by fitting vari-
ous network models that have well-defined communities. In contrast, the Girvan–
Newman algorithm [Girvan and Newman (2002)] and spectral clustering are two
algorithms in a large class of algorithms motivated by insights and heuristics on
communities in networks.

Newman and Girvan (2004) motivate their algorithm by observing, “If two com-
munities are joined by only a few inter-community edges, then all paths through
the network from vertices in one community to vertices in the other must pass
along one of those few edges.” The Girvan–Newman algorithm searches for these
few edges and removes them, resulting in a graph with multiple connected com-
ponents (connected components are clusters of nodes such that there are no con-
nections between the clusters). The Girvan–Newman algorithm then returns these
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connected components as the clusters. Like the Girvan–Newman algorithm, spec-
tral clustering is a “nonparametric” algorithm motivated by the following insights
and heuristics: spectral clustering is a convex relaxation of the normalized cut op-
timization problem [Shi and Malik (2000)], it can identify the connected compo-
nents in a graph (if there are any) [Donath and Hoffman (1973), Fiedler (1973)],
and it has an intimate connection with electrical network theory and random walks
on graphs [Klein and Randić (1993), Meilă and Shi (2001)].

1.1. Spectral clustering. Spectral clustering is both popular and computation-
ally feasible [von Luxburg (2007)]. The algorithm has been rediscovered and reap-
plied in numerous different fields since the initial work of Donath and Hoffman
(1973) and Fiedler (1973). Computer scientists have found many applications for
variations of spectral clustering, such as load balancing and parallel computations
[Van Driessche and Roose (1995), Hendrickson and Leland (1995)], partitioning
circuits for very large-scale integration design [Hagen and Kahng (1992)] and
sparse matrix partitioning [Pothen, Simon and Liou (1990)]. Detailed histories of
spectral clustering can be found in Spielman and Teng (2007) and von Luxburg,
Belkin and Bousquet (2008).

The algorithm is defined in terms of a graph G, represented by a vertex set and
an edge set. The vertex set {v1, . . . , vn} contains vertices or nodes. These are the
actors in the systems discussed above. We will refer to node vi as node i. We will
only consider unweighted and undirected edges. So, the edge set contains a pair
(i, j) if there is an edge, or relationship, between nodes i and j . The edge set can
be represented by the adjacency matrix W ∈ {0,1}n×n:

Wji = Wij =
{

1, if (i, j) is in the edge set,
0, otherwise.

(1.1)

Define L and diagonal matrix D both elements of Rn×n in the following way:

Dii = ∑
k

Wik,

(1.2)
L = D−1/2WD−1/2.

Some readers may be more familiar defining L as I −D−1/2WD−1/2. For spectral
clustering, the difference is immaterial because both definitions have the same
eigenvectors.

The spectral clustering algorithm addressed in this paper is defined as fol-
lows:
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Spectral clustering for k many clusters
Input: Symmetric adjacency matrix W ∈ {0,1}n×n.

1. Find the eigenvectors X1, . . . ,Xk ∈ Rn

corresponding to the k eigenvalues of L that
are largest in absolute value. L is symmetric,
so choose these eigenvectors to be orthogonal.
Form the matrix X = [X1, . . . ,Xk] ∈ Rn×k by putting
the eigenvectors into the columns.

2. Treating each of the n rows in X as a point
in Rk, run k-means with k clusters. This creates
k nonoverlapping sets A1, . . . ,Ak whose union is
1, . . . , n.

Output: A1, . . . ,Ak. This means that node i is
assigned to cluster g if the ith row of X is
assigned to Ag in step 2.

Traditionally, spectral clustering takes the eigenvectors of L corresponding to
the largest k eigenvalues. The algorithm above takes the largest k eigenvalues by
absolute value. The reason for this is explained in Section 3.

Recently, spectral clustering has also been applied in cases where the graph G

and its adjacency matrix W are not given, but instead inferred from a measure
of pairwise similarity k(·, ·) between data points X1, . . . ,Xn in a metric space.
The similarity matrix K ∈ Rn×n, whose i, j th element is Kij = k(Xi,Xj ), takes
the place of the adjacency matrix W in the above definition of L,D, and the
spectral clustering algorithm. For image segmentation, Shi and Malik (2000) sug-
gested spectral clustering on an inferred network where the nodes are the pixels
and the edges are determined by some measure of pixel similarity. In this way,
spectral clustering has many similarities with the nonlinear dimension reduction
or manifold learning techniques such as Diffusion maps and Laplacian eigenmaps
[Coifman et al. (2005), Belkin and Niyogi (2003)].

The normalized graph Laplacian L is an essential part of spectral clustering,
Diffusion maps and Laplacian eigenmaps. As such, its properties have been well
studied under the model that the data points are randomly sampled from a prob-
ability distribution, whose support may be a manifold, and the Laplacian is built
from the inferred graph based on some measure of similarity between data points.
Belkin (2003), Lafon (2004), Bousquet, Chapelle and Hein (2004), Hein, Audibert
and von Luxburg (2005), Hein (2006), Giné and Koltchinskii (2006), Belkin and
Niyogi (2008), von Luxburg, Belkin and Bousquet (2008) have all shown various
forms of asymptotic convergence for this graph Laplacian. Although all of their
results are encouraging, their results do not apply to the random network models
we study in this paper. Vu (2011) studies how the singular vectors of a matrix
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change under random perturbations. These results are also encouraging. However,
the current paper uses a different method to study the eigenvectors of the graph
Laplacian.

1.2. Statistical estimation. Stochastic models are useful because they force us
to think clearly about the randomness in the data in a precise and possibly familiar
way. Many random network models have been proposed [Erdös and Rényi (1959),
Holland and Leinhardt (1981), Holland, Laskey and Leinhardt (1983), Frank and
Strauss (1986), Watts and Strogatz (1998), Barabási and Albert (1999), Hoff,
Raftery and Handcock (2002), Van Duijn, Snijders and Zijlstra (2004), Goldenberg
et al. (2010).] Some of these models, such as the Stochastic Blockmodel, have
well-defined communities. The Stochastic Blockmodel is characterized by the fact
that each node belongs to one of multiple blocks and the probability of a relation-
ship between two nodes depends only on the block memberships of the two nodes.
If the probability of an edge between two nodes in the same block is larger than
the probability of an edge between two nodes in different blocks, then the blocks
produce communities in the random networks generated from the model.

Just as statisticians have studied when least-squares regression can estimate the
“true” regression model, it is natural and important for us to study the ability of
clustering algorithms to estimate the “true” clusters in a network model. Under-
standing when and why a clustering algorithm correctly estimates the “true” com-
munities would provide a rigorous understanding of the behavior of these algo-
rithms, suggest which algorithm to choose in practice, and aid the corroboration of
algorithmic output.

This paper studies the performance of spectral clustering, a nonparametric
method, on a parametric task of estimating the blocks in the Stochastic Block-
model. It connects the first strain of clustering research based on stochastic mod-
els to the second strain based on heuristics and insights on network clusters. The
stochastic blockmodel allows for some first steps in understanding the behavior of
spectral clustering and provides a benchmark to measure its performance. How-
ever, because this model does not really account for the complexities observed
in several empirical networks, good performance on the Stochastic Blockmodel
should only be considered a necessary requirement for a good clustering algo-
rithm.

Researchers have explored the performance of other clustering algorithms under
the Stochastic Blockmodel. Snijders and Nowicki (1997) showed the consistency
under the two block Stochastic Blockmodel of a clustering routine that clusters
the nodes based on their degree distributions. Although this clustering is very easy
to compute it is not clear that the estimators would behave well for larger graphs
given the extensive literature on the long tail of the degree distribution [Albert
and Barabási (2002)]. Later, Condon and Karp (1999) provided an algorithm and
proved that it is consistent under the Stochastic Blockmodel, or what they call the
planted �-partition model. Their algorithm runs in linear time. However, it always
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estimates clusters that contain an equal number of nodes. More recently, Bickel
and Chen (2009) proved that under the Stochastic Blockmodel, the maximizers of
the Newman–Girvan modularity [Newman and Girvan (2004)] and what they call
the likelihood modularity are asymptotically consistent estimators of block parti-
tions. These modularities are objective functions that have no clear relationship to
the Girvan–Newman algorithm. Finding the maximum of the modularities is NP
hard [Brandes et al. (2008)]. It is important to note that all aforementioned cluster-
ing results involving the Stochastic Blockmodel are asymptotic in the number of
nodes, with a fixed number of blocks.

The work of Leskovec et al. (2008) shows that in a diverse set of large empirical
networks (tens of thousands to millions of nodes), the size of the “best” clusters
is not very large, around 100 nodes. Modern applications of clustering require an
asymptotic regime that allows these sorts of clusters. Under the asymptotic regime
cited in the previous paragraph, the size of the clusters grows linearly with the
number of nodes. It would be more appropriate to allow the number of communi-
ties to grow with the number of nodes. This restricts the blocks from becoming too
large, following the empirical observations of Leskovec et al. (2008).

This paper provides the first asymptotic clustering results that allow the number
of blocks in the Stochastic Blockmodel to grow with the number of nodes. Sim-
ilar to the asymptotic results on regression techniques that allow the number of
predictors to grow with the number of nodes, allowing the number of blocks to
grow makes the problem one of high-dimensional learning. Following our initial
technical report, Choi, Wolfe and Airoldi (2010) also studied community detection
under the Stochastic Blockmodel with a growing number of blocks. They used a
likelihood-based approach, which is computationally difficult to implement. How-
ever, they are able to greatly weaken the assumptions of this paper.

The Stochastic Blockmodel is an example of the more general latent space
model [Hoff, Raftery and Handcock (2002)] of a random network. Under the la-
tent space model, there are latent i.i.d. vectors z1, . . . , zn; one for each node. The
probability that an edge appears between any two nodes i and j depends only on
zi and zj and is independent of all other edges and unobserved vectors. The results
of Aldous and Hoover show that this model characterizes the distribution of all
infinite random graphs with exchangeable nodes [Kallenberg (2005)]. The graphs
with n nodes generated from a latent space model can be viewed as a subgraph of
an infinite graph. In order to study spectral clustering under the Stochastic Block-
model, we first show that under the more general latent space model, as the number
of nodes grows, the eigenvectors of L, the normalized graph Laplacian, converge
to eigenvectors of the “population” normalized graph Laplacian that is constructed
with a similarity matrix E(W |z1, . . . , zn) (whose i, j th element is the probability
of an edge between node i and j ) taking the place of the adjacency matrix W in
(1.2). In many ways, E(W |z1, . . . , zn) is similar to the similarity matrix K dis-
cussed above, only this time the vectors (z1, . . . , zn) and their similarity matrix
E(W |z1, . . . , zn) are unobserved.
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The convergence of the eigenvectors has implications beyond spectral cluster-
ing. Graph visualization is an important tool for social network analysts looking
for structure in networks and the eigenvectors of the graph Laplacian are an es-
sential piece of one visualization technique [Koren (2005)]. Exploratory graph vi-
sualization allows researchers to find structure in the network; this structure could
be communities or something more complicated [Liotta (2004), Freeman (2000),
Wasserman and Faust (1994)]. In terms of the latent space model, if z1, . . . , zn

form clusters or have some other structure in the latent space, then we might re-
cover this structure from the observed graph using graph visualization. Although
there are several visualization techniques, there is very little theoretical under-
standing of how these techniques perform under stochastic models of structured
networks. Because the eigenvectors of the normalized graph Laplacian converge
to “population” eigenvectors, this provides support for a visualization technique
similar to the one proposed in Koren (2005).

The rest of the paper is organized as follows. The next subsection of the Intro-
duction give some preliminary definitions. Following the Introduction, there are
four main sections; Section 2 studies the latent space model, Section 3 studies
the Stochastic Blockmodel as a special case, Section 4 presents some simulation
results, and Section 5 investigates the plausibility of a key assumption in five em-
pirical social networks. Section 2 covers the eigenvectors of L under the latent
space model. The main technical result is Theorem 2.1 in Section 2, which shows
that, as the number of nodes grows, the normalized graph Laplacian multiplied
by itself converges in Frobenius norm to a symmetric version of the population
graph Laplacian multiplied by itself. The Davis–Kahan theorem then implies that
the eigenvectors of these matrices are close in an appropriate sense. Lemma 2.1
specifies how the eigenvectors of a matrix multiplied by itself are closely related
to the eigenvectors of the original matrix. Theorem 2.2 combines Theorem 2.1
with the Davis–Kahan theorem and Lemma 2.1 to show that the eigenvectors of
the normalized graph Laplacian converge to the population eigenvectors. Section 3
applies these results to the high-dimensional Stochastic Blockmodel. Lemma 3.1
shows that the population version of spectral clustering can correctly identify the
blocks in the Stochastic Blockmodel. Theorem 3.1 extends this result to the sample
version of spectral clustering. It uses Theorem 2.2 to bound the number of nodes
that spectral clustering “misclusters.” This section concludes with two examples.
Section 4 presents three simulations that investigate how the asymptotic results
apply to finite samples. These simulations suggest an area for future research. The
main theorems in this paper require a strong assumption on the degree distribution.
Section 5 investigates the plausibility of this assumption with five empirical online
social networks. The discussion in Section 6 concludes the paper.

1.3. Preliminaries. The latent space model proposed by Hoff, Raftery and
Handcock (2002) is a class of a probabilistic model for W .
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DEFINITION 1. For i.i.d. random vectors z1, . . . , zn ∈ Rk and random adja-
cency matrix W ∈ {0,1}n×n, let P(Wij |zi, zj ) be the probability mass function of
Wij conditioned on zi and zj . If a probability distribution on W has the conditional
independence relationships

P(W |z1, . . . , zn) = ∏
i<j

P(Wij |zi, zj )

and P(Wii = 0) = 1 for all i, then it is called an undirected latent space model.

This model is often simplified to assume P(Wij |zi, zj ) = P(Wij |dist(zi, zj ))

where dist(·, ·) is some distance function. This allows the “homophily by at-
tributes” interpretation that edges are more likely to appear between nodes whose
latent vectors are closer in the latent space.

Define Z ∈ Rn×k such that its ith row is zi for all i ∈ V . Throughout this paper,
we assume Z is fixed and unknown. Because P(Wij = 1|Z) = E(Wij |Z), the model
is then completely parametrized by the matrix

W = E(W |Z) ∈ Rn×n,

where W depends on Z, but this is dropped for notational convenience.
The Stochastic Blockmodel, introduced by Holland, Laskey and Leinhardt

(1983), is a specific latent space model with well-defined communities. We use
the following definition of the undirected Stochastic Blockmodel:

DEFINITION 2. The Stochastic Blockmodel is a latent space model with

W = ZBZT ,

where Z ∈ {0,1}n×k has exactly one 1 in each row and at least one 1 in each
column and B ∈ [0,1]k×k is full rank and symmetric.

We refer to W , the matrix which completely parametrizes the latent space
model, as the population version of W . Define population versions of L and D

both in Rn×n as

Dii = ∑
k

Wik,

(1.3)
L = D−1/2W D−1/2,

where D is a diagonal matrix, similar to before.
The results in this paper are asymptotic in the number of nodes n. When it

is appropriate, the matrices above are given a superscript of n to emphasize this
dependence. Other times, this superscript is discarded for notational convenience.
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2. Consistency under the latent space model. We will show that the empiri-
cal eigenvectors of L(n) converge in the appropriate sense to the population eigen-
vectors of L (n). If L(n) converged to L (n) in Frobenius norm, then the Davis–
Kahan theorem would give the desired result. However, these matrices do not con-
verge. This is illustrated in an example below. Instead, we give a novel result show-
ing that under certain conditions L(n)L(n) converges to L (n)L (n) in Frobenius
norm. This implies that the eigenvectors of L(n)L(n) converge to the eigenvectors
of L (n)L (n). The following lemma shows that these eigenvectors can be chosen
to imply the eigenvectors of L(n) converge to the eigenvectors of L (n).

LEMMA 2.1. When M ∈ Rn×n is a symmetric real matrix,

(1) λ2 is an eigenvalue of MM if and only if λ or −λ is an eigenvalue of M .
(2) If Mv = λv, then MMv = λ2v.
(3) Conversely, if MMv = λ2v, then v can be written as a linear combination

of eigenvectors of M whose eigenvalues are λ or −λ.

A proof of Lemma 2.1 can be found in Appendix A.

EXAMPLE. To see how squaring a matrix helps convergence, let the matrix
W ∈ Rn×n have i.i.d. Bernoulli(1/2) entries. Because the diagonal elements in D

grow like n, the matrix W/n behaves similarly to D−1/2WD−1/2. Without squar-
ing the matrix, the Frobenius distance from the matrix to its expectation is

‖W/n − E(W)/n‖F = 1

n

√∑
i,j

(
Wij − E(Wij )

)2 = 1/2.

Notice that, for i �= j ,

[WW ]ij = ∑
k

WikWkj ∼ Binomial(n,1/4)

and [WW ]ii ∼ Binomial(n,1/2). So, for any i, j , [WW ]ij −E[WW ]ij = o(n1/2 ×
logn). Thus, the Frobenius distance from the squared matrix to its expectation is

‖WW/n2 − E(WW)/n2‖F = 1

n2

√∑
i,j

([WW ]ij − E[WW ]ij )2 = o

(
logn

n1/2

)
.

When the elements of W are i.i.d. Bernoulli(1/2), (W/n)2 converges in Frobe-
nius norm and W/n does not. The next theorem addresses the convergence of
L(n)L(n).

Define

τn = min
i=1,...,n

D (n)
ii /n.(2.1)
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Recall that D (n)
ii is the expected degree for node i. So, τn is the minimum expected

degree, divided by the maximum possible degree. It measures how quickly the
number of edges accumulates.

THEOREM 2.1. Define the sequence of random matrices W(n) ∈ {0,1}n×n

to be from a sequence of latent space models with population matrices W (n) ∈
[0,1]n×n. With W(n), define the observed graph Laplacian L(n) as in (1.2). Let
L (n) be the population version of L(n) as defined in (1.3). Define τn as in (2.1).

If there exists N > 0, such that τ 2
n logn > 2 for all n > N , then

∥∥L(n)L(n) − L (n)L (n)
∥∥
F = o

(
logn

τ 2
nn1/2

)
a.s.

Appendix A contains a nonasymptotic bound on ‖L(n)L(n) − L (n)L (n)‖F as
well as the proof of Theorem 2.1. The main condition in this theorem is the lower
bound on τn. This sufficient condition is used to produce Gaussian tail bounds for
each of the Dii and other similar quantities.

For any symmetric matrix M , define λ(M) to be the eigenvalues of M and for
any interval S ⊂ R, define

λS(M) = {λ(M) ∩ S}.
Further, define λ̄

(n)
1 ≥ · · · ≥ λ̄

(n)
n to be the elements of λ(L (n)L (n)) and λ

(n)
1 ≥

· · · ≥ λ
(n)
n to be the elements of λ(L(n)L(n)). The eigenvalues of L(n)L(n) converge

in the following sense,

max
i

∣∣λ(n)
i − λ̄

(n)
i

∣∣ ≤ ∥∥L(n)L(n) − L (n)L (n)
∥∥
F

(2.2)

= o

(
logn

τ 2
nn1/2

)
a.s.

This follows from Theorem 2.1, Weyl’s inequality [Bhatia (1987)], and the fact
that the Frobenius norm is an upper bound of the spectral norm.

This shows that under certain conditions on τn, the eigenvalues of L(n)L(n)

converge to the eigenvalues of L (n)L (n). In order to study spectral clustering,
it is now necessary to show that the eigenvectors also converge. The Davis–Kahan
theorem provides a bound for this.

PROPOSITION 2.1 (Davis–Kahan). Let S ⊂ R be an interval. Denote X as
an orthonormal matrix whose column space is equal to the eigenspace of L L
corresponding to the eigenvalues in λS(L L ) [more formally, the column space of
X is the image of the spectral projection of L L induced by λS(L L )]. Denote by
X the analogous quantity for LL. Define the distance between S and the spectrum
of L L outside of S as

δ = min{|� − s|;� eigenvalue of L L , � /∈ S, s ∈ S}.
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If X and X are of the same dimension, then there is an orthonormal matrix O , that
depends on X and X, such that

1

2
‖X − X O‖2

F ≤ ‖LL − L L ‖2
F

δ2 .

The original Davis–Kahan theorem bounds the “canonical angle,” also known
as the “principal angle,” between the column spaces of X and X. Appendix B
explains how this can be converted into the bound stated above. To understand
why the orthonormal matrix O is included, imagine the situation that L = L . In
this case X is not necessarily equal to X . At a minimum, the columns of X could
be a permuted version of those in X . If there are any eigenvalues with multiplicity
greater than one, these problems could be slightly more involved. The matrix O

removes these inconveniences and related inconveniences.
The bound in the Davis–Kahan theorem is sensitive to the value δ. This reflects

that when there are eigenvalues of L L close to S, but not inside of S, then a
small perturbation can move these eigenvalues inside of S and drastically alter
the eigenvectors. The next theorem combines the previous results to show that the
eigenvectors of L(n) converge to the eigenvectors of L (n). Because it is asymptotic
in the number of nodes, it is important to allow S and δ to depend on n. For a
sequence of open intervals Sn ⊂ R, define

δn = inf
{|� − s|;� ∈ λ

(
L (n)L (n)), � /∈ Sn, s ∈ Sn

}
,(2.3)

δ′
n = inf

{|� − s|;� ∈ λSn

(
L (n)L (n)), s /∈ Sn

}
,(2.4)

S′
n = {�;�2 ∈ Sn}.(2.5)

The quantity δ′
n is added to measure how well Sn insulates the eigenvalues of

interest. If δ′
n is too small, then some important empirical eigenvalues might fall

outside of Sn. By restricting the rate at which δn and δ′
n converge to zero, the next

theorem ensures the dimensions of X and X agree for a large enough n. This is
required in order to use the Davis–Kahan theorem.

THEOREM 2.2. Define W(n) ∈ {0,1}n×n to be a sequence of growing random
adjacency matrices from the latent space model with population matrices W (n).
With W(n), define the observed graph Laplacian L(n) as in (1.2). Let L (n) be the
population version of L(n) as defined in (1.3). Define τn as in (2.1). With a sequence
of open intervals Sn ⊂ R, define δn, δ′

n and S′
n as in (2.3), (2.4) and (2.5).

Let kn = |λS′
n
(L(n))|, the size of the set λS′

n
(L(n)). Define the matrix Xn ∈

Rn×kn such that its orthonormal columns are the eigenvectors of symmetric ma-
trix L(n) corresponding to all the eigenvalues contained in λS′

n
(L(n)). For Kn =

|λS′
n
(L (n))|, define Xn ∈ Rn×Kn to be the analogous matrix for symmetric matrix

L (n) with eigenvalues in λS′
n
(L (n)).
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Assume that n−1/2(logn)2 = O(min{δn, δ
′
n}). Also assume that there exists pos-

itive integer N such that for all n > N , it follows that τ 2
n > 2/ logn.

Eventually, kn = Kn. Afterward, for some sequence of orthonormal rota-
tions On,

‖Xn − XnOn‖F = o

(
logn

δnτ 2
nn1/2

)
a.s.

A proof of Theorem 2.2 is in Appendix C. There are two key assumptions in
Theorem 2.2:

(1) n−1/2(logn)2 = O(min{δn, δ
′
n}),

(2) τ 2
n > 2/ logn.

The first assumption ensures that the “eigengap,” the gap between the eigenvalues
of interest and the rest of the eigenvalues, does not converge to zero too quickly.
The theorem is most interesting when S includes only the leading eigenvalues.
This is because the eigenvectors with the largest eigenvalues have the potential to
reveal clusters or other structures in the network. When these leading eigenvalues
are well separated from the smaller eigenvalues, the eigengap is large. The sec-
ond assumption ensures that the expected degree of each node grows sufficiently
fast. If τn is constant, then the expected degree of each node grows linearly. The
assumption τ 2

n > 2/ logn is almost as restrictive.
The usefulness of Theorem 2.2 depends on how well the eigenvectors of L (n)

represent the characteristics of interest in the network. For example, under the
Stochastic Blockmodel with B full rank, if Sn is chosen so that S′

n contains all
nonzero eigenvalues of L (n), then the block structure can be determined from the
columns of Xn. It can be shown that nodes i and j are in the same block if and only
if the ith row of Xn equals the j th row. The next section examines how spectral
clustering exploits this structure, using Xn to estimate the block structure in the
Stochastic Blockmodel.

3. The Stochastic Blockmodel. The work of Leskovec et al. (2008) shows
that the sizes of the best clusters are not very large in a diverse set of empirical
networks, suggesting that the appropriate asymptotic framework should allow for
the number of communities to grow with the number of nodes. This section shows
that, under suitable conditions, spectral clustering can correctly partition most of
the nodes in the Stochastic Blockmodel, even when the number of blocks grows
with the number of nodes.

The Stochastic Blockmodel, introduced by Holland, Laskey and Leinhardt
(1983), is a specific latent space model. Because it has well-defined communi-
ties in the model, community detection can be framed as a problem of statistical
estimation. The important assumption of this model is that of stochastic equiva-
lence within the blocks; if two nodes i and j are in the same block, rows i and j

of W are equal.
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Recall in the definition of the undirected Stochastic Blockmodel,

W = ZBZT ,

where Z ∈ {0,1}n×k is fixed and has exactly one 1 in each row and at least one 1 in
each column and B ∈ [0,1]k×k is full rank and symmetric. In this definition there
are k blocks and n nodes. If the i, gth element of Z equals one (Zig = 1), then node
i is in block g. As before, zi for i = 1, . . . , n denotes the ith row of Z. The matrix
B ∈ [0,1]k×k contains the probability of edges within and between blocks. Some
researchers have allowed for Z to be random, we have decided to focus instead on
the randomness of W conditioned on Z. The aim of a clustering algorithm is to
estimate Z (up to a permutation of the columns) from W .

This section bounds the number of “misclustered” nodes. Because a permuta-
tion of the columns of Z is unidentifiable in the Stochastic Blockmodel, it is not
obvious what a “misclustered” node is. Before giving our definition of “misclus-
tered,” some preliminaries are needed to explain why it is a reasonable definition.
The next paragraphs examine the behavior of spectral clustering applied to the pop-
ulation graph Laplacian L . Then, this is compared to spectral clustering applied to
the observed graph Laplacian L. This motivates our definition of “misclustered.”

Recall that the spectral clustering algorithm applied to L,

(1) finds the eigenvectors, X ∈ Rn×k ,
(2) treats each row of the matrix X as a point in Rk , and
(3) runs k-means on these points.

k-means is an objective function. Applied to the points {x1, . . . , xn} ⊂ Rk it is
Steinhaus (1956),

min
{m1,...,mk}⊂Rk

∑
i

min
g

‖xi − mg‖2
2.(3.1)

The analysis in this paper addresses the true optimum of (3.1). (In practice, this
optimization problem can suffer from local optima.) The vectors m∗

1, . . . ,m
∗
k that

optimize the k-means function are referred to as the centroids of the k clusters.
This next lemma shows that spectral clustering applied to the population Lapla-

cian, L , can discover the block structure in the matrix Z. This lemma is essential
to defining “misclustered.”

LEMMA 3.1. Under the Stochastic Blockmodel with k blocks,

W = ZBZT ∈ Rn×n for B ∈ Rk×k and Z ∈ {0,1}n×k ,

define L as in (1.3). There exists a matrix μ ∈ Rk×k such that the columns of Zμ

are the eigenvectors of L corresponding to the nonzero eigenvalues. Further,

ziμ = zjμ ⇔ zi = zj ,(3.2)

where zi is the ith row of Z.
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A proof of Lemma 3.1 is in Appendix D.
Equivalence statement (3.2) implies that under the k block Stochastic Block-

model there are k unique rows in the eigenvectors Zμ of L . This has important
consequences for the spectral clustering algorithm. The spectral clustering algo-
rithm applied to L will run k-means on the rows of Zμ. Because there are only k

unique points, each of these points will be a centroid of one of the resulting clus-
ters. Further, if ziμ = zjμ, then i and j will be assigned to the same cluster. With
equivalence statement (3.2), this implies that spectral clustering applied to the ma-
trix L can perfectly identify the block memberships in Z. Obviously, L is not
observed. In practice, spectral clustering is applied to L. Let X ∈ Rn×k be a matrix
whose orthonormal columns are the eigenvectors corresponding to the largest k

eigenvalues (in absolute value) of L.

DEFINITION 3. Spectral clustering applies the k-means algorithm to the rows
of X, that is, each row is a point in Rk . Each row is assigned to one cluster and
each of these clusters has a centroid. Define c1, . . . , cn ∈ Rk such that ci is the the
centroid corresponding to the ith row of X.

Recall that ziμ is the centroid corresponding to node i from the population
analysis. If the observed centroid ci is closer to the population centroid ziμ than
it is to any other population centroid zjμ for zj �= zi , then it appears that node
i is correctly clustered. This definition is appealing because it removes some of
the cluster identifiability problem. However, the eigenvectors add one additional
source of undentifiability. Let O ∈ Rk×k be the orthonormal rotation from Theo-
rem 2.2. Consider node i to be correctly clustered if, ci is closer to ziμO than it
is to any other (rotated) population centroid zjμO for zj �= zi . The slight compli-
cation with O stems from the fact that the vectors c1, . . . , cn are constructed from
the eigenvectors in X and Theorem 2.2 shows these eigenvectors converge to the
rotated population eigenvectors: X O = ZμO .

Define P to be the population of the largest block in Z.

P = max
j=1,...,k

(ZT Z)jj .(3.3)

The following provides a sufficient condition for a node to be correctly clustered.

LEMMA 3.2. For the orthonormal matrix O ∈ Rk×k from Theorem 2.2,

‖ci − ziμO‖2 < 1/
√

2P(3.4)

�⇒ ‖ci − ziμO‖2 < ‖ci − zjμO‖2 for any zj �= zi.(3.5)

A proof of Lemma 3.2 is in Appendix D.
Line (3.5) is the previously motivated definition of correctly clustered. Thus,

Lemma 3.2 shows that the inequality in line (3.4) is a sufficient condition for node
i to be correctly clustered.
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DEFINITION 4. Define the set of misclustered nodes as the nodes that do not
satisfy the sufficient condition (3.4),

M = {
i :‖ci − ziμO‖2 ≥ 1/

√
2P

}
.(3.6)

The next theorem bounds the size of the set M .

THEOREM 3.1. Suppose W ∈ Rn×n is an adjacency matrix from the Stochas-
tic Blockmodel with kn blocks. Define the population graph Laplacian, L , as in
(1.3). Define |λ̄1| ≥ |λ̄2| ≥ · · · ≥ |λ̄kn | > 0 as the absolute values of the kn nonzero
eigenvalues of L . Define M , the set of misclustered nodes, as in (3.6). Define τn

as in (2.1) and assume there exists N such that for all n > N , τ 2
n > 2/ logn. Define

Pn as in (3.3). If n−1/2(logn)2 = O(λ2
kn

), then the number of misclustered nodes
is bounded

|M | = o

(
Pn(logn)2

λ4
kn

τ 4
nn

)
.

A proof of Theorem 3.1 is in Appendix D. The two main assumptions of Theo-
rem 3.1 are

(1) n−1/2(logn)2 = O(λ2
kn

),

(2) eventually τ 2
n logn > 2.

They imply the conditions needed to apply Theorem 2.2. The first assumption
requires that the smallest nonzero eigenvalue of L is not too small. Combined with
an appropriate choice of Sn, this assumption implies the eigengap assumption in
Theorem 2.2. The second assumption is exactly the same as the second assumption
in Theorem 2.2. Section 4 investigates the sensitivity of spectral clustering to these
two assumptions. Section 5 examines the plausibility of assumption (2) on five
empirical online social networks.

In all previous spectral clustering algorithms, it has been suggested that the
eigenvectors corresponding to the largest eigenvalues reveal the clusters of inter-
est. The above theorem suggests that before finding the largest eigenvalues, you
should first order them by absolute value. This allows for large and negative eigen-
values. In fact, eigenvectors of L corresponding to eigenvalues close to negative
one (all eigenvalues of L are in [−1,1]) discover “heterophilic” structure in the
network that can be useful for clustering. For example, in the network of dating re-
lationships in a high school, two people of opposite sex are more likely to date than
people of the same sex. This pattern creates the two male and female “clusters” that
have many fewer edges within than between clusters. In this case, L would likely
have an eigenvalue close to negative one. The corresponding eigenvector would
reveal these “heterophilic” clusters.
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EXAMPLE. To examine the ability of spectral clustering to discover het-
erophilic clusters, imagine a Stochastic Blockmodel with two blocks and two
nodes in each block. Define

B =
(

0 1
1 0

)
.

In this case, there are no connections within blocks and every member is connected
to the two members of the opposite block. There is no variability in the matrix W .
The rows and columns of L can be reordered so that it is a block matrix. The two
block matrices down the diagonal are 2 × 2 matrices of zeros and all the elements
in the off diagonal blocks are equal to 1/2. There are two nonzero eigenvalues
of L. Any constant vector is an eigenvector of L with eigenvalue equal to one.
The remaining eigenvalue belongs to any eigenvector that is a constant multiple of
(1,1,−1,−1). In this case, with perfect “heterophilic” structure, the eigenvector
that is useful for finding the clusters has eigenvalue negative one.

Heuristically, the reason spectral clustering can discover these heterophilic
blocks is related to our method of proof. The i, j th element of WW is the number
neighbors that nodes i and j have in common. In both heterophilic and homophilic
cases, if nodes i and j are in the same block, then they should have several neigh-
bors in common. Thus, [WW ]ij is large. Similarly, [LL]ij is large. This shows that
the number of common neighbors is a measure of similarity that is robust to the
choice of hetero- or homophilic clusters. Because spectral clustering uses a related
measure of similarity, it is able to detect both types of clusters.

In order to clarify the bound on |M | in Theorem 3.1, a simple example illus-
trates how λkn , τn and P might depend on n.

DEFINITION 5. The four parameter Stochastic Blockmodel is parametrized by
k, s, r and p. There are k blocks each containing s nodes. The probability of a con-
nection between two nodes in two separate blocks is r ∈ [0,1] and the probability
of a connection between two nodes in the same block is p + r ∈ [0,1].

EXAMPLE. In the four parameter Stochastic Blockmodel, there are n = ks

nodes. Notice that Pn = s and τn > r . Appendix D shows that the smallest nonzero
eigenvalue of the population graph Laplacian is equal to

λk = 1

k(r/p) + 1
.

Using Theorem 3.1, if p �= 0 and k = O(n1/4/ logn), then

|M | = o(k3(logn)2) a.s.(3.7)

Further, the proportion of nodes that are misclustered converges to zero,

|M |
n

= o(n−1/4) a.s.
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This example is particularly surprising after noticing that if k = nα for α ∈
(0,1/4), then the vast majority of edges connect nodes in different blocks. To
see this, look at a sequence of models such that k = nα . Note that s = n1−α . So,
for each node, the expected number of connections to nodes in the same block is
(p + r)n1−α and the expected number of connections to nodes in different blocks
is r(n − n1−α).

Expected number of in block connections

Expected number of out of block connections
= (p + r)n1−α

r(n − n1−α)
= O(n−α).

These are not the tight communities that many imagine when considering net-
works. Instead, a dwindling fraction of each node’s edges actually connect to nodes
in the same block. The vast majority of edges connect nodes in different blocks.

A more refined result would allow r to decay with n. However, when r de-
cays, so does the minimum expected degree and the tail bounds used in proving
Theorem 2.1 requires the minimum expected degree to grow nearly as fast as n.
Allowing r to decay with n is an area for future research.

4. Simulations. Three simulations in this section illustrate how the asymp-
totic bounds in this paper can be a guide for finite sample results. These simula-
tions emphasize the importance of the eigengap in Theorem 2.2 and suggest that
the asymptotic bounds in this paper hold for relatively small networks. The simu-
lations also suggest two shortcomings of the theoretical results in this paper. First,
Simulation 1 shows that spectral clustering appears to be consistent in some situ-
ations. Unfortunately, the theoretical results in Theorem 3.1 are not sharp enough
to prove consistency. Second, Simulation 3 suggests that spectral clustering is still
consistent even when the minimum expected node degree grows more slowly than
the number of nodes. However, the theorems above require a stronger condition,
that the minimum expected degree grows almost linearly with the number of nodes.

All data are simulated from the four parameter Stochastic Blockmodel (Defini-
tion 5). In the first simulation, the number of nodes in each block s grows while
the number of blocks k and the probabilities p and r remain fixed. In the second
simulation, k grows while s,p and r remain fixed. In the final simulation, s and k

remain fixed while r and p shrink such that p/r remains fixed. Because kr/p is
fixed, the eigengap is also fixed.

There is one important detail to recreate our simulation results below. The spec-
tral clustering result stated in Theorem 3.1, requires the true optimum of the k-
means objective function. This is very difficult to ensure. However, only one step
in the proof of Theorem 3.1 requires the true optimum. The optimum of k-means
satisfies inequality D.4 in the Appendix D. In simulations, this inequality can be
verified directly. For the simulations below, the k-means algorithm is run several
times, all with random initializations, until the bound D.4 is met.

Simulation 1: In this simulation, k = 5,p = 0.2, r = 0.1 and the number of
members in each group grows from 8 to 215. This implies that n grows from 40
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FIG. 1. The top panel in this figure displays the number of misclustered nodes plotted against
logn. The bottom panel displays both log‖LL − L L ‖F and log‖X − X O‖F plotted against
logn. Each dot represents one simulation of the model. In addition, the bottom panel has a line with
slope −1/2. This figure illustrates two things. First, after a certain threshold (around logn = 4.7), the
eigenvectors of the graph Laplacian begin to converge and after this point, the number of misclustered
nodes converges to zero. Second, the lines representing log‖LL − L L ‖F and log‖X − X O‖F

are approximately parallel to the line with slope −1/2. This suggests that they converge around rate
O(n−1/2), similar to the theoretical results in Lemma 2.1 and Theorem 2.2.

to 1075. Equation (3.7) suggests that the number of misclustered nodes should
grow more slowly than (logn)2. In fact, Figure 1 shows that once there are enough
nodes, the number of misclustered nodes converges to zero. The top plot displays
the number of misclustered nodes plotted against logn, which initially increases.
Then, it falls precipitously.

The lower plot in Figure 1 displays why the number of misclustered nodes
falls so precipitously. It plots log‖LL − L L ‖F (dashed bold line) and log‖X −
X O‖F (solid bold line) on the vertical axis against logn on the horizontal axis.
Also displayed in this plot is a line with slope −1/2 (solid thin line). Note that the
solid bold line starts to run parallel to the solid thin line once logn > 4.5. After this
point, the eigenvectors converge, and spectral clustering begins to correctly cluster
all of the nodes. The proof of the convergence of the eigenvectors for Theorem 2.2,
requires an eigengap condition,

n−1/2 logn = O(min{δn, δ
′
n}).

Similar to the example in the previous section, Sn can be chosen in this four pa-
rameter model so that min{δn, δ

′
n} = (k(r/p) + 1)−2. In this simulation, the eigen-

vectors begin to converge, and the number of miclustered nodes drops just after
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the bound n−1/2 < (k(r/p) + 1)−2 is met. Ignoring the logn factor, this suggests
that the eigengap condition in Theorem 2.2 is necessary.

This simulation demonstrates the importance of the relationship between the
sample size and the eigengap. In this simulation, there needs to be roughly
50 nodes in each block to separate the informative eigenvectors from the unin-
formative eigenvectors. Once there are enough nodes, the empirical eigenvectors
are close to the population eigenvectors. Then, spectral clustering can estimate the
block structure.

The lower plot in Figure 1 also suggests that, ignoring logn factors, the rates of
convergence given in Theorem 2.1 and Theorem 2.2 are sharp. Both LL and the
eigenvectors X converge at a rate O(n−1/2). This is because the the dashed bold
line and the solid bold line (for large enough n) are approximately parallel to the
solid thin line.

Simulation 2: In this simulation from the four parameter Stochastic Blockmodel,
each block contains 35 nodes, p = 0.3 and r = 0.05. The number of blocks k

grows from 2 to 110. Equation (3.7) suggests that under this asymptotic regime, the
number of misclustered nodes should grow more slowly than k3(logn)2. Figure 2
shows how this theoretical quantity can be an appropriate guide.

Figure 2 plots the log of the number of misclustered nodes (bold line) against
logk. For comparison, a line with slope 3 is also plotted (thin line). Because the

FIG. 2. This figure plots the number of miclustered nodes (thicker line) against log k. Each dot
represents one simulation from the model. Additionally, there is a line with slope 3 (thinner line).
Equation (3.7) says that the number of misclustered nodes is o(k3 log k). Because the thicker line has
a slope that is similar to the thinner line, this result appears to be a good approximation.
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bold line has a slope approximately equal to the thin line, the number of misclus-
tered nodes is approximate to k3.

This simulation demonstrates that as the number of blocks grows, the number
of misclustered nodes also grows. Although ‖LL − L L ‖F converges under this
asymptotic regime, ‖X − X O‖F does not because the eigengap shrinks more
quickly than the number of nodes can tolerate.

Simulation 3: The theorems in this paper assume that the smallest expected de-
gree grows close to linearly with the number of nodes in the graph. This simulation
examines the sensitivity of spectral clustering to this assumption. Recall that the
smallest expected degree is equal to nτ .

In this simulation, there are three different designs all from the four parameter
Stochastic Blockmodel. Each design has three blocks (k = 3). One design contains
50 nodes in each block, another contains 150 in each block, and the last design
contains 250 nodes in each block. To investigate how sensitive spectral clustering
is to the value of τ = p/k + r , the probabilities p and r must change. However, to
isolate the effect of τ from the effect of the eigengap (k(r/p)+1)−2, it is necessary
to keep the ratio p/r constant. Fixing p/r = 2 ensures that the eigengap is fixed
at 4/25.

The results for Simulation 3 are displayed in Figure 3. The value τ is on the
horizontal axis, and the number of misclustered nodes is on the vertical axis. There
are three lines. The thickest line represents the design with 50 nodes in each block.
The line of medium thickness represents the design with 150 nodes in each block.
The thinnest line represents the design with 250 nodes in each block. All three lines
increase as τ approaches zero (reading the figure from right to left). The thickest
line starts to increase at τ = 0.20. The thinnest line starts to increase at τ = 0.07.
The line with medium thickness increases in between these two lines.

Because the thinner lines start to increase at a smaller value of τ , this suggests
that as n increase, τ can decrease. As such, spectral clustering should be able to
correctly cluster the nodes in a Stochastic Blockmodel graph when the minimum
expected degree does not grow linearly with the number of nodes in the graph.

Lemma 2.1, Theorem 2.2, and Theorem 3.1 all require the minimum expected
degree to grow at the same rate as n (ignoring logn terms). Although the strict as-
sumption is inappropriate for large networks, this simulation demonstrates (1) that
spectral clustering works for smaller networks and (2) that the asymptotic theory
presented earlier in the paper can be a guide to smaller networks. In these net-
works, it is not as unreasonable that each node would be connected to a significant
proportion of the other nodes.

5. Empirical edge density. In several networks, there is a natural or canoni-
cal notion of what an edge represents. In an online social network, friendship is the
canonical notion of an edge. With this canonical notion, the edges in most empiri-
cal networks are not dense enough to suggest the asymptotic framework assumed
in Lemma 2.1, Theorems 2.2 and 3.1.
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FIG. 3. This figure displays the number of misclustered nodes from three different models plotted
against τ = mini E(Dii)/n. The first model has 50 nodes in each block (thickest line), the second
model has 150 nodes in each block (line with medium thickness), the third model has 250 nodes
in each block (thinnest line). Each dot represents the average of ten simulations from the model. In
each of these models, p and r decrease such that p/r is always equal to 2. This ensures that τ goes
to zero, while the eigengap remains constant. Each of the three models is sensitive to small values
of τ . However, the larger models can tolerate a smaller value of τ . This suggests that as n increases,
τ should be allowed to decrease. The theorems in this paper do not allow for that possibility.

Although it is an area of future research to weaken the strong assumption on
the expected node degrees, there are potentially other notions of similarity that can
replace the canonical notion. Define the canonical edge set Ec to contain (i, j) if
nodes i and j are connected with a canonical edge. One possible extension of Ec

is

Eff = {(i, j) : if (i, k) ∈ Ec and (k, j) ∈ Ec for some k}.(5.1)

In words, (i, j) ∈ Eff if i and j are friends of friends.
Table 1 investigates the edge density of five empirical network defined using

both Ec and Eff . These five networks come from the Facebook networks of five
universities: California Institute of Technology (Caltech), Princeton University,
Georgetown University, University of Oklahoma, University of North Carolina at
Chapel Hill (UNC). Traud et al. (2008) made these data sets publicly available and
investigated the community structure in them.

Let Wc denote the adjacency matrix constructed from Ec. Let Wff denote the
adjacency matrix constructed from Eff . Let degc ∈ Rn and degff ∈ Rn denote
the degree sequences of the nodes with respect to the two edge sets Ec and Eff .
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TABLE 1
This table describes five basic characteristics of the Facebook social network within five

universities. In the table below, degc is the average node degree using the canonical edges of
friendship and degff is the average node degree using the “friends-of-friends” edges as defined
with (5.1). The statistics Tc and Tff [defined in (5.4) and (5.5)] are equal to the percent of nodes
that are connected to more than 10% of the nodes in the graph. The table below shows that the

network is much more connected when using edges defined by “friends-of-friends.”
All numbers are rounded to the nearest integer

School Caltech Princeton Georgetown Oklahoma UNC

n 769 6,596 9,414 17,425 18,163
degc 43 89 90 102 84
degff 487 2,663 3,320 5,420 5,242
Tc 16 0 0 0 0
Tff 94 88 87 81 79

That is, degff
i = ∑

j W
ff
ij . Similarly for degc. Define

degc = 1

n

∑
i

degc
i ,(5.2)

degff = 1

n

∑
i

degff
i ,(5.3)

Tc = 100%

n

∑
i

1{degc
i > n/10},(5.4)

Tff = 100%

n

∑
i

1{degff
i > n/10}.(5.5)

The first two quantities are equal to the average node degrees. The last two quan-
tities are the percent of nodes connected to more that 10% of the nodes in the
network.

Table 1 demonstrates how the edge density increases after replacing Ec

with Eff . The statistics Tc and Tff , in the last two lines of the table, can be used to
gauge the suitability of the assumption τ 2 > 2/ logn in the theorems above. Recall
that τ is the minimum expected degree divided by n. So, for example, if Tff = 1,
then it is reasonable to expect that τ > 1/10. Because there are some nodes that
have a very small degree, Tc and Tff look at the proportion of nodes that are well
connected.

It is an empirical observation that graphs have sparse degrees. This suggests that
the assumption τ 2 > 2/ logn in Lemma 2.1, Theorem 2.2 and Theorem 3.1 is not
satisfied in practice. Table 1 demonstrates that by using an alternative notion of
adjacency or connected, the network can become much more connected.



1900 K. ROHE, S. CHATTERJEE AND B. YU

6. Discussion. The goal of this paper is to bring statistical rigor to the study
of community detection by assessing how well spectral clustering can estimate
the clusters in the Stochastic Blockmodel. The Stochastic Blockmodel is easily
amenable to the analysis of clustering algorithms because of its simplicity and
well-defined communities. The fact that spectral clustering performs well on the
Stochastic Blockmodel is encouraging. However, because the Stochastic Block-
model fails to represent fundamental features that most empirical networks display,
this result should only be considered a first step.

This paper has two main results. The first main result, Theorem 2.2, proves
that under the latent space model, the eigenvectors of the empirical normalized
graph Laplacian converge to the eigenvectors of the population normalized graph
Laplacian—so long as (1) the minimum expected degree grows fast enough and (2)
the eigengap that separates the leading eigenvalues from the smaller eigenvalues
does not shrink too quickly. This theorem has consequences in addition to those
related to spectral clustering.

Visualization is an important tool for social networks analysts [Liotta (2004),
Freeman (2000), Wasserman and Faust (1994)]. However, there is little statisti-
cal understanding of these techniques under stochastic models. Two visualization
techniques, factor analysis and multidimensional scaling, have variations that uti-
lize the eigenvectors of the graph Laplacian. Similar approaches were suggested
for social networks as far back as the 1950s [Bock and Husain (1952), Breiger,
Boorman and Arabie (1975)]. Koren (2005) suggests visualizing the graph using
the eigenvectors of the unnormalized graph Laplacian. The analogous method for
the normalized graph Laplacian would use the ith row of X as the coordinates
for the ith node. Theorem 2.2 shows that, under the latent space model, this vi-
sualization is not much different than visualizing the graph by instead replacing
X with X . If there is structure in the latent space of a latent space model (e.g.,
the z1, . . . , zn form clusters) and this structure is represented in the eigenvectors
of the population normalized graph Laplacian, then plotting the eigenvectors will
potentially reveal this structure.

The Stochastic Blockmodel is a specific latent space model that satisfies these
conditions. It has well-defined clusters or blocks and Lemma 3.1 shows that, under
weak assumptions, the eigenvectors of the population normalized graph Laplacian
perfectly identify the block structure. Theorem 2.2 suggests that you could dis-
cover this clustering structure by using the visualization technique proposed by
Koren (2005). The second main result, Theorem 3.1, goes further to suggest just
how many nodes you might miscluster by running k-means on those points (this is
spectral clustering). Theorem 3.1 proves that if (1) the minimum expected degree
grows fast enough and (2) the smallest nonzero eigenvalue of the population nor-
malized graph Laplacian shrinks slowly enough, then the proportion of nodes that
are misclustered by spectral clustering vanishes in the asymptote.

The asymptotic framework applied in Theorem 3.1 allows the number of blocks
to grow with the number of nodes; this is the first such high-dimensional clustering
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result. Allowing the number of clusters to grow is reasonable because as Leskovec
et al. (2008) noted, large networks do not necessarily have large communities.
In fact, in a wide range of empirical networks, the tightest communities have a
roughly constant size. Allowing the number of blocks to grow with the number of
nodes ensures the clusters do not become too large.

There are two main limitations of our results that are highlighted in the simu-
lations in Section 4. First, Theorem 3.1 does not show that spectral clustering is
consistent under the Stochastic Blockmodel; it only gives a bound on the number
of misclassified nodes. Improving this bound is an area for future research. The
second shortcoming is that Lemma 2.1, Theorems 2.2 and 3.1 all require the mini-
mum expected degree to grow at the same rate as n (ignoring logn terms). In large
empirical networks, the canonical edges are not dense enough to suggest this type
of asymptotic framework. Section 5 suggests alternative definitions of edges that
might increase the edge density. That said, studying spectral clustering under more
realistic degree distributions is an area for future research.

APPENDIX A: PROOF OF THEOREM 2.1

First, a proof of Lemma 2.1.

PROOF OF LEMMA 2.1. By eigendecomposition, M = ∑n
i=1 λiuiu

T
i where

u1, . . . , un are orthonormal and eigenvectors of M . So,

MM =
(

n∑
i=1

λiuiu
T
i

)(
n∑

i=1

λiuiu
T
i

)
=

n∑
i=1

λ2
i uiu

T
i .

Right multiplying by any ui yields MMui = λ2ui . This proves one direction of
part one in the lemma, if λ is an eigenvalue of M , then λ2 is an eigenvalue of MM .
It also proves part two of the lemma, all eigenvectors of M are also eigenvectors
of MM .

To see that if λ2 is an eigenvalue of MM , then λ or −λ is an eigenvalue of M ,
notice that both M and MM have exactly n eigenvalues (counting multiplicities)
because both matrices are real and symmetric. So, the previous paragraph specifies
n eigenvalues of MM by squaring the eigenvalues of M . Because MM has exactly
n eigenvalues, there are no other eigenvalues.

The rest of the proof is devoted to part three of the lemma. Let MMv = λ2v. By
eigenvalue decomposition, M = ∑

i λiuiu
T
i and because u1, . . . , un are orthonor-

mal (M is real and symmetric) there exists α1, . . . , αn such that v = ∑
i αiui .

λ2
∑
i

αiui = λ2v = MMv = M

(∑
i

λiuiu
T
i v

)
= M

(∑
i

λiαiui

)

= ∑
i

λiαiMui = ∑
i

λ2
i αiui.
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By the orthogonality of the ui ’s, it follows that λ2αi = λ2
i αi for all i. So, if λ2

i �= λ2,
then αi = 0. �

For i = 1, . . . , n, define ci = Dii/n and τ = mini=1,...,n ci .

LEMMA A.1. If n1/2/ logn > 2,

P

(
‖LL − L L ‖F ≥ 32

√
2 logn

τ 2n1/2

)
≤ 4n2−2τ 2 logn.

The main complication of the proof of Lemma A.1 is controlling the dependen-
cies between the elements of LL. We do this with an intermediate step that uses
the matrix

L̃ = D−1/2WD−1/2

and two sets � and �. � constrains the matrix D, while � constrains the matrix
WD−1W . These sets will be defined in the proof. To ease the notation, define

P��(B) = P(B ∩ � ∩ �),

where B is some event.

PROOF OF LEMMA A.1. This proof shows that under the sets � and � the
probability of the norm exceeding 32

√
2 log(n)τ−2n−1/2 is exactly zero for large

enough n and that the probability of � or � not happening is exponentially small.
To ease notation, define a = 32

√
2 log(n)τ−2n−1/2.

The diagonal terms behave differently than the off diagonal terms. So, break
them apart:

P(‖LL − L L ‖F ≥ a)

≤ P��(‖LL − L L ‖F ≥ a) + P
(
(� ∩ �)c

)
= P��

(∑
i,j

[LL − L L ]2
ij ≥ a2

)
+ P

(
(� ∩ �)c

)

≤ P��

(∑
i �=j

[LL − L L ]2
ij ≥ a2/2

)

+ P��

(∑
i

[LL − L L ]2
ii ≥ a2/2

)

+ P
(
(� ∩ �)c

)
.
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First, address the sum over the off diagonal terms:

P��

(∑
i �=j

[LL − L L ]2
ij ≥ a2/2

)

≤ P��

(⋃
i �=j

{
[LL − L L ]2

ij ≥ a2

2n2

})
(A.1)

≤ ∑
i �=j

P��

(
|LL − L L |ij ≥ a√

2n

)

≤ ∑
i �=j

P��

(
|LL − L̃L̃|ij + |L̃L̃ − L L |ij ≥ a√

2n

)

≤ ∑
i �=j

[
P��

(
|LL − L̃L̃|ij ≥ a√

8n

)

+ P��

(
|L̃L̃ − L L |ij ≥ a√

8n

)]
.(A.2)

The sum over the diagonal terms is similar,

P��

(∑
i

[LL − L L ]2
ii ≥ a2/2

)

≤ ∑
i

[
P��

(
|LL − L̃L̃|ii ≥ a√

8n

)
+ P��

(
|L̃L̃ − L L |ii ≥ a√

8n

)]

with one key difference. In (A.1), the union bound address nearly n2 terms. This
yields the 1/n2 term in line (A.1). After taking the square root, each term has a
lower bound with a factor of 1/n. However, because there are only n terms on the
diagonal, after taking the square root in the last equation above, the lower bound
has a factor of 1/

√
n.

To constrain the terms |L̃L̃ − L L |ij for i = j and i �= j , define

� = ⋂
i,j

{∣∣∣∣∑
k

(WikWjk − pijk)/ck

∣∣∣∣ < n1/2 logn

}
,

where

pijk =
{

pikpjk, if i �= j ,
pik, if i = j ,

for pij = Wij . We now show that for large enough n and any i �= j ,

P�

(
|L̃L̃ − L L |ij ≥ a√

8n

)
= 0,(A.3)
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P�

(
|L̃L̃ − L L |ii ≥ a√

8n

)
= 0.(A.4)

To see (A.3), expand the left-hand side of the inequality for i �= j ,

|L̃L̃ − L L |ij = 1

(DiiDjj )1/2

∣∣∣∣∑
k

(WikWjk − pikpjk)/Dkk

∣∣∣∣
= 1

n2√cicj

∣∣∣∣∑
k

(WikWjk − pikpjk)/ck

∣∣∣∣.
This is bounded on �, yielding

|L̃L̃ − L L |ij <
logn

τn3/2 ≤ 32
√

2 logn√
8τ 2n3/2

= a√
8n

.

So, (A.3) holds for i �= j . Equation (A.4) is different because W 2
ik = Wik . As a

result, the diagonal of L̃L̃ is a biased estimator of the diagonal of L L .

|L̃L̃ − L L |ii =
∣∣∣∣∑

k

W 2
ik − p2

ik

DiiDkk

∣∣∣∣ =
∣∣∣∣∑

k

Wik − p2
ik

DiiDkk

∣∣∣∣
≤

∣∣∣∣∑
k

Wik − pik

DiiDkk

∣∣∣∣ +
∣∣∣∣∑

k

pik − p2
ik

DiiDkk

∣∣∣∣(A.5)

= 1

cin2

(∣∣∣∣∑
k

(Wik − pik)/ck

∣∣∣∣ +
∣∣∣∣∑

k

(pik − p2
ik)/ck

∣∣∣∣
)
.

Similar to the i �= j case, the first term is bounded by log(n)τ−1n−3/2 on �. The
second term is bounded by τ−2n−1:

1

cin2

∣∣∣∣∑
k

(pik − p2
ik)/ck

∣∣∣∣ ≤ 1

cin2

∣∣∣∣∑
k

1/τ

∣∣∣∣ ≤ 1

τ 2n
.

Substituting the value of a in reveals that on the set �, both terms in (A.5) are
bounded by a(2

√
8n)−1. So, their their sum is bounded by a(

√
8n)−1, satisfying

(A.4).
This next part addresses the difference between LL and L̃L̃, showing that for

large enough n, any i �= j , and some set �,

P��

(
|LL − L̃L̃|ij ≥ a√

8n

)
= 0,

P��

(
|LL − L̃L̃|ii ≥ a√

8n

)
= 0.

It is enough to show that for any i and j ,

P��

(
|LL − L̃L̃|ij ≥ a√

8n

)
= 0.(A.6)
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For b(n) = log(n)n−1/2, define u(n) = 1 + b(n), l(n) = 1 − b(n). With these
define the following sets:

� = ⋂
i

{Dii ∈ Dii[l(n), u(n)]},

�(1) = ⋂
i

{
1

Dii

∈ 1

Dii

[u(n)−1, l(n)−1]
}
,

�(2) = ⋂
i,j

{
1

(DiiDjj )1/2 ∈ 1

(DiiDjj )1/2 [u(n)−1, l(n)−1]
}
,

�(3) = ⋂
i,j,k

{
1

Dkk(DiiDjj )1/2 ∈ [u(n)−2, l(n)−2]
Dkk(DiiDjj )1/2

}
.

Notice that � ⊆ �(1) ⊆ �(2) and � ⊆ �(3). Define another set:

�(4) = ⋂
i,j,k

{
1

Dkk(DiiDjj )1/2 ∈ [1 − 16b(n),1 + 16b(n)]
Dkk(DiiDjj )1/2

}
.

The next steps show that this set contains �. It is sufficient to show �(3) ⊂ �(4).
This is true because

1

u(n)2 = 1

(1 + b(n))2 = b(n)−2

(b(n)−1 + 1)2 >
b(n)−2 − 1

(b(n)−1 + 1)2

= b(n)−1 − 1

b(n)−1 + 1
= 1 − 2

b(n)−1 + 1
> 1 − 16b(n).

The 16 in the last bound is larger than it needs to be so that the upper and lower
bounds in �(4) are symmetric. For the other direction,

1

l(n)2 = 1

(1 − b(n))2 = b(n)−2

(b(n)−1 − 1)2 =
(

1 + 1

b(n)−1 − 1

)2

= 1 + 2

b(n)−1 − 1
+ 1

(b(n)−1 − 1)2 .

We now need to bound the last two elements here. We are assuming,
√

n/

logn > 2. Equivalently, 1 − b(n) > 1/2. So, we have both of the following:

1

(b(n)−1 − 1)2 <
2

b(n)−1 − 1
and

2

b(n)−1 − 1
= 2b(n)

1 − b(n)
< 8b(n).

Putting these together,

1

l(n)2 < 1 + 16b(n).
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This shows that � ⊂ �(4). Now, under the set �, and thus �(4),

|LL − L̃L̃|ij =
∣∣∣∣∑

k

(
WikWjk

Dkk(DiiDjj )1/2 − WikWjk

Dkk(DiiDjj )1/2

)∣∣∣∣
≤ ∑

k

∣∣∣∣ 1

Dkk(DiiDjj )1/2 − 1

Dkk(DiiDjj )1/2

∣∣∣∣
≤ ∑

k

∣∣∣∣ 16b(n)

Dkk(DiiDjj )1/2

∣∣∣∣
≤ ∑

k

16b(n)

τ 2n2 ≤ 16b(n)

τ 2n
.

This is equal to a(
√

8n)−1, showing (A.4) holds for all i and j .
The remaining step is to bound P((� ∩�)c). Using the union bound, this is less

than or equal to P(�c) + P(�c):

P(�c) = P

(⋃
i

{Dii /∈ Dii[1 − b(n),1 + b(n)]}
)

≤ ∑
i

P
({Dii /∈ Dii[1 − b(n),1 + b(n)]})

<
∑
i

2 exp
(
−2

(
Dii logn√

n

)2 1

n

)

≤ 2n exp(−2τ 2(logn)2)

= 2n1−2τ 2 logn,

where the second to last inequality is by Hoeffding’s inequality. The next inequal-
ity is Hoeffding’s:

P(�c) = P

(⋃
i,j

{∣∣∣∣∑
k

(WikWjk − pijk)/ck

∣∣∣∣ > n1/2 logn

})

= ∑
i,j

P

(∣∣∣∣∑
k

(WikWjk − pijk)/ck

∣∣∣∣ > n1/2 logn

)

<
∑
i,j

2 exp
(
−2n(logn)2

/∑
k

1/c2
k

)

≤ ∑
i,j

2 exp(−2(logn)2τ 2)

≤ 2n2 exp(−2(logn)2τ 2)

≤ 2n2−2τ 2 logn.
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Because W is symmetric, the independence of the WikWjk across k is not obvious.
However, because Wii = Wjj = 0, they are independent across k.

Putting the pieces together,

P

(
‖LL − L L ‖F ≥ 32

√
2 logn

τ 2n1/2

)

≤ P��

(
‖LL − L L ‖F ≥ 32

√
2 logn

τ 2n1/2

)

+ P
(
(� ∩ �)c

)
< 0 + 2n1−2τ 2 logn + 2n2−2τ 2 logn

≤ 4n2−2τ 2 logn. �

The following proves Theorem 2.1.

PROOF OF THEOREM 2.1. Adding the n super- and subscripts to Lemma A.1,
it states that if n1/2/ logn > 2, then

P

(
‖LL − L L ‖F ≥ c logn

τ 2n1/2

)
< 4n2−2τ 2 logn

for c = 32
√

2. By assumption, for all n > N , τ 2
n logn > 2. This implies that 2 −

2τ 2
n logn < −2 for all n > N . Rearranging and summing over n, for any fixed

ε > 0,
∞∑

n=1

P

(‖L(n)L(n) − L (n)L (n)‖F

cτ−2
n log(n)n−1/2/ε

≥ ε

)
≤ N + 4

∞∑
n=N+1

n2−2τ 2
n logn

≤ N + 4
∞∑

n=N+1

n−2,

which is a summable sequence. By the Borel–Cantelli theorem,∥∥L(n)L(n) − L (n)L (n)
∥∥
F = o(τ−2

n log(n)n−1/2) a.s. �

APPENDIX B: DAVIS–KAHAN THEOREM

The statement of the theorem below and the preceding explanation come largely
from von Luxburg (2007). For a more detailed account of the Davis–Kahan theo-
rem, see Stewart and Sun (1990).

To avoid the issues associated with multiple eigenvalues, this theorem’s original
statement is instead about the subspace formed by the eigenvectors. For a distance
between subspaces, the theorem uses “canonical angles,” which are also known as
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“principal angles.” Given two matrices M1 and M2 both in Rn×p with orthonormal
columns, the singular values (σ1, . . . , σp) of M ′

1M2 are the cosines of the princi-
pal angles (cos�1, . . . , cos�p) between the column space of M1 and the column
space of M2. Define sin�(M1,M2) to be a diagonal matrix containing the sine of
the principal angles of M ′

1M2 and define

d(M1,M2) = ‖sin�(M1,M2)‖F ,(B.1)

which can be expressed as (p − ∑p
j=1 σ 2

j )1/2 by using the identity sin2 θ = 1 −
cos2 θ .

PROPOSITION B.1 (Davis–Kahan). Let S ⊂ R be an interval. Denote X as
an orthonormal matrix whose column space is equal to the eigenspace of L L
corresponding to the eigenvalues in λS(L L ) [more formally, the column space of
X is the image of the spectral projection of L L induced by λS(L L )]. Denote by
X the analogous quantity for LL. Define the distance between S and the spectrum
of L L outside of S as

δ = min{|λ − s|;λ eigenvalue of L L , λ /∈ S, s ∈ S}.
Then the distance d(X ,X) = ‖sin�(X ,X)‖F between the column spaces of X
and X is bounded by

d(X, X ) ≤ ‖LL − L L ‖F

δ
.

In the theorem, L L and LL can be replaced by any two symmetric matrices.
The rest of this section converts the bound on d(X, X ) to a bound on ‖X− X O‖F ,
where O is some orthonormal rotation. For this, we will make an additional as-
sumption that X and X have the same dimension. Assume there exists S ⊂ R con-
taining k eigenvalues of L L and k eigenvalues of LL, but containing no other
eigenvalues of either matrix. Because LL and L L are symmetric, its eigenvectors
can be defined to be orthonormal. Let the columns of X ∈ Rn×k be k orthonor-
mal eigenvectors of L L corresponding to the k eigenvalues contained in S. Let
the columns of X ∈ Rn×k be k orthonormal eigenvectors of LL corresponding to
the k eigenvalues contained in S. By singular value decomposition, there exist or-
thonormal matrices U,V and diagonal matrix  such that X T X = UV T . The
singular values, σ1, . . . , σk , down the diagonal of  are the cosines of the principal
angles between the columns space of X and the column space of X .

Although the Davis–Kahan theorem is a statement regarding the principal an-
gles, a few lines of algebra show that it can be extended to a bound on the Frobenius
norm between the matrix X and X UV T , where the matrix UV T is an orthonor-
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mal rotation:
1

2
‖X − X UV T ‖2

F = 1

2
trace

(
(X − X UV T )T (X − X UV T )

)

= 1

2
trace(V UT X T X UV T + XT X − 2V UT X T X)

= 1

2

(
k + k − 2 trace(V UT X T X)

)

≤ ‖LL − L L ‖2
F

δ2 ,

where the last inequality is explained below. It follows from a property of the trace,
the fact that the singular values are in [0,1], the trigonometric identity cos2 θ =
1 − sin2 θ and the Davis–Kahan theorem:

trace(V UT X T X) =
k∑

i=1

σi ≥
k∑

i=1

(cos�i)
2 =

k∑
i=1

1 − (sin�i)
2

= k − (d(X,X ))2 ≥ k − ‖LL − L L ‖2
F

δ2 .

This shows that the Davis–Kahan theorem can instead be thought of as a bounding
‖X UV T − X‖2

F instead of d(X ,X). The matrix O in Theorem 2.1 is equal to
UV T . In this way, it is dependent on X and X .

APPENDIX C: PROOF OF THEOREM 2.2

By Lemma 2.1, the column vectors of Xn are eigenvectors of L(n)L(n) corre-
sponding to all the eigenvalues in λSn(L

(n)L(n)). For the application of the Davis–
Kahan theorem, this means that the column space of Xn is the image of the spectral
projection of L(n)L(n) induced by λSn(L

(n)L(n)), similarly for the column vectors
of Xn, the matrix L (n)L (n) and the set λSn(L

(n)L (n)).
Recall that λ̄

(n)
1 ≥ · · · ≥ λ̄

(n)
n are defined to be the eigenvalues of symmetric ma-

trix L (n)L (n) and λ
(n)
1 ≥ · · · ≥ λ

(n)
n are defined to be the eigenvalues of symmetric

matrix L(n)L(n). From (2.2),

max
i

∣∣λ(n)
i − λ̄

(n)
i

∣∣ = o

(
logn

τ 2
nn1/2

)
.

By assumption, τ 2
n > 2/ logn. So,

logn

τ 2
nn1/2 <

(logn)2

2n1/2 = O(min{δn, δ
′
n}),

where the last step follows by assumption. Thus,

max
i

∣∣λ(n)
i − λ̄

(n)
i

∣∣ = o(min{δn, δ
′
n}).
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This means that, eventually, λ
(n)
i ∈ Sn if and only if λ̄

(n)
i ∈ Sn. Thus, the number

of elements in λSn(L
(n)L (n)) is eventually equal to the number of elements in

λSn(L
(n)L(n)) implying that Xn and Xn will eventually have the same number of

columns, kn = Kn.
Once Xn and Xn have the same number of columns, define matrices Un and Vn

with singular value decomposition: X T
n Xn = UnnV

T
n . Define On = UnV

T
n . The

result follows from the Davis–Kahan theorem and Theorem 2.1:

‖Xn − XnOn‖F ≤ 2‖L(n)L(n) − L (n)L (n)‖F

δn

= o

(
logn

δnτ 2
nn1/2

)
a.s.

APPENDIX D: STOCHASTIC BLOCKMODEL

PROOF OF LEMMA 3.1. First, construct the matrix BL ∈ Rk×k such that L =
ZBLZT . Define DB = diag(BZT 1n) ∈ Rk×k where 1n is a vector of ones in Rn.
For any i, j ,

Lij = Wij√
DiiDjj

= ziD
−1/2
B BD

−1/2
B (zj )

T .

Define BL = D
−1/2
B BD

−1/2
B . It follows that Lij = (ZBLZT )ij and thus L =

ZBLZT .
Because B is symmetric, so are BL and (ZT Z)1/2BL(ZT Z)1/2. Notice that

det((ZT Z)1/2BL(ZT Z)1/2) = det((ZT Z)1/2)det(BL)det((ZT Z)1/2) > 0.

By eigenvector decomposition, define V ∈ Rk×k and diagonal matrix � ∈ Rk×k

such that

(ZT Z)1/2BL(ZT Z)1/2 = V �V T .(D.1)

Because the determinant of the left-hand side of (D.1) is greater than zero, none
of the eigenvalues in � are equal to zero. Left multiply (D.1) by Z(ZT Z)−1/2 and
right multiply by (ZT Z)−1/2ZT . This shows

ZBLZT = Zμ�(Zμ)T ,(D.2)

where μ = (ZT Z)−1/2V . Notice that (Zμ)T (Zμ) = Ik , the k × k identity matrix.
So, right multiplying (D.2) by Zμ shows that the columns of Zμ are eigenvectors
of ZBLZT = L with the eigenvalues down the diagonal of �. Equation (D.2)
shows that these are the only nonzero eigenvalues.

It remains to prove equivalence statement (3.2). Notice

det(μ) = det((ZT Z)−1/2)det(V ) > 0.

So, μ−1 exists and statement (3.2) follows. �
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The following is a proof of Lemma 3.2.

PROOF OF LEMMA 3.2. The following statement is the essential ingredient to
prove Lemma 3.2.

zi �= zj then ‖ziμ − zjμ‖2 ≥
√

2/P .(D.3)

The proof of statement (D.3) requires the following definition:

‖μ‖2
m = min

x : ‖x‖2=1
‖xμ‖2

2.

Notice that

‖μ‖2
m = min

x : ‖x‖2=1
xμμT xT = min

x : ‖x‖2=1
x(ZT Z)−1xT = 1/P.

So,

‖ziμ − zjμ‖2 = ‖(zi − zj )μ‖2 ≥ √
2‖μ‖m =

√
2/P .

Proving statement (D.3). The proof of Lemma 3.2 follows:

‖ciO − zjμ‖2 ≥ ‖ziμ − zjμ‖2 − ‖ciO − ziμ‖2 ≥
√

2

P
− 1

2

√
2

P
= 1√

2P
. �

PROOF OF THEOREM 3.1. Define X ∈ Rn×k to contain the eigenvectors of L

corresponding to the largest k eigenvalues and define

C = arg min
M∈R(n,k)

‖X − M‖2
F ,

where R(n, k) is defined as:

R(n, k) = {M ∈ Rn×k :M has no more than k unique rows}.
Notice that

min
M∈R(n,k)

‖X − M‖2
F = min

{m1,...,mk}⊂Rk

∑
i

min
g

‖xi − mg‖2
2.

This shows that the ith row of C is equal to ci as defined in Definition 3. Because
ZμO ∈ R(n, k), notice that

‖X − C‖2 ≤ ‖X − ZμO‖2.(D.4)

By the triangle inequality and inequality D.4,

‖C − ZμO‖2 ≤ ‖C − X‖2 + ‖X − ZμO‖2 ≤ 2‖X − ZμO‖2.
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In the notation of Theorem 2.2, define Sn = [λ2
kn

/2,2]. Then, δ = δ′ = λ2
kn

/2. By

assumption, n−1/2(logn)2 = O(λ2
kn

) = O(min{δ, δ′}). This implies that the results
from Theorem 2.2 hold. Putting the pieces together,

|M | ≤ ∑
i∈M

1 ≤ 2Pn

∑
i∈M

‖ci − ziμO‖2
2

≤ 2Pn‖C − ZμO‖2
F

≤ 8Pn‖X − ZμO‖2
F

= o

(
Pn(logn)2

nλ4
kn

τ 4
n

)
a.s.

�

In the second example of Section 3, it was claimed that

λk = 1

k(r/p) + 1
.

The following is a proof of that statement.
Define B ∈ Rk×k such that

B = pIk + r1k1T
k ,

where Ik ∈ Rk×k is the identity matrix, 1k ∈ Rk is a vector of ones, r ∈ (0,1)

and p ∈ (0,1 − r). Assume that p and r are fixed and k can grow with n. Let
Z ∈ {0,1}n×k be such that ZT 1n = s1k . This guarantees that all k groups have
equal size s. The Stochastic Blockmodel in the second example of Section 3 has
the population adjacency matrix, W = ZBZT .

Define

BL = 1

nr + sp
(pIk + r1k1T

k ).

From the argument in the proof of Lemma 3.1, L has the same nonzero eigen-
values as (ZT Z)1/2BL(ZT Z)1/2 ∈ Rk×k . Let λ1, . . . , λk be the eigenvalues of
(ZT Z)1/2BL(ZT Z)1/2 = (s1/2Ik)BL(s1/2Ik) = sBL. Notice that 1k is an eigen-
vector with eigenvalue 1:

sBL1k = s

nr + sp
(pIk + r1k1T

k )1k = s(p + kr)

nr + sp
1k = 1k.

Let λ1 = 1. Define

U = {u :‖u‖2 = 1, uT 1 = 0}.
Notice that for all u ∈ U ,

sBLu = s

nr + sp
(pIk + r1k1T

k )u = sp

nr + sp
u.(D.5)
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Equation (D.5) implies that for i > 1,

λi = sp

nr + sp
.

This is also true for i = k.

λk = sp

nr + sp
= sp

nr + sp
= 1

k(r/p) + 1
.

This is the smallest nonzero eigenvalue of L .

Acknowledgments. The authors are grateful to Michael Mahoney and Ben-
jamin Olding for their stimulating discussions. Also, thank you to Jinzhu Jia and
Reza Khodabin for your helpful comments and suggestions on this paper.

REFERENCES

AIROLDI, E. M., BLEI, D. M., FIENBERG, S. E. and XING, E. P. (2008). Mixed membership
stochastic blockmodels. J. Mach. Learn. Res. 9 1981–2014.

ALBERT, R. and BARABÁSI, A. L. (2002). Statistical mechanics of complex networks. Rev. Modern
Phys. 74 47–97. MR1895096

BARABÁSI, A. L. and ALBERT, R. (1999). Emergence of scaling in random networks. Science 286
509–512. MR2091634

BELKIN, M. (2003). Problems of learning on manifolds. Ph.D. thesis, Univ. Chicago.
BELKIN, M. and NIYOGI, P. (2003). Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Comput. 15 1373–1396.
BELKIN, M. and NIYOGI, P. (2008). Towards a theoretical foundation for Laplacian-based manifold

methods. J. Comput. System Sci. 74 1289–1308. MR2460286
BHATIA, R. (1987). Perturbation Bounds for Matrix Eigenvalues. Longman, Harlow. MR0925418
BICKEL, P. J. and CHEN, A. (2009). A nonparametric view of network models and Newman–Girvan

and other modularities. Proc. Nat. Acad. Sci. India Sect. A 106 21068.
BOCK, R. D. and HUSAIN, S. (1952). Factors of the Tele: A preliminary report. Sociometry 15

206–219.
BOUSQUET, O., CHAPELLE, O. and HEIN, M. (2004). Measure based regularization. Adv. Neural

Inf. Process. Syst. 16.
BRANDES, U., DELLING, D., GAERTLER, M., GÖRKE, R., HOEFER, M., NIKOLOSKI, Z. and

WAGNER, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data En-
gineering 20 172–188.

BREIGER, R. L., BOORMAN, S. A. and ARABIE, P. (1975). An algorithm for clustering relational
data with applications to social network analysis and comparison with multidimensional scaling.
J. Math. Psych. 12 328–383.

CHAMPION, M. (1998). How many atoms make up the universe? Available at http://www.madsci.
org/posts/archives/oct98/905633072.As.r.html.

CHOI, D., WOLFE, P. and AIROLDI, E. (2010). Stochastic blockmodels with growing number of
classes. Preprint. Available at ArXiv:1011.4644.

COIFMAN, R., LAFON, S., LEE, A., MAGGIONI, M., NADLER, B., WARNER, F. and ZUCKER, S.
(2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data:
Diffusion maps. Proc. Nat. Acad. Sci. India Sect. A 102 7426–7431.

CONDON, A. and KARP, R. M. (1999). Algorithms for graph partitioning on the planted partition
model. In Randomization, Approximation, and Combinatorial Optimization (Berkeley, CA, 1999).
Lecture Notes in Comput. Sci. 1671 221–232. Springer, Berlin. MR1775522

http://www.ams.org/mathscinet-getitem?mr=1895096
http://www.ams.org/mathscinet-getitem?mr=2091634
http://www.ams.org/mathscinet-getitem?mr=2460286
http://www.ams.org/mathscinet-getitem?mr=0925418
http://www.madsci.org/posts/archives/oct98/905633072.As.r.html
http://arxiv.org/abs/ArXiv:1011.4644
http://www.ams.org/mathscinet-getitem?mr=1775522
http://www.madsci.org/posts/archives/oct98/905633072.As.r.html


1914 K. ROHE, S. CHATTERJEE AND B. YU

DONATH, W. E. and HOFFMAN, A. J. (1973). Lower bounds for the partitioning of graphs. IBM J.
Res. Develop. 17 420–425. MR0329965

ERDÖS, P. and RÉNYI, A. (1959). On random graphs. Publ. Math. Debrecen 6 290–297.
FIEDLER, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J. 23 298–305.

MR0318007
FJÄLLSTRÖM, P. (1998). Algorithms for graph partitioning: A survey. Computer and Information

Science 3. Available at http://www.ep.liu.se/ea/cis/1998/010/.
FORTUNATO, S. (2010). Community detection in graphs. Phys. Rep. 486 75–174. MR2580414
FRANK, O. and STRAUSS, D. (1986). Markov graphs. J. Amer. Statist. Assoc. 81 832–842.

MR0860518
FREEMAN, L. C. (2000). Visualizing social networks. Journal of Social Structure 1(1).
GINÉ, E. and KOLTCHINSKII, V. (2006). Empirical graph Laplacian approximation of Laplace–

Beltrami operators: Large sample results. In High Dimensional Probability. Institute of Math-
ematical Statistics Lecture Notes—Monograph Series 51 238–259. IMS, Beachwood, OH.
MR2387773

GIRVAN, M. and NEWMAN, M. (2002). Community structure in social and biological networks.
Proc. Nat. Acad. Sci. India Sect. A 99 7821–7826. MR1908073

GOLDENBERG, A., ZHENG, A. X., FIENBERG, S. E. and AIROLDI, E. M. (2010). A survey of
statistical network models. Foundations and Trends in Machine Learning 2 129–233.

HAGEN, L. and KAHNG, A. B. (1992). New spectral methods for ratio cut partitioning and cluster-
ing. IEEE Trans. Computer-Aided Design 11 1074–1085.

HANDCOCK, M. S., RAFTERY, A. E. and TANTRUM, J. M. (2007). Model-based clustering for
social networks. J. Roy. Statist. Soc. Ser. A 170 301–354. MR2364300

HEIN, M. (2006). Uniform convergence of adaptive graph-based regularization. In Learning Theory.
Lecture Notes in Comput. Sci. 4005 50–64. Springer, Berlin. MR2277918

HEIN, M., AUDIBERT, J. Y. and VON LUXBURG, U. (2005). From graphs to manifolds—weak and
strong pointwise consistency of graph Laplacians. In Learning Theory. Lecture Notes in Comput.
Sci. 3559 470–485. Springer, Berlin. MR2203281

HENDRICKSON, B. and LELAND, R. (1995). An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM J. Sci. Comput. 16 452–469. MR1317066

HOFF, P. D., RAFTERY, A. E. and HANDCOCK, M. S. (2002). Latent space approaches to social
network analysis. J. Amer. Statist. Assoc. 97 1090–1098. MR1951262

HOLLAND, P., LASKEY, K. B. and LEINHARDT, S. (1983). Stochastic blockmodels: Some first
steps. Social Networks 5 109–137. MR0718088

HOLLAND, P. W. and LEINHARDT, S. (1981). An exponential family of probability distributions for
directed graphs. J. Amer. Statist. Assoc. 76 33–50. MR0608176

KALLENBERG, O. (2005). Probabilistic Symmetries and Invariance Principles. Springer, New York.
MR2161313
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