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Advances in Wireless Sensor Networks (WSN) technology have provided promising possibilities in detecting a
change in the state of a structure through monitoring its features estimated using sensor data. The natural
vibration properties of the structure are a set of features commonly used for this purpose and are often estimated
using a multivariate autoregressive model (AR model) for the measured structure’s response to ambient
vibrations. Fitting a multivariate AR model to the observed acceleration requires the computation of the lagged
covariance between the measurements in all nodes. The resulting volume of data transmission causes significant
latency due to the low data bandwidth of WSNs in addition to having a high transmission energy cost. In this
paper, a set of restrictions to the estimation of the AR model is introduced. Such restrictions significantly reduce
the volume of data flowing through the WSN thus reducing the latency in obtaining modal parameters and
extending the battery lifetime of the WSN. A physical motivation is given for the restrictions based on a linear
model for a multi-degree of freedom vibrating system. Stabilisation diagrams are compared for the restricted and
full AR models fitted using data simulated from linear structures and real data collected from a WSN deployed
on the Golden Gate Bridge (GGB). These stabilisation diagrams show that the estimated modes using the
restricted AR models are of comparable quality to that of the full AR model while substantially reducing the
volume of transmitted data.

Keywords: modal identification; distributed processing; wireless sensor networks; bridge monitoring; restricted
models

1. Introduction

With the advances in Wireless Sensor Network (WSN)

technology both in terms of hardware design and

software architecture, and their increasingly wide-

spread application in structural engineering, novel

data processing techniques are viewed as essential

tools to enhance the performance of the integrated

systems (Kim et al. 2007). In wired sensor networks,

the data collection paradigm assumes ample availabil-

ity of power and communication bandwidth in the

entire network. With this assumption, there is little cost

to transfer each and every measurement to a central

processing location, where data processing operations,

including filtering and digitisation, are performed. The

latency in collecting and processing the data at the

central processing location is minimal due to the high

data transmission bandwidth capacity in a wired

network.
In contrast to wired sensor networks, WSNs can

operate at lower installation and maintenance cost,

while allowing data to be collected at higher spatial

and temporal resolution. To fully reap the benefits

of WSN, energy use must be carefully budgeted.

That, in turn, requires that data transmission be kept
to a minimum, since data transmission is the most
energy expensive task in a WSN. Unlike wired sensor
networks, a node in a WSN has considerable process-
ing power that could be exploited to save power.
In-network processing can save energy, since commu-
nicating one bit of data is about 10,000 times more
energy intensive than performing an arithmetic oper-
ation on that same bit (Glaser and Tolman 2008). This
is evident, for example, by comparing the power
requirement of a common CC2420 transceiver which
consumes 240 mW� sec for a single hop transmission
of 1 kB data, versus 25 nW� sec power consumed for
performing a flop on 1 kB data by PXA27x Processor
used in Imote2 devices. In addition to the energy cost,
latency in analysis is a compelling reason for keeping
data transmission to a minimum. Due to the limited
communication bandwidth in a WSN, transmitting
large volumes of data from the sensors to a central
location can take a prohibitively long time.

Natural vibration properties of the structure have
been the focus of many studies in structural health
monitoring (SHM) and provide a great insight into the
condition of the structure (Abdel-Ghaffar and Scanlan
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1985a,b; Doebling, Farrar, and Prime 1998; Chang,
Chang, and Zhang 2001; Cunha, Caetano, and
Delgado 2001; Farrar 2001). The objective of modal
identification process is to estimate the natural vibra-
tion properties of a structure, i.e. its natural frequen-
cies, damping ratios and mode shapes, using the
measured response of the system to ambient or
forced excitations. Several methods exist for identify-
ing the modal parameters of a structure, such as Eigen
Realisation Algorithm (ERA), Multivariate
Autoregressive Moving Average with Exogenous
models (ARMAX), and Ibrahim Time Domain
method (ITD) and Stochastic Subspace Identification
technique (SSI); see Doebling et al. (1998) and Sohn,
Farrar, Hemez, Czarnecki, Shunk, and Stinemates
(2004) for a more complete list and further informa-
tion. Olfati-Saber (2007) and Shen, Wang, and Hung
(2010) present recent studies on the distributed state
estimation of WSN. For linear systems, all of these
modal identification methods rely either explicitly or
implicitly on the space–time covariance of measured
responses of the structure.

This article focuses on a popular modal identifica-
tion method based on fitting a multivariate autore-
gressive model (AR model) to the measurements of the
structure’s response to ambient vibrations. The con-
tribution of this article is to introduce a distributed
form of multivariate AR models that are suited for
wireless networks, resulting in a shorter delay in
identification of modal properties of the monitored
structure, with a lower communication power require-
ment. In the AR model, the observed response at time t
is modelled as a linear relationship between the
observed responses at times t� 1, t� 2, . . . , t� q. The
coefficients in this linear model capture the temporal
and spatial covariances of the observed responses at
different points in time and space. These autoregressive
coefficients can be converted into estimates for the
natural frequencies, damping ratios and mode shapes
of the structure as detailed in Andersen (1997). In its
original form, this strategy is ill-suited for use with
WSNs: computing least squares estimates of the
parameters of an AR model requires computation of
the auto-covariance between lagged measurements in
all nodes, as shown in Section 2.2. While this is not an
issue in wired networks, in WSNs estimation of the
complete covariance matrix is extremely costly both in
terms of energy and latency as the covariance of data
on nodes on opposite ends of the communication
network must be computed.

A restricted form of the multivariate AR model is
introduced in this article. The restrictions correspond
to the assumption that the direct effect of a node on a
distant node is negligible. In other words, nodes that
are ‘spatially’ distant do not have a direct effect on

each other. In terms of the AR model, this corresponds

to simply setting some of the coefficients to zero.

Indeed, the decision to focus on AR model-based

identification method follows from this explicit rela-

tion between the model coefficients and distances in

time and space. A physical motivation for the spatial

restrictions is offered using a linear multi-degree of

freedom model. The restrictions are shown to signif-

icantly reduce the volume of data transmitted over the

WSN, thus extending the lifetime of the batteries and

reducing the latency in obtaining the modal parameter

estimates. The restrictions can be adjusted to control

the volume of transmitted data, with the full AR model

corresponding to the least restricted version of the

restricted models. Data simulated from a linear

vibrating system subjected to random excitations are

used to contrast the modal parameters estimated using

the restricted and full AR models. A comparison of the

stabilisation diagrams for the full AR model and

different restricted models reveals that it is possi-

ble to identify the modal properties of the struc-

ture while greatly reducing the volume of

transmitted data.
The restricted AR modal parameter estimation

algorithm is then applied to a data set from the

deployment of a WSN on Golden Gate Bridge (GGB).

This experiment, which was the largest deployment of

WSNs on a civil infrastructure at the time it was

deployed, included 64 sensing units (for a total of 320

sensors) on the main span and the south tower of the

bridge, and produced 174 complete and partial data

sets of ambient acceleration and temperature (Pakzad,

Fenves, Kim, and Culler 2008; Pakzad and Fenves

2009; Pakzad 2010). A sample data set from sensor

nodes on both sides of the main span is used to

compare the modal properties from the restricted and

full models. The stabilisation diagrams show that

the modal properties estimated by the restricted

AR model agree well with the results from the AR

model at a fraction of the total data transmission

volume.
The remainder of this article is organised as

follows. Section 2 reviews one of the existing methods

for estimating modal parameters based on AR models.

Section 3 introduces the restricted AR model and

discusses estimation of its parameters, its data trasmis-

sion savings and its physical motivation. Section 4

presents a comparison of the stabilisation diagrams

resulting from using the full and restricted versions of

the AR model. Through stabilisation diagrams,

Section 5 presents a comparison of the full and

restricted AR models when applied to data collected

from GGB. Section 6 concludes with a short summary

of the results and a discussion of possible extensions.
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2. Multivariate AR models

Multivariate AR models are often used to model the
dynamic behaviour of the response measured at
different nodes of a vibrating structure. Such models
are known to yield stable, reliable and accurate
estimates of the dynamic properties of a structure
(Pandit 1991; Peeters and Roeck 2001; Pakzad et al.
2008). The AR(q) model of measured accelerations for
estimating modal parameters is reviewed in this
section.

2.1. Formulation of the multivariate AR(q) model

Let s(t) denote a p-dimensional vector of the displace-
ment of the structure from equilibrium at the positions
of the p sensing units at time t. The dot notation is used
to represent derivatives with respect to time: _sðtÞ and
€sðtÞ represent vectors of instantaneous speeds and
accelerations, respectively. Acceleration measurements
are made at discrete time steps with sampling period
Dt. The vector of measured accelerations at time kDt is
denoted by €uðkÞ.

The q-th order Auto Regressive – AR(q) – model
for the acceleration response €uðkÞ is

€uðkÞ ¼
Xq
j¼1

L
ðqÞ
j €uðk� j Þ þ vðkÞ, ð1Þ

where

€uðkÞ ¼

€s1ðkDtÞ

€s2ðkDtÞ

..

.

€spðkDtÞ

2
66664

3
77775, LðqÞj ¼

�1,1, j �1,2, j � � � �1,p, j

�2,1, j �2,2, j � � � �2,p, j

..

. ..
. . .

. ..
.

�p,1, j �p,2, j � � � �p,p, j

2
66664

3
77775,

vðkÞ ¼

v1ðkDtÞ

vpðkDtÞ

..

.

vpðkDtÞ

2
66664

3
77775:

In this equation, L
ðqÞ
j is the matrix of coefficients for

lag j of the AR(q) model and �ðkÞ is a vector of error
terms due to random excitation on the structure and
measurement errors. Note that the number of lags to
use is part of the estimation problem. For modal
estimation, stabilisation diagrams are used to select an
adequate number of lags (see, for instance, Lembregts,
Snoeys, and Leuridan 1992; Pandit 1991). Formally,
the choice of the number of lags can be represented as
restrictions on the model coefficients �i1,i2, j ¼ 0 for all
j4q. Intuitively, these restrictions represent the idea
that observations in the more distant past do not affect
the current observed response directly. The restricted

version of the AR model proposed in this article

amounts to adding spatial restrictions to these tempo-

ral restrictions, as detailed in Section 3.1.

2.2. Estimation of the AR(q) model parameters

The parameters in the full AR(q) models can be

estimated by minimising the sum of squared residuals.

The data matrices are defined as follows:

€V ¼

€uðqÞT €uðq� 1ÞT � � � €uð1ÞT

€uðqþ 1ÞT €uðqÞT � � � €uð2ÞT

€uðqþ 2ÞT €uðqþ 1ÞT � � � €uð3ÞT

..

. ..
. . .

. ..
.

€uðT� 2ÞT €uðT� 3ÞT � � � €uðT� q� 1ÞT

€uðT� 1ÞT €uðT� 2ÞT � � � €uðT� qÞT

2
66666664

3
77777775
:

ð2Þ

and

€W¼ €uðqþ1ÞT €uðqþ2ÞT €uðqþ3ÞT � � � €uðT�1ÞT €uðT ÞT
� �T

,

ð3Þ

where the double dots represent acceleration measure-

ments. €V is the data matrix of lagged measured

accelerations and €W is the data matrix of current

measured accelerations. The least squares estimate

L̂ðqÞ ¼ L̂
ðqÞ
1

� �T
L̂
ðqÞ
2

� �T
� � � L̂ðqÞq

� �T� �T
2 Rpq�p

can be written as

L̂ðqÞ ¼ argmin
L2Rpq�p

tr €W� €VL
� 	T €W� €VL

� 	h in o
, ð4Þ

Let L
ðqÞ
�,i and

€W�,i denote the i-th columns of L and
€W matrices respectively. It is then easy to show that

tr €W� €VL
� 	T €W� €VL

� 	h i

¼
Xp
i¼1

€WT
�,i

€W�,i � 2 €WT
�,i

€VL�,i þ LT
�,i

€VT €VL�,i

� �
:

Since each term of this sum involves only the

optimisation parameters in L�,i, the optimisation

problem can be split into p smaller problems and L̂
ðqÞ
�,i

the i-th column of the L̂ðqÞ matrix is

L̂
q
�,i ¼ argmin

L�,i2Rpq�1

€WT
�,i

€W�,i � 2 €WT
�,i

€VL�,i þ L�,i
€VT €VLT

�,i

h i
:

ð5Þ

Equation (5) shows that in order to obtain an

estimate of the coefficients �i1,i2, j for a fixed i1 the

following two summaries of the data are needed: the

pq-dimensional row vector €WT
�,i

€V and the pq� pq

International Journal of Systems Science 1475
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matrix €VT €V. In terms of the individual acceleration

observations, these summaries can be written as

Since all columns of L̂ðqÞ are needed, it is clear that
the summaries of the data above are equivalent to
estimating all pairwise empirical covariances

�̂i1,i2, j ¼
1

T

XT
k¼qþ1

€ui1 ðk� 1Þ €ui2ðkÞ,

for all i1, i2 2 f1, . . . , pg and j� 0, . . . , q:

In summary, least squares estimates for the AR
coefficient matrices can be computed in terms of p
separate problems. While this allows for some distri-
bution of the processing over the network, each node
still needs to receive data from all other nodes to solve
its share of the estimation problem. As will be shown in
Section 3.2, the restricted version of the AR model can
be estimated based on a smaller subset of these
covariances.

2.3. Modal parameters from AR(q) model
parameters

To obtain the modal parameters of the structure from
the parameters of the AR model in Equation (1), the
AR model is converted to state–space form

€UqðkÞ ¼ Rq
€Uqðk� 1Þ þ YðkÞ, ð6Þ

with

€UqðkÞ ¼ €uðkÞT €uðk� 1ÞT � � � €uðk� qþ 1ÞT
� �

,

a pq-dimensional vector,

Rq ¼

L
ðqÞ
1 L

ðqÞ
2 � � � L

ðqÞ
q�1 LðqÞq

Ip 0 � � � 0 0

0 Ip � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � Ip 0

2
66666664

3
77777775
,

a pq� pq matrix and

YðkÞ ¼ vðkÞT 01�p � � � 01�p
� �

,

a pq-dimensional vector.

The companion matrix Rq contains information

about the dynamic behaviour of the vibrating

structure. In particular, it contains information about

the frequency and speed of decay of the vibrations,

resulting from an impulse applied to the structure. The

modal parameters summarise such information and are

then obtained from the spectral decomposition of the

system matrix Rq ¼ �q�q�
�
q, where �q is a complex

valued pq-dimensional diagonal matrix of eigenvalues

�i, j ¼ 1, . . . , pq and �q is a matrix containing the

(complex) eigenvectors of Rq in its columns.
Following Andersen (1997), the �q matrix of

eigenvectors has the form

�q¼

�1�
q�1
1 �2�

q�1
2 � � � �pq�1�

q�1
pq�1 �pq�

q�1
pq

�1�
q�2
1 �2�

q�2
2 � � � �pq�1�

q�2
pq�1 �pq�

q�2
pq

..

. ..
. . .

. ..
. ..

.

�1�
1
1 �2�

1
2 � � � �pq�1�

1
pq�1 �pq�

1
pq

�1 �2 � � � �pq�1 �pq

2
6666664

3
7777775
,

where each �j is a p-dimensional vector for

j ¼ 1, . . . , pq. Only p of all �pq eigenvectors represent

structural mode shapes. The remaining p(q� 1) vectors

correspond to spurious computational modes. The

frequency !j and damping ratios &j for each of the

modes is extracted from the eigenvalues by

!j ¼
jlogð�jÞj

Dt
, and &j ¼

Reðlogð�jÞÞ

jlogð�jÞj
:

Several criteria are used to separate the p physical

modes from the p(q� 1) spurious computational

modes. One of these criteria, for instance, is to require

that the estimated damping ratio for a mode be below a

certain threshold consistent with the expected damping

ratio of the physical structure. In this article, stabilisa-

tion diagrams are also used to discard computational

modes. A stabilisation diagram is a graphical presen-

tation for the convergence of the model, as the model

order is increased. The concept arises from the fact that

spurious computational modes are generally not con-

sistent, and appear or disappear as the model order

changes. Convergence criteria for natural vibration

frequencies, damping ratios and mode shapes are

€WT
�,i

€V ¼
XT

k¼qþ1

€uiðkÞ½ €uðk� 1ÞT €uðk� 2Þ � � � €uðk� qÞT�, and

€VT €V ¼
XT�q
k¼1

€uðkþ q� 1Þ €uðkþ q� 1ÞT €uðkþ q� 1Þ €uðkþ q� 2ÞT � � � €uðkþ q� 1Þ €uðkÞT

€uðkþ q� 2Þ €uðkþ q� 1ÞT €uðkþ q� 2Þ €uðkþ q� 2ÞT � � � €uðkþ q� 2Þ €uðkÞT

..

. ..
. . .

. ..
.

€uðkÞ €uðkþ q� 1ÞT €uðkÞ €uðkþ q� 2ÞT � � � €uðkÞ €uðkÞT

2
66664

3
77775:
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chosen such that the spurious modes are rejected and
do not appear in the stabilisation diagram. In the
simulations and experiment presented in Sections 4 and
5, modes estimated by the AR(q) model are considered
stable if their natural frequency, damping ratio and
mode shape collinearity change by less than 2%, 5%
and 5% respectively from the modes found in the
AR(q� 2) model. For more information about the
application of stabilisation diagrams and alternative
stability criteria, see Andersen (1997).

3. Restricted AR models

This section describes the main contribution of this
article: a restricted version of the multivariate AR(q)
model which can be estimated with a reduced commu-
nication load on the WSN collecting the data. From a
statistical standpoint, the restrictions can also result in
improved estimates in large WSNs since they are based
on physical properties of the modelled structure.
Section 3.5 includes a physical motivation for the
restrictions based on the physical model for a vibrating
structure.

3.1. Formulation of the restricted AR(w,q) model

As previously mentioned, the AR(q) model contains an
implicit set of restrictions as it sets �i2,i2, j ¼ 0 for all
j4q. Such restrictions can be interpreted as an
assumption that observations in the distant past
should have no direct effect on present observations.
The restrictions proposed in this article can be inter-
preted as the spatial counterpart of the temporal
restrictions made by the AR: they correspond to an
assumption that measurements in nodes that are far
apart in space do not have a direct effect on each other,
or that their effect is indirectly accounted for by the
measurements at closer nodes.

One complication with introducing such restric-
tions is that, unlike time, different metrics can be used
to represent the distance between two elements in
space. To define a suitable notion of distance between
acceleration measurements in the structure, a graph
representing direct communication links between
points in the structure is created. The distance d(i1, i2)
between nodes i1 and i2 is defined as the minimum
number of hops needed to travel between the two
nodes. A hop is defined here as the smallest wireless
communication unit between a sensor node and the
node adjacent to it. Just as the AR(q) in time sets
�i2,i2, j ¼ 0 if j4q, the restriction �i2,i2, j ¼ 0 if d(i1, i2)4w
is imposed for a certain threshold w40. In Figure 1(i),
this restriction is demonstrated in a structure with a
linear topology, along with the corresponding

connection graph and the hop-distance between
nodes. The restricted-AR(w,q) model is then repre-
sented by

€uðkÞ ¼
X1
j¼1

L
ðq,wÞ
j €uðk� j Þ þ vðkÞ, ð7Þ

where for each matrix of coefficients L
ðq,wÞ
j , the

parameters �i2,i2, j ¼ 0 whenever d(i1, i2)4w or j4q.
For a structure with linear topology as shown in
Figure 1(i), these restrictions result in banded coeffi-
cient matrices. Setting w¼ 1, for instance, leads to
matrices of coefficients where the only possibly non-
zero parameters are in a band of distance one from the
diagonal.

As the notation L
ðq,wÞ
j suggests, the problem of

selecting a proper bandwidth w is akin to that of
selecting a proper number of lags q for the autore-
gressive model. In Sections 4 and 5, the effects of using
different bandwidths w in the estimates of the modal
parameters are illustrated, both in simulated and real
data settings. Criteria for automatic selection of the
width w will be the subject of future research.

3.2. Estimating modal parameters using the
restricted AR(w,q) model

As is the case for the full AR(q) model, the parameters
of the restricted AR(w,q) model can be estimated by the
least squares method. However, unlike the full AR(q)
model, estimation of the restricted AR(w,q) model only
requires the lagged covariances of a subset of pairs of
nodes. To estimate the coefficients of the restricted
AR(w,q) model, for each node i, define the neighbour-
hood Ni ¼ fi2 : d ði, i2Þ � wg, the neighbourhood size pi
and the data matrix

€VNi
¼

€uNi
ðqÞT €uNi

ðq�1ÞT � � � €uNi
ð1ÞT

€uNi
ðqþ1ÞT €uNi

ðqÞT � � � €uNi
ð2ÞT

€uNi
ðqþ2ÞT €uNi

ðqþ1ÞT � � � €uNi
ð3ÞT

..

. ..
. . .

. ..
.

€uNi
ðT�2ÞT €uNi

ðT�3ÞT � � � €uNi
ðT�q�1ÞT

€uNi
ðT�1ÞT €uNi

ðT�2ÞT � � � €uNi
ðT�qÞT

2
66666664

3
77777775
,

a ðT� qÞ � piq matrix, where €uNi
ðqÞ is a pi dimensional

vector of measured accelerations at time step k at the
positions in the neighbourhood Ni. By imposing the
restrictions �i2,i2, j ¼ 0 when d(i1, i2)4w to the least
squares estimation problem, we get

L̂ðq,wÞ�,i ¼ argmin
L�,i2piq�1

LT
�,i �

€VT
Nj

€VNi

� �
�L�,i�2 � €WT

Ni

€VNi

� �
�L�,i

h i
:

ð8Þ

Based on Equation (8), it is observed that only the
sample auto-covariances for pairs (i1, i2) of nodes
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Figure 1. (i) Structure with linear topology. (a) Linear topology structure with five nodes and (b) Hop distance from node 4.
Each node in the structure is only connected to its closest neighbours. (ii) Structure with different communication and physical
topologies. (a) Physical topology; (b) Case 1 communication topology; (c) Hop distance from node 2 in Case 1; (d) Case 2
communication topology; and (e) Hop distance from node 2 in Case 2.
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satisfying d(i1, i2)�w must be computed. By selecting a
suitable w, the number of summaries (covariances)
needed to compute the estimates of the restricted-
AR(w,q) model can be substantially smaller than that
required by the full AR(q) model. The modal param-
eters are obtained from the parameters of the
restricted-AR(w,q) model in the same fashion described
in Section 2.3.

3.3. Communication load savings using
restricted-AR(w,q)

The estimation of the coefficients in the full AR
process requires that each node compute its correla-
tions with all other nodes up to lag q. For the restricted
model, computing the coefficients associated with node
i1 only requires the correlations with the nodes i2 such
that d(i1, i2)�w. Suppose that each node transmits its
data to all other nodes that need it to compute the
estimates for its AR parameters. The transmission
volume over the wireless network can be computed
based on the number of sample-hops that is necessary
to estimate the model. For a network with a linear
topology the signal at each node must be transmitted
to all other nodes in the network. The total transmis-
sion volume in this case is npð pþ1Þ

2 with order O(np2),
where p is the number of nodes in the network and n is
the number of samples at each node. For the restricted
model, each node has to communicate its data over a
graph with diameter 2w, with a transmission volume of

n½2wðp�2wÞþ2½ð2w�1Þþ ð2w�2Þþ �� �þ ð2w�wÞ��

¼ n½2wp�w2�w�, ð9Þ

or O(nwp). This corresponds to an efficiency ratio of
OðwpÞ, which could be a significant saving in commu-
nication load of the network. In Sections 4 and 5,
simulated and WSN data sets are used to show that
good estimates of the modal parameters can be
obtained with w

p as low as 1
7.

3.4. Restrictions to AR model and statistical
regularisation

In addition to reducing the communication load in the
network, the proposed restrictions can have a positive
impact in the quality of the estimates through statis-
tical regularisation. Presently, regularisation methods
are a very active area of research in statistical meth-
odology for complex systems (Bickel and Li 2006). The
need for regularisation is better understood by dis-
cussing the sources of errors in model estimates.

When fitting a model to data, the errors
in the estimates can be decomposed into

two components: an approximation error and a
sample error. The approximation error is the system-
atic part of the error due to aspects of the data that the
model is incapable of capturing. For instance, for the
mass-spring-dashpot system shown in Figure 1(i), a
model that ignores interactions between the movement
of the lumped masses will incur some approximation
error whenever the stiffness or damping between the
mass elements are non-zero. In such a model, the larger
stiffness and/or damping constants of the elements
connecting the masses, the larger the approximation
error will be. Clearly, models in which more effects are
incorporated (larger models) will incur less approxi-
mation error.

Sampling errors, the other component of the
estimate errors, are due to the random nature of the
data. In the presence of random structural loading and
measurement errors, no two samples of ambient
vibration of a structure will be exactly the same.
Such random sources of error cause random fluctua-
tion of the parameter estimates around their expected
values. In terms of its sampling error, an estimate is
better when the average size of the sampling error is
smaller (typically measured by variance and/or stan-
dard deviations). A well known fact in the statistics
literature is that more complex models tend to be more
prone to large sampling errors (see, e.g. Hastie,
Tibshirani, and Friedman 2001).

When the number of parameters being adjusted
(a proxy for complexity) is small as compared to the
sample size, the approximation errors dominate.
However, when the number of parameters being
estimated is comparable to the sample size, a better
estimate may be attained by a smaller model which has
a larger approximation error and enjoys smaller
sampling error due to noise in the data. In the case
at hand, the number of parameters being fit is pq2.
Thus, as the number of sensors increases, the number
of parameters being fit rapidly increases and larger
sample sizes are needed to fit an adequate model. As a
result, restricting the number of parameters being fit
can have a beneficial impact on the overall estimation
error, especially when the number of sensors on the
structure is large.

Of course, not all restrictions to the model are
equally desirable. Going back to the example of the
ideal mass-spring-dashpot system in Figure 1(i), a
model that did not include direct interactions between
the lumped masses 1 and 3 would incur no approxi-
mation error, but would enjoy a reduced sampling
error and thus a smaller total estimation error. This
illustrates the fact that not all restrictions are created
equal: good restrictions will add little or no approx-
imation error while contributing to reduce sampling
error. Thus, the best restrictions are those that reflect
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plausible characteristics of the system being modelled.
In that spirit, a physical justification of the restricted
AR model is presented next.

3.5. Physical interpretation of the restrictions

To understand the physical motivation behind the
proposed restrictions, consider the simplified mass-
spring-dashpot system shown in Figure 1(i) and the
corresponding continuous time linear multi degree-of-
freedom vibration model (see, for instance, Meirovitch
1986). Let XjðtÞ ¼ ½sjðtÞ _sjðtÞ� denote the state (dis-
placement and velocity) of mass j at time t. From the
free body diagram for mass j,

dXj ðtÞ ¼
dsðtÞ

d _sðtÞ

� �
¼

0
1
mj

" #
fj ðtÞdt�

0 1

kjj cjj

� �
Xj ðtÞ

þ
X
k2Ni

0 1

kkj ckj

� �
ðXkðtÞ � Xj Þ

where kkj and ckj denote the stiffness and damping
coefficients of the elements connecting masses k and j.

It follows that, in an infinitesimal time increment
dt, the change dX(t) in the state of mass j is only a
function of the state of the masses directly connected to
it. In a randomly vibrating system, the state of mass j
after an infinitesimal time increment given its current
state and that of its direct neighbours is conditionally
independent of the state of all other mass elements. In
probabilistic terms, that amounts to a Markov prop-
erty in space (note that the physical model also yields a
Markov process in time for the state variables).

If the sampling rate is high and the state of the
masses is completely observed and the vibrations
follows the linear multi degree-of-freedom model, all
indirect interactions between non-neighbouring masses
could be ignored. That is the motivation behind the
proposed restrictions to the multivariate AR model.
Due to uncertainties in the model and the state of the
system not being directly observable, and the sampling
occurring at discrete time steps, an appropriate model
for the structure may involve interactions between
higher-order neighbours. As a result, there is a need for
methods for selecting a proper banding parameter w.
In Sections 4 and 5, the effects of using different
bandwidth parameters are presented.

3.6. Structural distance versus communication
distance

One important requirement for the applicability of the
restrictions proposed here is the agreement of
the communication-based distance between nodes
and the strength of the physical link between them.

The distance defined in Section 3.1 only takes into

account the communication cost. Thus a model with

lower w will necessarily have a lower communication-

cost. However, the physical motivation of the restric-

tions in Section 3.5 suggests that the spatial restrictions

work best when the physical link between nodes that

are far apart in the communication topology,

d(i1, i2)4w, is weak.
If strongly connected nodes are far from one

another in the communication topology, a larger

width w will be needed for the restricted model to fit

the data well and as a result the communication

benefits of the restriction will be smaller. If all nodes

have direct communication links to one another, the

restrictions should be adapted to emphasise

the strength of the physical connection between the

nodes. In this case, the communication topology is not

as important an issue as the physical topology defined

in terms of direct physical links between elements of

the structure.
In the deployment considered in Section 5, the

communication and the physical topologies were both

linear and the agreement between the distances

defined – either in terms of the communication

topology of the network or the physical topology of

the structure – was perfect.
As long as the communication topology comes

close to resembling the physical topology, there is a

significant savings in communication by using the

restrictions on the AR model to estimate the modal

parameter. To illustrate the importance of the interplay

between the physical and communication topologies,

Figure 1(ii) shows a structure with a more complicated

physical topology. Two alternative cases of communi-

cation topologies are considered. In the first case, there

is a slight mismatch between communication and

structural topologies. To account for all the direct

physical connections, a w	 3 must be chosen. For

w¼ 3, the second row of L
ðq,wÞ
j is

L
ðw,qÞ
j

h i
2,�
¼ �ðw,qÞ2,1 �ðw,qÞ2,2 �ðw,qÞ2,3 �ðw,qÞ2,4 �ðw,qÞ2,5 0 0 0
h i

:

In the second case, a larger communication saving is

possible since setting w¼ 1 accounts for all the direct

structural connections. In this case, the second row of

L
ðq,wÞ
j with w¼ 1 is

L
ðw,qÞ
j

h i
2,�
¼ �ðw,qÞ2,1 �ðw,qÞ2,2 0 �ðw,qÞ2,4 0 0 0 0
h i

:

Note that the matrices of coefficients are no longer

banded but are still sparse. Only the correlations

between the non-zero entries in the coefficient matrix

are needed to estimate them, as was shown in

Section 3.2.
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4. Simulated examples

In this section a set of simulated examples is used to
compare the performance of modal parameters esti-
mated using the restricted and the full multivariate AR
models. Throughout, the AR parameters are estimated
using least squares as described in Sections 2.2 and 3.2.
The modal parameters are recovered from the esti-
mated AR parameters as described in Section 2.3 for
both the restricted and full AR models. Stabilisation
diagrams are used to compare the modes identified by
each method. The criteria for distinguishing between
the computational modes versus the structural modes
are described first; then simulation parameters are
detailed and the results are presented.

4.1. Identifying physical modes

As discussed in Section 2.3, computational modes are
removed by discarding modes that are not stable as
model order changes. In the stabilisation diagrams
shown in Figures 3, 4 and 6, only the ‘locally stable’
modes are shown. A mode from the (full or restricted)
AR(q) model is considered ‘locally stable’ if its

variation from the AR(q� 2) model for frequency,
damping ratio and mode shape colinearity are below
2%, 5% and 5%, respectively (Pappa, Elliott, and
Schenck 1993; De Roeck, Claesen, and Van Den
Broeck 1995). While the stabilisation diagram for the
two methods may appear different, the important
feature for comparison is whether the same modes
appear as ‘locally stable’ for different number of AR(q)
models. In short, the stabilisation diagrams show
whether structural modal properties are consistently
identified using models with varying number of lags.

4.2. Simulation set-up

Two structures with linear topology and lumped
masses are used for simulation. Figure 1(ia) shows
the schematic of one of the structures with five lumped
masses and linear stiffness and damping components
connecting them. The second simulated case has a
similar structure, but with 10 lumped masses instead of
five. In each case the acceleration response of the
structure to white noise excitation is simulated at each
mass and the performance of the restricted and full

Mode 01 Mode 02 Mode 03 Mode 04 Mode 05

Mode 01 Mode 02 Mode 03 Mode 04 Mode 05

Mode 06 Mode 07 Mode 08 Mode 09 Mode 10

(a)

(b)

Figure 2. Mode shapes for the simulated structures in (a) Case 1 (five nodes) and (b) Case 2 (10 nodes).

Table 1. Modal parameters for the simulated structures.

Mode 1 2 3 4 5 6 7 8 9 10

Case 1 Frequency (Hz) 3.0 4.4 5.3 7.3 9.1 – – – – –
�j (%) 5.0 4.0 3.7 3.6 3.7 – – – – –

Case 2 Frequency (Hz) 1.6 3.0 4.0 4.7 5.4 6.5 7.6 8.5 9.2 9.6
�j (%) 5.0 4.0 4.1 4.3 4.6 5.1 5.7 6.2 6.5 6.8
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AR(q) models are compared for different neighbour-
hood width w for the restricted coefficient matrices.
Stabilisation graphs, with the lags ranging from 5 to 40
are used to show the rate of convergence of the results
(Pakzad and Fenves 2009). Cases 1 and 2 correspond,
respectively, to the five and ten degree of freedom
structures whose modal parameters are listed in
Table 1 and mode shapes as shown in Figure 2. The
performances of the full and restricted AR models in

identifying modes are compared through their stabili-

sation diagrams.

4.3. Results for case 1: five degrees of freedom
system

Figure 3 shows a comparison between the stabilisation

diagrams obtained using the restricted AR model with

Figure 3. Stabilisation diagrams for the five-DOF simulated system for the restricted model with w¼ 1 (a) and unrestricted
model (b).
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w¼ 1 and the full AR model. It must also be noted that

the stabilisation diagrams can only be used in con-

junction with engineering knowledge from the struc-

ture. In this case, for example, there is considerable

noise in both restricted and full models for the

frequencies above 9.1Hz which is due to over-

parameterisation of each model for higher model

orders. In each case, however, a lower model order is

sufficient for modal identification and the analysis can

stop when lag order is 18. For both the restricted and

the full AR model the number of lags varies from 5 to

40. The stabilisation graph for the restricted AR model

shows the five estimated modes converging with a

small number of lags while its communication load is

only 53% of the full model. The stabilisation graph for

the full model is practically identical to the case with

w¼ 2 (not shown) in that the same five stable modes

are identified. In that case, the communication load,

Figure 4. Stabilisation diagrams for the 10-DOF simulated system for the restricted model with w¼ 2 (a) and unrestricted
model (b).
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as measured by the number of transmitted data
packets, is 93% of the full model. Interestingly, the
stabilisation diagrams for w¼ 0 (not shown) suggest
that even when cross-correlation coefficients are
completely disregarded, the natural frequencies were
correctly identified.

4.4. Results for case 2: ten degrees of freedom system

Figure 4 shows similar stabilisation diagrams for the
10-DOF case. Here, the comparison is between the
restricted AR model with w¼ 2 and the full AR model.
Using only 62% of the number of transmitted data
packets of the full AR model, the restricted model
managed to consistently identify all modes below 8Hz.
For the modes above 8Hz, both methods had trouble
in consistently identifying modes.

5. Testbed on GGB

Figure 5 shows GGB at the entrance of the San
Francisco Bay, which has a 1280m (4200 ft) long main-
span and 343m (1125 ft) side-spans. Two stiffening
trusses support an orthotropic roadway deck and
horizontal planes of wind bracing system at the bottom
plane of the truss chords. The legs of the towers, 210m
(745 ft) above the water level, have cellular box
sections, connected by horizontal struts at seven
elevations (Strauss 1937; Stahl, Mohn, and Currie
2007). The WSN that collected the data used in this
article was deployed on the bridge to measure and
record ambient accelerations. The sensor network

consisted of 64 nodes on the main-span and the
south tower of the bridge. The network was designed
to be scalable in terms of the number of the nodes,
complexity of the network topology, data quality and
quantity by addressing integrated hardware and soft-
ware systems such as sensitivity and range of (MEMS)
sensors, communication bandwidth of the low-power
radio, reliability of command dissemination and data
transfer, management of large volume of data and
high-frequency sampling (Pakzad et al. 2008). The
nodes on the main-span measure acceleration in
vertical and transverse directions (Pakzad and Fenves
2009). On the tower, the nodes measure acceleration in
transverse and longitudinal directions.

The instrumentation plan for the WSN for the
bridge is also shown in Figure 5. The nodes on the
main-span were located based on the range of the radio
transmission distance at 30.5m (100 ft) spacing, but a
15.25m (50 ft) spacing was used where an obstruction
hindered radio communication. Each main-span node
was attached to the top flange of the floor girder
directly inside of the cable. The eight nodes on the
south tower were placed at the ends of four struts
above the roadway. The tower nodes have a clear line
of sight between them and hence have greater radio
range than the main-span nodes. The node on the west
side of the strut above the superstructure collects data
from all the nodes on the tower and transmits them to
the network on the main-span. Fifty-three nodes were
installed beginning on 10 July 2006, on the west side of
the main-span. On 15 September 2006, batteries were
replaced for the nodes on the main-span and three
extra nodes were added on the east side. The east side

Figure 5. Plan and elevation views of GGB and the location of the wireless sensors on the main-span.
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nodes were located at the two quarter-spans and the
mid-span of the bridge and had radio communication
with the west side nodes under the roadway deck.

There were a total of 174 data collection runs of the
network during the deployment which lasted until 14
October 2006, including testing and debugging, so not

all of the collected data sets contain data from all of the
nodes.

The sampling rate for all runs was 1 kHz, but since

the significant vibration frequencies of the bridge are

much lower, the data were averaged on the node and
downsampled to 50 to 200Hz prior to transmission. In
some of the runs all five channels on a node (two high-
level motion sensors, two low-level motion sensors and
the temperature sensor) were sampled, but in other
runs the channels were limited to the low-level accel-
erometers to reduce the volume of data. The 512 kB
flash memory of each node can buffer 250,000 samples
of data, which may be allocated to any combination
of the five sensor channels on the node

Figure 6. Stabilisation graph for vertical and torsional modes for the restricted model with w¼ 8 (a) and unrestricted model (b).
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(four accelerometer channels and a temperature
sensor). Each run started with a pause to synchronise
the network and disseminate a command to start
sampling at a future time. After the scheduled sampling
took place, there was a pause to establish the network
routing. The recorded data were then transferred from
each node to the base station using reliable data
communication and pipelining. Each run generated up
to 500 kB data per node, which for the network of
60 nodes produced 30MB data for 15 million samples.
Approximately 1.3GB data was collected during the
deployment of the WSN on GGB.

5.1. Modal identification of GGB

In this section the modal properties of the main-span
of the bridge are presented. The results are obtained by
using least squares to estimate the parameters of the
full and restricted AR with different diagonal band-
width w. The modal parameters using different values
of w are estimated and compared. For the restricted
model, the bandwidth parameter was set at w¼ 8.
Reducing the bandwidth further caused sensible
changes in the stabilisation plots whereas increasing
w did not. Figure 6 shows the stabilisation diagrams
for the two cases. The presented results are limited to
0.7Hz in order to avoid cluttering of the graphs. Note
that although the number of lags used by the restricted
model is higher than in the unrestricted case, the results

show an excellent match. The identified vertical and
torsional modes for each case are presented in
Figures 7–9. The presented results are limited to
approximately 0.7Hz again, to avoid repetitive plots.
The only significant discrepancy between the two
models is in the second torsional mode, where the
restricted model identifies a mode at frequency
0.24Hz, while the unrestricted model misses this
mode completely. This mode with no node is consistent
with the expected dynamic behaviour of the bridge as a
system with distributed mass and elasticity which has a
purely translational mode. The previous study of the
bridge by Abdel-Ghaffar and Scanlan (1985a) also
confirms the validity of this torsional mode. Some
minor discrepancies are observed in the 0.5Hz–0.7Hz,
which can be attributed to the larger number of lags
used by the restricted model resulting in a larger
number of computational modes around the physical
modes. In terms of the volume of communication,
Equation (9) shows that the volume of transmitted
data needed to fit the restricted AR would be 29% of
the volume required by the full AR model.

6. Conclusion

Multivariate AR models are commonly used to model
the dynamic behaviour of vibrating structures and to
infer the modal parameters of a structure that is
subjected to ambient vibration. In this article,

Figure 7. Comparison of the identified vertical modes 1 through 5, using restricted model (in blue) versus unrestricted model
(in red).
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a restricted version of the multivariate AR model is
presented that can significantly reduce the volume of
transmitted data over a WSN while introducing little
distortion on themodal parameter estimates. A physical
motivation for the set of proposed restrictions is given.

Simulated data of structures with linear topology
are used to show that the restricted models can

recover the modal parameters while reducing the
volume of transmitted data. Comparison of the
application of the restricted and full AR models to
data collected by a WSN deployed on the GGB
shows that, with a properly chosen bandwidth, the
modal parameter estimates are comparable in both
cases. In addition, the restricted model is able to

Figure 8. Comparison of the identified vertical modes 6 through 10, using restricted model (in blue) versus unrestricted model
(in red).

Figure 9. Comparison of the identified torsional modes 1 through 5, using restricted model (in blue) versus unrestricted model
(in red). The second mode shape corresponds to a mode only identified by the restricted AR model.
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identify an additional torsional mode for the
structure.

Future work will be devoted to proposing a
methodology for selecting an appropriate set of
restrictions to the AR models and the analysis of the
savings that can be achieved in structures with alter-
native topologies.
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