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Abstract: The paper proposes a method for constructing a sparse estima-

tor for the inverse covariance (concentration) matrix in high-dimensional

settings. The estimator uses a penalized normal likelihood approach and

forces sparsity by using a lasso-type penalty. We establish a rate of con-

vergence in the Frobenius norm as both data dimension p and sample size

n are allowed to grow, and show that the rate depends explicitly on how

sparse the true concentration matrix is. We also show that a correlation-

based version of the method exhibits better rates in the operator norm. We

also derive a fast iterative algorithm for computing the estimator, which

relies on the popular Cholesky decomposition of the inverse but produces
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a permutation-invariant estimator. The method is compared to other es-

timators on simulated data and on a real data example of tumor tissue

classification using gene expression data.

AMS 2000 subject classifications: Primary 62H20; secondary 62H12.

Keywords and phrases: Covariance matrix, High dimension low sample

size, large p small n, Lasso, Sparsity, Cholesky decomposition.

1. Introduction

Estimation of large covariance matrices, particularly in situations where the data

dimension p is comparable to or larger than the sample size n, has attracted a lot

of attention recently. The abundance of high-dimensional data is one reason for

the interest in the problem: gene arrays, fMRI, various kinds of spectroscopy, cli-

mate studies, and many other applications often generate very high dimensions

and moderate sample sizes. Another reason is the ubiquity of the covariance

matrix in data analysis tools. Principal component analysis (PCA), linear and

quadratic discriminant analysis (LDA and QDA), inference about the means of

the components, and analysis of independence and conditional independence in

graphical models all require an estimate of the covariance matrix or its inverse,

also known as the precision or concentration matrix. Finally, recent advances

in random matrix theory – see Johnstone (2001) for a review, and also Paul

(2007) – allowed in-depth theoretical studies of the traditional estimator, the

sample (empirical) covariance matrix, and showed that without regularization

the sample covariance performs poorly in high dimensions. These results helped

stimulate research on alternative estimators in high dimensions.

Many alternatives to the sample covariance matrix have been proposed. A

large class of methods covers the situation where variables have a natural or-

dering, e.g., longitudinal data, time series, spatial data, or spectroscopy. The

implicit regularizing assumption underlying these methods is that variables far

apart in the ordering have small correlations (or partial correlations, if the object

of regularization is the concentration matrix). Methods for regularizing covari-

ance by banding or tapering have been proposed by Bickel and Levina (2004)
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and Furrer and Bengtsson (2007). Bickel and Levina (2008) showed consistency

of banded estimators in the operator norm under mild conditions as long as

(log p)/n → 0, for both banding the covariance matrix and the Cholesky factor

of the inverse discussed below.

When the inverse of the covariance matrix is the primary goal and the vari-

ables are ordered, regularization is usually introduced via the modified Cholesky

decomposition,

Σ−1 = LT D−1L.

Here L is a lower triangular matrix with ljj = 1 and ljj′ = −φjj′ , where

φjj′ , j′ < j is the coefficient of Xj′ in the population regression of Xj on

X1, . . . ,Xj−1, and D is a diagonal matrix with residual variances of these re-

gressions on the diagonal. Several approaches to regularizing the Cholesky factor

L have been proposed, mostly based on its regression interpretation. A k-banded

estimator of L can be obtained by regressing each variable only on its closest k

predecessors; Wu and Pourahmadi (2003) proposed this estimator and chose k

via an AIC penalty. Bickel and Levina (2008) showed that banding the Cholesky

factor produces a consistent estimator in the operator norm under weak con-

ditions on the covariance matrix, and proposed a cross-validation scheme for

picking k. Huang et al. (2006) proposed adding either an l2 (ridge) or an l1

(lasso) penalty on the elements of L to the normal likelihood. The lasso penalty

creates zeros in L in arbitrary locations, which is more flexible than banding,

but (unlike in the case of banding) the resulting estimate of the inverse may not

have any zeros at all. Levina et al. (2008) proposed adaptive banding, which, by

using a nested lasso penalty, allows a different k for each regression, and hence

is more flexible than banding while also retaining some sparsity in the inverse.

Bayesian approaches to the problem introduce zeros via priors, either in the

Cholesky factor (Smith and Kohn, 2002) or in the inverse itself (Wong et al.,

2003).

There are, however, many applications where an ordering of the variables is

not available: genetics, for example, or social and economic studies. Methods
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that are invariant to variable permutations (like the covariance matrix itself)

are necessary in such applications. Regularizing large covariance matrices by

Steinian shrinkage of eigenvalues has been proposed early on (Haff, 1980; Dey

and Srinivasan, 1985). More recently, Ledoit and Wolf (2003) proposed a way to

compute an optimal linear combination of the sample covariance with the iden-

tity matrix, which also results in shrinkage of eigenvalues. Shrinkage estimators

are invariant to variable permutations but they do not affect the eigenvectors

of the covariance, only the eigenvalues, and it has been shown that the sample

eigenvectors are also not consistent when p is large (Johnstone and Lu, 2004).

Shrinking eigenvalues also does not create sparsity in any sense. Sometimes

alternative estimators are available in the context of a specific application –

e.g., for a factor analysis model with known factors Fan et al. (2008) develop

regularized estimators for both the covariance and its inverse.

Our focus here will be on sparse estimators of the concentration matrix.

Sparse concentration matrices are widely studied in the graphical models lit-

erature, since zero partial correlations imply a graph structure. The classical

graphical models approach, however, is different from covariance estimation,

since it normally focuses on just finding the zeros. For example, Drton and

Perlman (2008) develop a multiple testing procedure for simultaneously testing

hypotheses of zeros in the concentration matrix. There are also more algorith-

mic approaches to finding zeros in the concentration matrix, such as running

a lasso regression of each variable on all the other variables (Meinshausen and

Bühlmann, 2006), or the PC-algorithm (Kalisch and Bühlmann, 2007). Both

have been shown to be consistent in high-dimensional settings, but none of

these methods supply an estimator of the covariance matrix. In principle, once

the zeros are found, a constrained maximum likelihood estimator of the covari-

ance can be computed (Chaudhuri et al., 2007), but it is not clear what the

properties of such a two-step procedure would be.

Two recent papers, d’Aspremont et al. (2008) and Yuan and Lin (2007), take

a penalized likelihood approach by applying an l1 penalty to the entries of the

concentration matrix. This results in a permutation-invariant loss function that
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tends to produce a sparse estimate of the inverse. Yuan and Lin (2007) used

the max-det algorithm to compute the estimator, which limited their numerical

results to values of p ≤ 10, and derived a fixed p, large n convergence result.

d’Aspremont et al. (2008) proposed a much faster semi-definite programming

algorithm based on Nesterov’s method for interior point optimization. While

this paper was in review, a new very fast algorithm for the same problem was

proposed by Friedman et al. (2008), which is based on the coordinate descent

algorithm for the lasso (Friedman et al., 2007).

In this paper, we analyze the estimator resulting from penalizing the normal

likelihood with the l1 penalty on the entries of the concentration matrix (we will

refer to this estimator as SPICE – Sparse Permutation Invariant Covariance Es-

timator) in the high-dimensional setting, allowing both the dimension p and the

sample size n to grow. We give an explicit convergence rate in the Frobenius

norm and show that the rate depends on how sparse the true concentration

matrix is. For a slight modification of the method based on using the sample

correlation matrix, we obtain the rate of convergence in operator norm and show

that it is essentially equivalent to the rate of thresholding the covariance matrix

itself obtained in Bickel and Levina (2007). We also derive our own optimiza-

tion algorithm for computing the estimator, based on Cholesky decomposition

and the local quadratic approximation. Unlike other estimation methods that

rely on the Cholesky decomposition, our algorithm is invariant under variable

permutations. Because we use the local quadratic approximation, the algorithm

is equally applicable to general lq penalties on the entries of the inverse, not just

l1.

The rest of the paper is organized as follows: Section 2 summarizes the SPICE

approach in general, and presents consistency results. The Cholesky-based com-

putational algorithm, along with a discussion of optimization issues, is presented

in Section 3. Section 4 presents numerical results for SPICE and a number of

other methods, for simulated data and a real example on classification of colon

tumors using gene expression data. Section 5 concludes with discussion.
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2. Analysis of the SPICE method

We assume throughout that we observe X1, . . . ,Xn, i.i.d. p-variate normal

random variables with mean 0 and covariance matrix Σ0, and write Xi =

(Xi1, . . . ,Xip)
T . Let Σ0 = [σ0ij ], and Ω0 = Σ−1

0 be the inverse of the true co-

variance matrix. For any matrix M = [mij ], we write |M | for the determinant

of M , tr(M) for the trace of M , and ϕmax(M) and ϕmin(M) for the largest

and smallest eigenvalues, respectively. We write M+ = diag(M) for a diagonal

matrix with the same diagonal as M, and M− = M − M+. In the asymptotic

analysis, we will use the Frobenius matrix norm ‖M‖2
F =

∑

i,j m2
ij , and the

operator norm (also known as matrix 2-norm), ‖M‖2 = ϕmax(MMT ). We will

also write | · |1 for the l1 norm of a vector or matrix vectorized, i.e., for a matrix

|M |1 =
∑

i,j |mij |.
It is easy to see that under the normal assumption the negative log-likelihood,

up to a constant, can be written in terms of the concentration matrix as

ℓ(X1, . . . ,Xn; Ω) = tr(ΩΣ̂) − log |Ω|,

where

Σ̂ =
1

n

n∑

i=1

(
Xi − X̄

)(
Xi − X̄

)T

is the sample covariance matrix.

We define the SPICE estimator Ω̂λ of the inverse covariance matrix as the

minimizer of the penalized negative log-likelihood,

Ω̂λ = arg min
Ω≻0

{
tr(ΩΣ̂) − log |Ω| + λ|Ω−|1

}
(1)

where λ is a non-negative tuning parameter, and the minimization is taken over

symmetric positive definite matrices.

SPICE is identical to the lasso-type estimator proposed by Yuan and Lin

(2007), and very similar to the estimator of d’Aspremont et al. (2008) (they

used |Ω|1 rather than |Ω−|1 in the penalty). The loss function is invariant to

permutations of variables and should encourage sparsity in Ω̂ due to the l1

penalty applied to its off-diagonal elements.
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We make the following assumptions about the true model:

A1: Let the set S = {(i, j) : Ω0ij 6= 0, i 6= j}. Then card(S) ≤ s.

A2: ϕmin(Σ0) ≥ k > 0, or equivalently ϕmax(Ω0) ≤ 1/k.

A3: ϕmax(Σ0) ≤ k.

Note that assumption A2 guarantees that Ω0 exists. Assumption A1 is more

of a definition, since it does not stipulate anything about s (s = p(p − 1)/2

would give a full matrix).

Theorem 1. Let Ω̂λ be the minimizer defined by (1). Under A1, A2, A3, if

λ ≍
√

log p
n ,

‖Ω̂λ − Ω0‖F = OP

(√

(p + s) log p

n

)

. (2)

The theorem can be restated, more suggestively, as

‖Ω̂λ − Ω0‖2
F

p
= OP

((

1 +
s

p

)
log p

n

)

. (3)

The reason for the second formulation (3) is the relation of the Frobenius norm

to the operator norm, ‖M‖2
F /p ≤ ‖M‖2 ≤ ‖M‖2

F .

Before proceeding with the proof of Theorem 1, we discuss a modification

to SPICE based on using the correlation matrix. An inspection of the proof

reveals that the worst part of the rate,
√

p log p/n, comes from estimating the

diagonal. This suggests that if we were to use the correlation matrix rather than

the covariance matrix, we should be able to get the rate of
√

s log p/n. Indeed,

let Σ0 = WΓW , where Γ is the true correlation matrix, and W is the diagonal

matrix of true standard deviations. Let Ŵ and Γ̂ be the sample estimates of W

and Γ, i.e., Ŵ 2 = Σ̂+, Γ̂ = Ŵ−1Σ̂Ŵ−1. Let K = Γ−1. Define a SPICE estimate

of K by

K̂λ = arg min
Ω≻0

{
tr(ΩΓ̂) − log |Ω| + λ|Ω−|1

}
(4)

Then we can define a modified correlation-based estimator of the concentration

matrix by

Ω̃λ = Ŵ−1K̂λŴ−1. (5)
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It turns out that in the Frobenius norm Ω̃ has the same rate as Ω̂, but for

Ω̃ we can get a convergence rate in the operator norm (matrix 2-norm). As

discussed previously by Bickel and Levina (2008), El Karoui (2007) and others,

the operator norm is more appropriate than the Frobenius norm for spectral

analysis, e.g., PCA. It also allows for a direct comparison with banding rates

obtained in Bickel and Levina (2008) and thresholding rates in Bickel and Levina

(2007).

Theorem 2. Under assumptions of Theorem 1,

‖Ω̃λ − Ω0‖ = OP

(√

(s + 1) log p

n

)

.

Note. This rate is very similar to the rate for thresholding the covariance

matrix obtained by Bickel and Levina (2007). They showed that under the

assumption maxi

∑

j |σij |q ≤ c0(p) for 0 ≤ q < 1, if the sample covariance entries

are set to 0 when their absolute values fall below the threshold λ = M
√

log p
n ,

then the resulting estimator converges to the truth in operator norm at the rate

no worse than OP

(

c0(p)
(

log p
n

)(1−q)/2
)

. Since the truly sparse case corresponds

to q = 0, and c0(p) is a bound on the number of non-zero elements in each row,

and thus
√

s ≍ c0(p), this rate coincides with ours, even though the estimator

and the method of proof are very different. However, Lemma 1 below is the basis

of the proof in both cases, and ultimately it is the bound (6) that gives rise to the

same rate. A similar rate has been obtained for banding the covariance matrix

in Bickel and Levina (2008), under an additional assumption that depends on

the ordering of the variables and is not applicable here (see Bickel and Levina

(2007) for a comparison between banding and thresholding rates).

In the proof, we will need a lemma of Bickel and Levina (2008) (Lemma 3)

which is based on a large deviation result of Saulis and Statulevičius (1991). We

state the result here for completeness.

Lemma 1. Let Zi be i.i.d. N (0,Σp) and ϕmax(Σp) ≤ k < ∞. Then, if Σp =
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[σab],

P
[
|

n∑

i=1

(ZijZik − σjk)| ≥ nν
]
≤ c1 exp(−c2nν2) for |ν| ≤ δ (6)

where c1, c2 and δ depend on k only.

Proof of Theorem 1.

Let

Q(Ω) =tr(ΩΣ̂) − log |Ω| + λ|Ω−|1 − tr(Ω0Σ̂) + log |Ω0| − λ|Ω−
0 |1

=tr
[
(Ω − Ω0)(Σ̂ − Σ0)

]
− (log |Ω| − log |Ω0|)

+ tr
[
(Ω − Ω0)Σ0

]
+ λ(|Ω−|1 − |Ω−

0 |1) (7)

Our estimate Ω̂ minimizes Q(Ω), or equivalently ∆̂ = Ω̂−Ω0 minimizes G(∆) ≡
Q(Ω0 + ∆). Note that we suppress the dependence on λ in Ω̂ and ∆̂.

The main idea of the proof is as follows. Consider the set

Θn(M) = {∆ : ∆ = ∆T , ‖∆‖F = Mrn},

where

rn =

√

(p + s) log p

n
→ 0 .

Note that G(∆) = Q(Ω0 + ∆) is a convex function, and

G(∆̂) ≤ G(0) = 0 .

Then, if we can show that

inf{G(∆) : ∆ ∈ Θn(M)} > 0 ,

the minimizer ∆̂ must be inside the sphere defined by Θn(M), and hence

‖∆̂‖F ≤ Mrn . (8)

For the logarithm term in (7), doing the Taylor expansion of f(t) = log |Ω+ t∆|
and using the integral form of the remainder and the symmetry of ∆, Σ0, and

Ω0 gives

log |Ω0+∆|−log |Ω0| = tr(Σ0∆)−∆̃T
[ ∫ 1

0

(1−v)(Ω0+v∆)−1⊗(Ω0+v∆)−1dv
]

∆̃

(9)
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where ⊗ is the Kronecker product (if A = [aij ]p1×q1
, B = [bkl]p2×q2

, then

A ⊗ B = [aijbkl]p1p2×q1q2
), and ∆̃ is ∆ vectorized to match the dimensions of

the Kronecker product.

Therefore, we may write (7) as,

G(∆) =tr
(
∆(Σ̂ − Σ0)

)
+ ∆̃T

[ ∫ 1

0

(1 − v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
]

∆̃

+ λ(|Ω−
0 + ∆−|1 − |Ω−

0 |1) (10)

For an index set A and a matrix M = [mij ], write MA ≡ [mijI((i, j) ∈ A)],

where I(·) is an indicator function. Recall S = {(i, j) : Ω0ij 6= 0, i 6= j} and

let S be its complement. Note that |Ω−
0 + ∆−|1 = |Ω−

0S + ∆−
S |1 + |∆−

S
|1, and

|Ω−
0 |1 = |Ω−

0S |1. Then the triangular inequality implies

λ
(
|Ω−

0 + ∆−|1 − |Ω−
0 |1
)
≥ λ(

∣
∣∆−

S
|1 − |∆−

S |1
)

. (11)

Now, using symmetry again, we write

|tr
(
∆(Σ̂ − Σ0)

)
| ≤

∣
∣
∣

∑

i6=j

(σ̂ij − σ0ij)∆ij

∣
∣
∣+
∣
∣
∣

∑

i

(σ̂ii − σ0ii)∆ii

∣
∣
∣ = I + II. (12)

To bound term I, note that the union sum inequality and Lemma 1 imply

that, with probability tending to 1,

max
i6=j

|σ̂ij − σ0ij | ≤ C1

√

log p

n

and hence term I is bounded by

I ≤ C1

√

log p

n
|∆−|1. (13)

The second bound comes from the Cauchy-Schwartz inequality and Lemma 1:

II ≤
[

p
∑

i=1

(σ̂ii − σ0ii)
2

]1/2

‖∆+‖F ≤ √
p max

1≤i≤p
|σ̂ii − σ0ii| ‖∆+‖F

≤ C2

√

p log p

n
‖∆+‖F ≤ C2

√

(p + s) log p

n
‖∆+‖F , (14)

also with probability tending to 1.



Rothman et al./Sparse Covariance Estimation 11

Now, take

λ =
C1

ε

√

log p

n
. (15)

By (10),

G(∆) ≥ 1

4
k2‖∆‖2

F − C1

√

log p

n
|∆−|1 − C2

√

(p + s) log p

n
‖∆+‖F + λ(

∣
∣∆−

S
|1 − |∆−

S |1
)

=
1

4
k2‖∆‖2

F − C1

√

log p

n

(

1 − 1

ε

)

|∆−

S
|1 − C1

√

log p

n

(

1 +
1

ε

)

|∆−
S |1

− C2

√

(p + s) log p

n
‖∆+‖F (16)

The first term comes from a bound on the integral which we will argue sepa-

rately below. The second term is always positive, and hence we may omit it for

the lower bound. Now, note that

|∆−
S |1 ≤ √

s‖∆−
S ‖F ≤ √

s‖∆−‖F ≤ √
p + s‖∆−‖F .

Thus we have

G(∆) ≥ ‖∆−‖2
F

[

1

4
k2 − C1

√

(p + s) log p

n

(

1 +
1

ε

)

‖∆−‖−1
F

]

+ ‖∆+‖2
F

[

1

4
k2 − C2

√

(p + s) log p

n
‖∆+‖−1

F

]

= ‖∆−‖2
F

[
1

4
k2 − C1(1 + ε)

εM

]

+ ‖∆+‖2
F

[
1

4
k2 − C2

M

]

> 0 (17)

for M sufficiently large.

It only remains to check the bound on the integral term in (10). Recall that

ϕmin(M) = min‖x‖=1 xT Mx. After factoring out the norm of ∆̃, we have, for

∆ ∈ Θn(M),

ϕmin

(∫ 1

0

(1 − v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
)

≥
∫ 1

0

(1 − v)ϕ2
min(Ω0 + v∆)−1dv ≥ 1

2
min

0≤v≤1
ϕ2

min(Ω0 + v∆)−1

≥ 1

2
min

{
ϕ2

min(Ω0 + ∆)−1 : ‖∆‖F ≤ Mrn

}
.
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The first inequality uses the fact that the eigenvalues of Kronecker products of

symmetric matrices are the products of the eigenvalues of their factors. Now

ϕ2
min(Ω0 + ∆)−1 = ϕ−2

max(Ω0 + ∆) ≥ (‖Ω0‖ + ‖∆‖)−2 ≥ 1

2
k2 (18)

with probability tending to 1, since ‖∆‖ ≤ ‖∆‖F = o(1). This establishes the

theorem. �

As noted above, an inspection of the proof shows that
√

p log p/n in the rate

comes from estimating the diagonal (see (14)). If we focus on the correlation

matrix estimate K̂λ in (4) instead, we can immediately obtain

Corollary 1. Under assumptions of Theorem 1,

‖K̂λ − K‖F = OP

(√

s log p

n

)

.

Now we can use Corollary 1 to prove Theorem 2, the operator norm bound.

Proof of Theorem 2. Write

‖Ω̃λ − Ω0‖ = ‖Ŵ−1K̂λŴ−1 − W−1KW−1‖

≤ ‖Ŵ−1 − W−1‖ ‖K̂λ − K‖ ‖Ŵ−1 − W−1‖

+ ‖Ŵ−1 − W−1‖(‖K̂λ‖ ‖W−1‖ + ‖Ŵ−1‖ ‖K‖)

+ ‖K̂λ − K‖ ‖Ŵ−1‖ ‖W−1‖

where we are using the sub-multiplicative norm property ‖AB‖ ≤ ‖A‖ ‖B‖
(see, e.g., Golub and Van Loan (1989)). Now, ‖W−1‖ and ‖K‖ are O(1) by

assumptions A2 and A3. Lemma 1 implies that

‖Ŵ 2 − W 2‖ = OP

(√

log p

n

)

, (19)

and since ‖Ŵ−1 −W−1‖ P≍ ‖Ŵ 2 −W 2‖ (where by A
P≍ B we mean A = OP (B)

and B = OP (A)), we have the rate of
√

log p/n for ‖Ŵ−1−W−1‖. This together

with Corollary 1 in turn implies that ‖Ŵ−1‖ and ‖K̂λ‖ are OP (1), and the

theorem follows. �

Note that in the Frobenius norm, we only have ‖Ŵ 2−W 2‖ = OP (
√

p log p/n),

and thus the Frobenius rate of Ω̃λ is the same as that of Ω̂λ.
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3. The Cholesky-based SPICE algorithm

In this section, we develop an iterative algorithm for computing the SPICE esti-

mator using the Cholesky decomposition; however, unlike other estimators that

depend on the Cholesky decomposition, we minimize a permutation invariant

objective function, and thus the estimator remains permutation invariant. We

use the quadratic approximation to the absolute value, a standard tool in op-

timization which has been previously used in the statistics literature to handle

lasso-type penalties, for example, by Fan and Li (2001) and Huang et al. (2006).

In this our algorithm differs from the glasso algorithm of Friedman et al. (2008),

which is based on a lasso algorithm and works directly on the absolute values.

Both algorithms have computation complexity of O(p3), but we acquire another

small constant factor (on the order of 10) due to the additional iterations re-

quired for the quadratic approximation to converge (see more on this in Section

4). However, using the quadratic approximation allows us to write down the

algorithm in general terms for an lq penalty |wij |q with q ≥ 1, rather than only

for q = 1 in glasso. In particular, our algorithm is equally applicable for use with

a ridge penalty (q = 2), although in that special case it simplifies even further,

or with a bridge penalty (1 < q < 2) proposed by Fu (1998), which may work

better for certain classes of covariances. It can also be used with SCAD (Fan

and Li, 2001) or other more complicated non-convex penalties that are typically

approximated by the local quadratic approximation. Even though we derive the

algorithm with a general q, in this paper we only present results for q = 1.

Our goal is to minimize the objective function,

f(Ω) = tr(ΩΣ̂) − log |Ω| + λ
∑

j′ 6=j

|ωj′j |q, (20)

where q = 1 corresponds to the computation of Ω̂λ in (1). For q ≥ 1, the

objective function is convex in the elements of Ω and the global minimum Ω̂

corresponds to ∇f(Ω̂) = 0. Our strategy is to re-parametrize the objective (20)

using the Cholesky decomposition of Ω to enforce automatic positive definite-

ness. Rather than using the modified Cholesky decomposition with its regression
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interpretation, as has been standard in the literature, we simply write

Ω = TT T,

where T = [tij ] is a lower triangular matrix. We can still use the regression

interpretation if needed, by writing

tjj′ = − φjj′

√
djj

, j′ < j

tjj =
1

√
djj

, (21)

where φjj′ is the coefficient of Xj′ in the regression of Xj on X1, . . . ,Xj−1, and

djj is the corresponding residual variance.

To minimize f in terms of T , we apply a cyclical coordinate descent approach

and minimize f with respect to one element of T at a time. Further, we use a

quadratic approximation to f , which allows to find the minimum of the univari-

ate functions of each parameter in closed form. The algorithm is iterated until

convergence. Here we outline the main steps of the algorithm, and leave the full

derivation for the Appendix.

In a slight abuse of notation, we write X for the n × p data matrix where

each column has already been centered by its sample mean. The three terms in

(20) can be expressed as a function of T as follows:

tr(ΩΣ̂) =
1

n

n∑

i=1

p
∑

j=1

(
j
∑

k=1

tjkXik

)2
(22)

log |Ω| = 2

p
∑

j=1

log tjj (23)

∑

j′ 6=j

|ωj′j |q = 2
∑

j′>j

∣
∣

p
∑

k=j′

tkj′tkj

∣
∣
q

(24)

The quadratic approximations for |u|q and log(u) are shown in (25) and (26),

respectively. Since the algorithm is iterative, u(k) denotes the value of u from

the previous iteration, and u(k+1) is the value at current iteration.
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|u(k+1)|q ≈ q

2

(u(k+1))2

|u(k)|2−q
+
(

1 − q

2

)

|u(k)|q (25)

log u(k+1) ≈ 2
u(k+1)

u(k)
− 1

2

(u(k+1))2

(u(k))2
− 3

2
+ log u(k) (26)

Hunter and Li (2005) suggest replacing |u(k)| in the denominator with |u(k)|+ǫ

to avoid division by zero, and refer to this as the ǫ-perturbed quadratic approx-

imation. In practice, it is enough to only add ǫ to those entries that are set to 0,

and replace these elements of Ω̂(k) with zeros after convergence. This quadratic

approximation to f , which we denote f̃ǫ,k at iteration k, allows us to easily take

partial derivatives with respect to each parameter in T , and provides a closed

form solution for the univariate minimizer for each coordinate.

The algorithm requires an initial value T̂ (0), which corresponds to Ω̂(0). If the

sample covariance Σ̂ is non-degenerate, which is generally the case for p < n,

one could simply set Ω̂(0) = Σ̂−1. More generally, we found the following simple

strategy to work well: approximate φjj′ in (21) by regressing Xj on Xj′ alone,

for j′ = 1, . . . , j − 1, and then compute T̂ (0) using (21). Yet another alternative

is to start from the diagonal estimator.

The Algorithm:

Step 0. Initialize T̂ = T̂ (0) and Ω̂(0) = (T̂ (0))T T̂ (0).

Step 1. For each parameter tlc, c = 1, . . . , p, l = c, . . . , p, solve ∇tlc
f̃(T ) = 0

to find new t̂lc.

Step 2. Repeat Step 1 until convergence of T̂ and set T (k+1) = T̂ .

Step 3. Set Ω̂(k+1) = (T (k+1))T T (k+1) and repeat Steps 1-3 until convergence

of Ω̂.

Steps 2 and 3 may seem redundant, but they are needed for two different rea-

sons. Step 2 is needed because we only minimize with respect to one parameter

at a time, holding all other parameters fixed; and Step 3 is needed because of

the quadratic approximations for |u| and log u.

In practice, we found that working with the correlation matrix as described in

Theorem 2 is slightly better than working with the covariance matrix, although
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the differences are fairly small. Still, in all the numerical results we standard-

ize the variables first and then rescale our estimate by the sample standard

deviations of the variables.

3.1. Algorithm convergence

The convergence of the algorithm essentially follows from two standard re-

sults. For the inner loop cycling through individual parameters, the value of

the objective function decreases at each iteration, and the objective function

is differentiable everywhere. Thus the inner loop of the algorithm converges by

a standard theorem on cyclical coordinate descent for smooth functions (see,

e.g., Bazaraa et al. (2006), p. 367), to a stationary point ∇g(T ) = 0, where

g(T ) = f̃ǫ,k(TT T ). The function f̃ǫ,k is convex in the original parameters ωij ,

but since we reparametrized it in terms of T , the function g is not necessarily

convex in T . In the next proposition we verify that this stationary point of g

corresponds to the global minimum of the convex function f̃ǫ,k.

Proposition 1. Let f̃ ≡ f̃ǫ,k be the original convex function f approximated

by the ǫ-perturbed local quadratic approximation at iteration k, let T be a p × p

lower triangular matrix, and let g(T ) = f̃(TT T ). Let S0 be the unique solution

to ∇f̃(S) = 0, and let T0 be a solution to ∇g(T ) = 0. Then S0 = TT
0 T0.

Proof of Proposition 1. Let h : T → TT T . Note that h maps all of R
p(p+1)/2

(all lower triangular matrices) into a convex subset of R
p(p+1)/2 (non-negative

definite symmetric matrices). Denote the differential of h in the direction d ∈
R

p(p+1)/2 evaluated at t0 ∈ R
p(p+1)/2 by ∇h(t0)[d]. Then,

∇h(t0)[d] = TT
0 D + DT T0 , (27)

where T0 and D are, respectively, t0 and d written as p×p matrices. Now, using

the chain rule and (27), we have

∇g(t0)[d] = ∇f̃(vec(TT
0 T0))

(
TT

0 D + DT T0

)
. (28)

where we now think of f̃ as a function from R
p(p+1)/2 to R. Since f̃ is convex

and has a unique minimizer s0 = vec(S0), ∇f̃(s)[d] vanishes iff s = s0 or d = 0.
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Thus ∇g(t0)[d] = 0 vanishes iff TT
0 T0 = S0 or TT

0 D + DT T0 = 0. The latter is

only possible if T0D = 0, which in turn is only possible if either D = 0 or T0

is singular. But if T0 is singular, then so is TT
0 T0, and thus g(T0) = ∞, so a

singular T0 cannot be a stationary point of g. �

For the outer loop iterating through the quadratic approximation, we can

apply the argument of Hunter and Li (2005) for ǫ-perturbed local quadratic

approximation obtained from general results for minorize-maximize algorithms,

and conclude that as k → ∞ and ǫ → 0 the algorithm converges to the global

minimum of the original convex function f in (1).

Convergence has not been formally established for glasso. Even though it

performs convex optimization, the objective function is not smooth, and in

principle coordinate descent may terminate before reaching the global minimum

(Bazaraa et al., 2006). However, in practice we have observed that our algorithm

and glasso converge to the same solution.

3.2. Computational complexity

The computational complexity of the algorithm in terms of p is O(p3), since

each parameter update is at most O(p) (see (33) in the Appendix), and there

are O(p2) parameters. The only other algorithm for computing this estimator

at the cost of O(p3) is glasso of Friedman et al. (2008); the algorithms of Yuan

and Lin (2007) and d’Aspremont et al. (2008) have higher computational cost.

For extensive timing comparisons of glasso and the algorithm of d’Aspremont

et al. (2008), which showed convincingly that glasso is faster, see Friedman et al.

(2008).

3.3. Choice of tuning parameter

Like any other penalty-based approach, SPICE requires selecting the tuning pa-

rameter λ. In simulations, we generate a separate validation dataset, and select

λ by maximizing the normal likelihood on the validation data with Ω̂λ estimated

from the training data. Alternatively, one can use 5-fold cross-validation, which
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we do for the real data analysis. There is some theoretical basis for selecting the

tuning parameter in this way – see Bickel and Levina (2007).

4. Numerical Results

In this section, we compare the performance of SPICE to the shrinkage estimator

of Ledoit and Wolf (2003) and to the sample covariance matrix when applicable

(p < n), using simulated and real data. We do not include any estimators that

depend on variable ordering (such as banding of Bickel and Levina (2008) or the

Lasso penalty on the Cholesky factor of Huang et al. (2006)), nor estimators that

focus on introducing sparsity in the covariance matrix itself rather than in its

inverse (such as thresholding), as they would automatically be at a disadvantage

on sparse concentration matrices. The Ledoit-Wolf estimator does not introduce

sparsity in the inverse either, but we use it as a benchmark for cases when p > n,

since the sample covariance is not invertible.

4.1. Simulations

In simulations, we focus on comparing performance on sparse concentration ma-

trices, with varying levels of sparsity. We consider the following four covariance

models.

1. Ω1: AR(1), σj′j = 0.7|j
′−j|.

2. Ω2: AR(4), ωj′j = I(|j′ − j| = 0) + 0.4 · I(|j′ − j| = 1)

+ 0.2 · I(|j′ − j| = 2) + 0.2 · I(|j′ − j| = 3) + 0.1 · I(|j′ − j| = 4).

3. Ω3 = B+δI, where each off-diagonal entry in B is generated independently

and equals 0.5 with probability α = 0.1 or 0 with probability 1−α = 0.9.

B has zeros on the diagonal, and δ is chosen so that the condition number

of Ω3 is p (keeping the diagonal constant across p would result in either

loss of positive definiteness or convergence to identity for larger p).

4. Ω4: Same as Ω3 except α = 0.5.
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Table 1

Simulations: Average (SE) Kullback-Leibler loss over 50 replications.

p Sample Ledoit-Wolf SPICE Sample Ledoit-Wolf SPICE
Ω1 Ω2

30 8.52(0.14) 3.49(0.04) 1.61(0.03) 8.52(0.14) 2.77(0.02) 2.55(0.03)
100 NA 26.65(0.08) 8.83(0.05) NA 12.96(0.02) 11.93(0.07)
200 NA 76.83(0.13) 21.23(0.09) NA 28.16(0.01) 24.82(0.07)
500 NA 262.8(0.19) 78.26(0.26) NA 74.37(0.02) 63.94(0.12)
1000 NA 594.0(0.13) 174.8(0.20) NA 151.9(0.04) 133.7(0.20)

Ω3 Ω4

30 8.45(0.12) 3.50(0.05) 2.12(0.04) 8.45(0.12) 3.04(0.04) 3.77(0.04)
100 NA 29.25(0.44) 17.09(0.10) NA 19.35(0.15) 21.33(0.06)
200 NA 86.93(1.64) 45.58(0.13) NA 53.18(0.37) 51.93(0.13)
500 NA 240.3(3.24) 168.7(0.37) NA 150.4(0.45) 176.6(0.33)
1000 NA 321.5(27.7) 277.3(23.5) NA 269.8(18.1) 307.3(20.6)

All models are sparse (see Figure 1), and are numbered in order of decreasing

sparsity (or increasing s). Note that the number of non-zero entries in Ω1 and Ω2

is proportional to p, whereas Ω3 and Ω4 have the expected number of non-zero

entries proportional to p2.

For all models, we generated n = 100 multivariate normal training obser-

vations and a separate set of 100 validation observations. We considered five

different values of p, 30, 100, 200, 500 and 1000. The estimators were computed

on the training data, with the tuning parameter for SPICE selected by mini-

mizing the normal likelihood on the validation data. Using these values of the

tuning parameters, we computed the estimated concentration matrix on the

training data and compared it to the population concentration matrix.

We evaluate the concentration matrix estimation performance using the Kullback-

Leibler loss,

∆KL(Ω̂,Ω) = tr
(

ΣΩ̂
)

− log
∣
∣
∣ΣΩ̂

∣
∣
∣− p . (29)

Note that this loss is based on Ω̂ and does not require inversion to compute Σ̂,

which is appropriate for a method estimating Ω. The Kullback-Leibler loss was

used by Yuan and Lin (2007) and Levina et al. (2008) to assess performance of

methods estimating Ω, and is obtained from the standard entropy loss of the

covariance matrix (Lin and Perlman, 1985; Wu and Pourahmadi, 2003; Huang

et al., 2006) by reversing the roles of Σ and Ω.
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Table 2

Percentage of correctly estimated non-zeros (TP %) and correctly estimated zeros (TN %)
in the concentration matrix (average and SE over 50 replications) for SPICE.

p TP % TN % TP % TN %
Ω1 Ω2

30 100(0.00) 68.74(0.31) 50.18(1.44) 75.64(1.28)
100 100(0.00) 74.70(0.08) 49.96(1.10) 72.68(1.21)
200 100(0.00) 73.57(0.04) 27.62(0.12) 96.47(0.02)
500 100(0.00) 91.97(0.01) 22.48(0.09) 98.81(0.00)
1000 100(0.00) 98.95(0.00) 22.29(0.05) 98.82(0.00)

Ω3 Ω4

30 98.38(0.30) 63.85(1.28) 74.15(0.61) 44.50(0.84)
100 93.90(0.27) 54.01(0.61) 41.27(0.37) 63.07(0.36)
200 70.81(0.13) 69.82(0.05) 35.77(0.06) 66.08(0.06)
500 28.93(0.06) 89.28(0.02) 5.92(0.62) 94.27(0.61)
1000 4.73(0.40) 72.36(6.13) 2.07(0.14) 79.97(5.35)

Results for the four covariance models are summarized in Table 1, which

reports the average loss and the standard error over 50 replications. For Ω1, Ω2,

and Ω3, SPICE outperforms the Ledoit-Wolf estimator for all values of p. The

sample covariance performs much worse than either estimator in all cases (for

p = 30). For Ω4, the least sparse of the four models, the Ledoit-Wolf estimator is

about the same as SPICE (sometimes a little better, sometimes a little worse).

This suggests, as we would expect from our bound on the rate of convergence,

that SPICE provides the biggest gains in sparse models.

To assess the performance of SPICE on recovering the sparsity structure in

the inverse, we report percentages of non-zeros estimated as non-zero (TP %)

and percentages of true zeros estimated as zero (TN %) in Table 2. We also

plot heatmaps of the percentage of time each element was estimated as zero out

of the 50 replications in Figure 1, for p = 30 for all four models. In general,

recovering the sparsity structure is easier for smaller p and for sparser models.

Finally, some example computing times: the SPICE algorithm for Ω2 takes

about 2 seconds for p = 200, 1 minute for p = 500, and 15 minutes for p =

1000 on a regular PC. Glasso and SPICE both have complexity O(p3), but

because of the quadratic approximation, SPICE tends to require more iterations

to converge, and on average, we have observed a difference in computing times

on the order of about 10 between glasso and SPICE. However, this factor does

not grow with p, and SPICE computing times are still very reasonable even for
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(a) True Ω1 (b) SPICE Ω̂1

(c) True Ω2 (d) SPICE Ω̂2

(e) True Ω3 (f) SPICE Ω̂3

(g) True Ω4 (h) SPICE Ω̂4

Fig 1. Heatmaps of zeros identified in the concentration matrix out of 50 replications. White
color is 50/50 zeros identified, black is 0/50.
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large p.

4.2. Colon tumor classification example

In this section, we compare performance of covariance estimators for LDA clas-

sification of tumors using gene expression data from Alon et al. (1999). In this

experiment, colon adenocarcinoma tissue samples were collected, 40 of which

were tumor tissues and 22 non-tumor tissues. Tissue samples were analyzed us-

ing an Affymetrix oligonucleotide array. The data were processed, filtered, and

reduced to a subset of 2,000 gene expression values with the largest minimal

intensity over the 62 tissue samples. Additional information about the dataset

and pre-processing can be found in Alon et al. (1999).

To assess the performance at different dimensions, we reduce the full dataset

of 2,000 gene expression values by selecting p most significant genes as mea-

sured by the two-sample t-statistic, for p = 50, 100, 200. Then we use linear

discriminant analysis (LDA) to classify these tissues as either tumorous or non-

tumorous. We classify each test observation x to either class k = 0 or k = 1

using the LDA rule

δk(x) = arg max
k

{

xT Ω̂µ̂k − 1

2
µ̂

T
k Ω̂µ̂k + log π̂k

}

, (30)

where π̂k is the proportion of class k observations in the training data, µ̂k is

the sample mean for class k on the training data, and Ω̂ is an estimator of the

inverse of the common covariance matrix on the training data computed by one

of the methods under consideration. Detailed information on LDA can be found

in Mardia et al. (1979).

To create training and test sets, we randomly split the data into a training

set of size 42 and a testing set of size 20; following the approach used by Wang

et al. (2007), we require the training set to have 27 tumor samples and 15

non-tumor samples. We repeat the split at random 100 times and measure the

average classification error. The average errors with standard errors over the 100

splits are presented in Table 3. We omit the sample covariance because it is not
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Table 3

Averages and SEs of classification errors in % over 100 splits. Tuning parameter for SPICE
chosen by (A): 5-fold CV on the training data maximizing the likelihood; (B): 5-fold CV on

the training data minimizing the classification error; (C): minimizing the classification
error on the test data.

p = 50 p = 100 p = 200
N. Bayes 15.8(0.77) 20.0(0.84) 23.1(0.96)
L-W 15.2(0.55) 16.3(0.71) 17.7(0.61)
SPICE A 12.1(0.65) 18.7(0.84) 18.3(0.66)
SPICE B 14.7(0.73) 16.9(0.85) 18.0(0.70)
SPICE C 9.0(0.57) 9.1(0.51) 10.2(0.52)

invertible with such a small sample size, and include the naive Bayes classifier

instead (where Σ̂ is estimated by a diagonal matrix with sample variances on

the diagonal). Naive Bayes has been shown to perform better than the sample

covariance in high-dimensional settings (Bickel and Levina, 2004).

For an application such as classification, there are several possibilities for

selecting the tuning parameter. Since we have no separate validation data avail-

able, we perform 5-fold cross-validation on the training data. One possibility

(columns A in Table 3) is to continue using normal likelihood as a criterion for

cross-validation, like we did in simulations. Another possibility (columns B in

Table 3) is to use classification error as the cross-validation criterion, since that

is the ultimate performance measure in this case. Table 3 shows that for SPICE

both methods of tuning perform similarly. For reference, we also include the best

error rate achievable on the test data, which is obtained by selecting the tuning

parameter to minimize the classification error on the test data (columns C in

Table 3). SPICE provides the best improvement over naive Bayes and Ledoit-

Wolf for p = 50; for larger p, as less informative genes are added into the pool,

the performance of all methods worsens.

5. Discussion

We have analyzed a penalized likelihood approach to estimating a sparse concen-

tration matrix via a lasso-type penalty, and showed that its rate of convergence

depends explicitly on how sparse the true matrix is. This is analogous to results

for banding (Bickel and Levina, 2008), where the rate of convergence depends
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on how quickly the off-diagonal elements of the true covariance decay, and for

thresholding (Bickel and Levina, 2007; El Karoui, 2007), where the rate also de-

pends on how sparse the true covariance is by various definitions of sparsity. We

conjecture that other structures can be similarly dealt with, and other types of

penalties may show similar behavior when applied to the “right” type of struc-

ture – for example, a ridge, bridge, or other more complex penalty may work

well for a model that is not truly sparse but has many small entries. A general-

ization of this work to other penalties has been recently completed by Lam and

Fan (2007), who have also proved “sparsistency” of SPICE-type estimators.

While we assumed normality, it can be replaced by a tail condition, analo-

gously to Bickel and Levina (2008). The use of normal likelihood is, of course,

less justifiable if we do not assume normality, but it was found empirically that

it still works reasonably well as a loss function even if the true distribution is

not normal (Levina et al., 2008).

The Cholesky decomposition of covariance was only considered appropriate

when variables are ordered, and we have shown it to be a useful tool for enforc-

ing positive definiteness of the estimator even when variables have no natural

ordering. Our optimization algorithm has complexity of O(p3) and is equally

applicable to general lq penalties.
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Appendix A: Derivation of the Algorithm

In this section we give a full derivation of the parameter update equations

involved in the optimization algorithm. Recall that we have re-parametrized the

objective function (20) using (22)–(24). We cycle through the parameters in T

and for each tlc, compute partial derivatives with respect to tlc while holding all

other parameters fixed, and solve the univariate linear equation corresponding
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to setting this partial derivative to 0.

For simplicity, we separate the likelihood and the penalty by writing f̃(T ) =

ℓ(T ) + P (T ). We also suppress the ǫ-perturbation in the denominator for sim-

plicity of notation. For the likelihood part, taking the partial derivative with

respect to tlc, 1 ≤ c ≤ p, c ≤ l ≤ p and applying the quadratic approximation

(26) gives

∂

∂tℓc
ℓ(T ) = −2

∂

∂tℓc

p
∑

j=1

log tjj

︸ ︷︷ ︸

=0 if j 6=c

+
1

n

n∑

i=1

∂

∂tℓc

p
∑

j=1

(
j
∑

k=1

tjkXik

)2

︸ ︷︷ ︸

=0 if j 6=l

= tlc

[

2σ̂cc + I{l = c} 2

(t0cc)
2

]

+ 2

l∑

k=1, k 6=c

tlkσ̂kc − I{l = c} 4

t0cc

, (31)

where t0cc denotes the value of tcc from the previous iteration.

For the penalty part, using the quadratic approximation (25) gives

∂

∂tℓc
P (T ) ≈ ∂

∂tℓc

∑

j′>j

λq

|ω0
j′j |2−q

ω2
j′j =

l∑

k=1,k 6=c

λq

|ω0
ck|2−q

∂

∂tℓc
ω2

ck , (32)

since the only nonzero terms in (32) are those for which j′ ≤ l and either j′ = c

or j = c. For 1 ≤ k ≤ l such that k 6= c, we have ∂
∂tℓc

ω2
ck = 2ωcktlk, and

collecting terms together we get

∂

∂tℓc
P (T ) = tlc



2λq
l∑

k=1,k 6=c

t2lk
|ω0

ck|2−q



+ 2λq
l∑

k=1,k 6=c

(ωck − tlctlk)tlk
|ω0

ck|2−q
. (33)

Combining together (31) and (33), we have the parameter update equation

for tlc for c ≤ l ≤ p and c ≤ q ≤ p, is given by

t̂lc =
−∑l

k=1, k 6=c tlkσ̂kc − λq
∑l

k=1,k 6=c(ωck − tlctlk)tlk|ω0
ck|q−2 + I{l = c}2(t0cc)

−1

σ̂cc + λq
∑l

k=1,k 6=c t2lk|ω0
ck|q−2 + I{l = c}(t0cc)

−2
.

We also can quickly update the ωck involving tlc via

ωck = ω0
ck + tlk(t̂lc − tlc) .


