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Measuring Traffic
Peter J. Bickel, Chao Chen, Jaimyoung Kwon, John Rice, Erik van Zwet and Pravin Varaiya

Abstract. A traffic performance measurement system, PeMS, currently
functions as a statewide repository for traffic data gathered by thousands of
automatic sensors. It has integrated data collection, processing and commu-
nications infrastructure with data storage and analytical tools. In this paper,
we discuss statistical issues that have emerged as we attempt to process a data
stream of 2 GB per day of wildly varying quality. In particular, we focus on
detecting sensor malfunction, imputation of missing or bad data, estimation
of velocity and forecasting of travel times on freeway networks.

Key words and phrases: ATIS, freeway loop data, speed estimation, mal-
function detection.

1. INTRODUCTION

As vehicular traffic congestion has increased, espe-
cially in urban areas, so have efforts at data collection,
analysis and modeling. This paper discusses the sta-
tistical aspects of a particular effort, the Freeway Per-
formance Measurement System (PeMS). We begin this
introduction with some general discussion of data col-
lection and traffic modeling and then describe PeMS.

1.1 Data Collection and Traffic Modeling

Traffic data are collected by three types of sensors.
The first type is a point sensor, which provides es-
timates of flow or volume, occupancy and speed at
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a particular location on the freeway, averaged over
30 seconds. Ninety percent of point sensors are in-
ductive loops buried in the pavement; the others are
overhead video cameras or side-fired radar detectors.
Point sensors provide continuous measurement. The
large amount of data they provide can be used for sta-
tistical analysis.

The second type of sensors are implemented by float-
ing cars that record GPS or tachometer readings from
which one can construct the vehicle trajectory. Floating
cars are expensive since they require drivers. Depart-
ments of Transportation (DoTs) typically deploy float-
ing cars once or twice a year on stretches of freeway
that are congested to determine travel time and the ex-
tent of the freeway that is congested. The data are in-
sufficient for reliable estimates of travel time variabil-
ity.

The third type of sensor can be used in areas in which
vehicles are equipped with RFID tags. These tags are
used for electronic toll collection (ETC). In the San
Francisco Bay Area, for example, ETC tags are used
for bridge toll collection. ETC readers are deployed at
several locations, in addition to the bridge toll booths.
These readers collect the tag ID and add a time stamp.
By matching these at two consecutive reader locations,
one gets the vehicle’s travel time between the two loca-
tions. (One may view these data as samples of floating
car trajectories.) The www.511.org site displays travel
times estimated using these data. Of course, this type of
sensor can only be deployed in a few locations. More-
over, the penetration of ETC tags in the whole vehicle
population, and hence the data they provide, varies by
time of day and day of week.
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In addition, there are special data sets obtained from
surveys.

Point sensors implemented by inductive loops pro-
vide 95% of the data used by DoTs and traffic analysts
worldwide. These data are used for two purposes: real-
time traffic control and building traffic flow models for
planning.

The primary traffic control mechanism is ramp me-
tering, which controls the volume of traffic that enters
the freeway at an on-ramp. The rate of flow depends
on the density of traffic on the freeway, estimated from
real-time loop data. Measurement, modeling and con-
trol are discussed in Papageorgiou (1983) and Papa-
georgiou et al. (1990), for example.

Real-time and historical data are also used to esti-
mate and predict travel times. Travel time predictions
are posted on the web and on changeable message signs
on the side of the freeway. Attempts to process these
data to estimate the occurrence of an accident have
been unsuccessful, because of high false alarm rates.

Simulation models are used by regional transporta-
tion planners to predict changes in the pattern of traffic
through a freeway network as a result of projected in-
crease in demand or the addition of a lane or exten-
sion of a highway. The models are more frequently
used to predict the impact of proposed shopping or
housing development, or, in an operational context,
to compare different alternatives to relieve conges-
tion at some location. Microscopic models, such as
TSIS/CORSIM, TRANSIMS, VISSIM and Paramics
predict the movement of each individual vehicle. In
macroscopic models, such as TRANSYT, SYNCHRO
and DYNASMART, the unit of analysis is a platoon
of vehicles or macroscopic variables such as flow, den-
sity and speed. URLs for these simulation models are
given in the list of references. A fascinating overview
and discussion of microscopic and macroscopic traffic
models is provided by Helbing (2001).

Microscopic models are based on car-following and
gap-acceptance models of driver behavior: how closely
do drivers follow the car in front as a function of
distance and relative speed; and how big a gap is
needed before drivers change lanes. The parameters in
these behavioral models are interpreted as indicators
of driver aggressiveness and impatience. Microscopic
models have scores of parameters, but they are cali-
brated using aggregate point detector data. As a result,
most parameters are simply set to default values and no
attempt is made to estimate them. Macroscopic models
have fewer parameters, which can be estimated with
point detector data. Typically, however, the estimates

are based on least squares fit using a few days of data,
with no attempt to calculate the reliability of the esti-
mates. In order to predict network-wide traffic flows,
the models need origin-destination flow data. These
are converted into link-level flows assuming some kind
of user equilibrium in which drivers take routes that
have minimum travel times. Since these travel times
depend on the link flows themselves, an iterative pro-
cedure is needed to calculate the assignment of origin-
destination flows to link flows (Yu et al., 2004). Origin-
destination flow data themselves are based on survey
data or they are inferred from activity models that re-
late employment and household location data, obtained
from the Census.

1.2 The Freeway Performance
Measurement System

Over a number of years, the State of California
has invested in developing Transportation Management
Centers (TMCs) in urban areas to help manage traffic.
The TMCs receive traffic measurements from the field,
such as average speed and volume. These data, which
are updated every 30 seconds, help the operations staff
react to traffic conditions, to minimize congestion and
to improve safety.

More recently, the California Department of Trans-
portation (Caltrans) recognized that the data collected
by the TMCs is valuable beyond real-time opera-
tions needs, and a concept of a central data reposi-
tory and analysis system evolved. Such a system would
provide the data to transportation stakeholders at all
jurisdictional levels. It was decided to pursue this con-
cept at a research level before investing significant re-
sources. Thus, a collaboration between Caltrans and
PATH (Partners for Advanced Transit and Highways)
at the University of California at Berkeley was initi-
ated to develop a performance measurement system or
PeMS.

PeMS currently functions as a statewide repository
for traffic data gathered by thousands of automatic
sensors. It has integrated existing Caltrans data col-
lection, processing and communications infrastructure
with data storage and analytical tools. Through the In-
ternet (http://pems.eecs.berkeley.edu), PeMS provides
immediate access to the data to a wide variety of users.
The system supports standard Internet browsers, such
as Netscape or Explorer, so that users do not need any
specialized software. In addition, PeMS provides sim-
ple plotting and analysis tools to facilitate standard en-
gineering and planning tasks and help users interpret
the data.

http://pems.eecs.berkeley.edu
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PeMS has many different users. Operational traffic
engineers need the latest measurements to base their
decisions on the current state of the freeway network.
For example, traffic control equipment, such as ramp-
metering and changeable message signs, must be opti-
mally placed and evaluated. Caltrans managers want
to quickly obtain a uniform and comprehensive as-
sessment of the performance of their freeways. Plan-
ners look for long-term trends that may require their
attention; for example, they try to determine whether
congestion bottlenecks can be alleviated by improv-
ing operations or by minor capital improvements. They
conduct freeway operational analyses, bottleneck iden-
tification, assessment of incidents and evaluation of ad-
vanced control strategies, such as on-ramp metering.
Individual travelers and fleet operators want to know
current shortest routes and travel time estimates. Re-
searchers use the data to study traffic dynamics and
to calibrate and validate simulation models. PeMS can
serve to guide development and assess deployment of
intelligent transportation systems (ITS).

PeMS has many different faces, but at some level it
is just a simple balance sheet. A transportation system
consumes public resources. In return, it produces trans-
portation services that move people and goods. PeMS
provides an automated system to account for these
outputs and inputs through a collection of accounting
formulas that aggregate received data into meaning-
ful indicators. This produces a balance sheet for use
in tracking performance over time and across agencies
in a reasonably objective manner. Examples of “mean-
ingful indicators” are:

• hourly, daily, weekly totals of VMT (vehicle-miles
traveled), VHT (vehicle-hours traveled) and travel
time for selected routes or freeway segments (links),

• means and variances of VMT, VHT and travel time.

These are simple measures of the volume, quality and
reliability of the output of highway links. Publication
each day of these numbers tells drivers and operators
how well those links are functioning. Time series plots
can be used to gauge monthly, weekly, daily and hourly
trends.

Every 30 seconds, PeMS receives detector data over
the Caltrans wide area network (WAN) to which all
12 districts are connected. Each individual Caltrans
district is connected to PeMS through the WAN over a
permanent ATM virtual circuit. A front end processor
(FEP) at each district receives data from freeway loops
every 30 seconds. The FEP formats these data and
writes them into the TMC database, as well as into the

PeMS database. PeMS maintains a separate instance of
the database for each district. Although the table for-
mats vary slightly across districts, they are stored in
PeMS in a uniform way, so the same software works
for all districts.

The PeMS computer at UC Berkeley is a four-
processor SUN 450 workstation with 1 GB of RAM
and 2 terabytes of disk. It uses a standard Oracle data-
base for storage and retrieval. The maintenance and ad-
ministration of the database is standard but highly spe-
cialized work, which includes disk management, crash
recovery and table configuration. Also, many parame-
ters must be tuned to optimize database performance.
A part-time Oracle database administrator is necessary.

The PeMS database architecture is modular and
open. A new district can be added online with six
person-weeks of effort, with no disruption of the dis-
trict’s TMC. Data from new loops can be incorporated
as they are deployed. New applications are added as
need arises.

PeMS includes software serving three main func-
tions: operating the database, processing and analyzing
the data, and providing access to the data via the Inter-
net. The processing of the data is done to ensure their
reliability. It is a fact of life that the automatic detectors
that generate most of our data are prone to malfunction.
Detecting malfunction in an array of correlated sensors
has been a statistical challenge. The related problem of
imputation of bad or missing values is another major
concern.

PeMS provides access to the database through the
Internet. Using a standard browser such as Netscape or
Internet Explorer, the user is able to query the database
in a variety of ways. He or she can use built-in tools to
plot the query results, or download the data for further
study. Numerous tools for visualization are provided,
allowing users to examine a variety of phenomena. Vi-
sualization tools include real-time maps showing lev-
els of congestion, flow and speed profiles in space and
in time, time series for individual detectors, plots dis-
playing detector health, profiles of incidents in space
and time, graphics to aid in the identification of bot-
tlenecks, displays of delay as a function of space and
time, and graphical summaries of vehicle miles trav-
eled by freeway segment as a function of space and
time.

In this paper we will describe how PeMS works.
Our emphasis will be on the statistical issues that have
emerged as we attempt to process a data stream of 2 GB
per day of wildly varying quality. Real-time processing
of the data is essential and while our methods cannot
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be optimal or “best” in any statistical sense, we aim
for them to be as “good” as possible under the circum-
stances, and improvable over time.

The remainder of the paper is organized as follows.
In Section 2 we describe the basic sensors upon which
PeMS relies, loop detectors. In Section 3 we describe
our approaches to detecting sensor malfunction and in
Section 4 describe how we impute values that are miss-
ing or in error. Section 5 is devoted to a description
of how we estimate velocity from the loop detectors,
and Section 6 describes our method of predicting travel
times for users. The reader will see that these efforts are
very much a work in progress, with some aspects well
developed and others under development.

2. LOOP DETECTORS

Caltrans TMCs currently operate many types of au-
tomatic sensors: microwave, infrared, closed circuit
television and inductive loop. The most common type
by far, however, is the inductive loop detector. Induc-
tive loop detectors are wire loops embedded in each
lane of the roadway at regular intervals on the net-
work, generally every half-mile. They operate by de-
tecting the change in inductance caused by the metal in
vehicles that pass over them. A detector reports every
30 seconds the number of passing vehicles, and the per-
centage of time that it was covered by a vehicle. The
number of vehicles is called flow, the percent cover-
age is called the occupancy. A roadside controller box
operates a set of loop detectors and transmits the infor-
mation to the local Caltrans TMC. This is done through
a variety of media, from leased phone lines to Caltrans
fiber optics. PeMS currently receives data from about
22,000 loop detectors in California.

A single inductance loop does not directly measure
velocity. However, if the average length of the passing
vehicles were known, velocity could be inferred from
flow and occupancy. Estimation of velocity or, equiv-
alently, average vehicle length has been an important
part of our work, which is the subject of Section 5. At
selected locations, two single-loop detectors are placed
in close proximity to form a “double-loop” detector,
which does provide direct measurement of velocity,
from the time delay between upstream and downstream
vehicle signatures. Most of the loop detectors in Cali-
fornia are single-loop detectors while double-loop de-
tectors are more widely used in Europe.

For a particular loop detector, the flow (volume) and
occupancy at sampling time t (corresponding to a given
sampling rate) are defined as

q(t) = N(t)

T
, k(t) =

∑
j∈J (t) τj

T
,(1)

where T is the duration of the sampling time interval,
say 5 min, N(t) is the number of cars detected during
the sampling interval t , τj is the on-time of vehicle j ,
and J (t) is the set of cars that are detected in time in-
terval t . The traffic speed at time t is defined as

v(t) = 1

N(t)

∑
j∈J (t)

vj ,

where vj is the velocity of vehicle j .
We will use d, t, s, n to denote day, time of day,

detector station and lane, letting them range over
1, . . . ,D, 1, . . . , T , 1, . . . , S and 1, . . . ,N . By “sta-
tion” we mean the collection of loop detectors in the
various lanes at one location. Flow, occupancy, speed
measured from station s, lane l at time t of day d will
be denoted as

qs,l(d, t), ks,l(d, t), vs,l(d, t).

We will also index detectors by i = 1, . . . , I in some
cases and use t to denote sample times, so that nota-
tions like qi(t), qs,l(t), etc. will be seen as well.

Single-loop detectors are the most abundant source
of traffic data in California, but loop data are often
missing or invalid. Missing values occur when there is
communication error or hardware breakdown. A loop
detector can fail in various ways even when it reports
values. Payne et al. (1976) identified various types of
detector errors including stuck sensors, hanging on or
hanging off, chattering, cross-talk, pulse breakup and
intermittent malfunction. Even under normal condi-
tions, the measurements from loop detectors are noisy;
they can be confused by multi-axle trucks, for example.

Bad and missing samples present problems for any
algorithm that uses the data for analysis, many of
which require a complete grid of good data. Therefore,
we need to detect when data are bad and discard them,
and impute bad or missing samples in the data with
“good” values, preferably in real time. The goal of de-
tection and imputation is to produce a complete grid of
clean data in real time.

3. DETECTING MALFUNCTION

Figure 1 illustrates detector failure. The figure shows
scatter plots of occupancy readings in four lanes at a
particular location. From these plots it can be inferred
that loops in the first and second lanes suffer from tran-
sient malfunction.

The problem of detecting malfunctions can be
viewed as a statistical testing problem, wherein the



MEASURING TRAFFIC 585

actual flow and occupancy are modeled as follow-
ing a joint probability distribution over all loop de-
tectors and times, and their measured values may be
missing or produced in a malfunctioning state. Let
�i(t) = 0,1,2 according as the state of detector i

at time t is good, malfunctioning, or the data are
missing. The problem of detecting malfunctioning is
that of simultaneously testing H :�i(t) = 0 versus
K :�i(t) = 1 or of estimating the posterior probabil-
ities, P(�i(t) = 1|data).

Since the model is too general and high dimen-
sional for practical use, simplification is necessary.
The most extreme and convenient simplification is to
consider only the marginal distribution of individual
(30-second) samples at an individual detector. In that
case, the acceptance region and the rejection region
partition the (q, k) plane.

The early work in malfunction detection used heuris-
tic delineations of this partition. Payne et al. (1976)
presented several ways to detect various types of loop
malfunctions from 20-second and 5-minute volume
and occupancy measurements. These methods place
thresholds on minimum and maximum flow, density
and speed, and declare data to be invalid if they fail
any of the tests. Along the same line, Jacobon, Nihan
and Bender (1990) at the University of Washington de-
fined an acceptable region in the (q, k) plane, and de-
clared samples to be good only if they fell inside. We
will refer to this as the Washington Algorithm. This
has an acceptance region of the form shown in Fig-
ure 2.

FIG. 2. Acceptance region of Washington algorithm.

PeMS currently uses a Daily Statistics Algorithm
(DSA), proposed by Chen et al. (2003), which pro-
ceeds as follows. A detector is assumed to be either
good or bad throughout the entire day. For day d , the
following scores are calculated:

• S1(i, d) = number of samples that have occupan-
cy = 0,

• S2(i, d) = number of samples that have occupan-
cy > 0 and flow = 0,

• S3(i, d) = number of samples that have occupan-
cy > k∗ (=0.35),

FIG. 1. Scatter plots of occupancies at station 25 of westbound I-210.



586 P. J. BICKEL ET AL.

• S4(i, d) = entropy of occupancy samples
[−∑

x:p(x)>0 p(x) logp(x) where p(x) is the his-
togram of the occupancy]. If ki(d, t) is constant in t ,
for example, its entropy is zero.

Then the decision �i = 1 is made whenever Sj > s∗
j

for any j = 1, . . . ,4. The values s∗
j were chosen em-

pirically. Since this algorithm does not run in real time,
a detector is flagged as bad on the current day if it was
bad on the previous day.

The idea behind this algorithm is that some loops
seem to produce reasonable data all the time, while
others produce suspect data all the time. Although it
is very hard to tell if a single 30-second sample is
good or bad unless it is truly abnormal, by looking
at the time series of measurements for an entire day,
one can usually easily distinguish bad behavior from
good.

This procedure effectively corresponds to a model in
which flow and occupancy measurement failures are
independent and identically distributed across loops.
The trajectory of detector i, {qi(t);ki(t); t = 1, . . . , T }
is a point in the product space Q × K × T , where Q,
K and T are the space of q, k and t . Unlike the Wash-
ington algorithm, the partition is complicated and im-
possible to visualize.

The Daily Statistics Algorithm uses many samples
(time points) of a single detector. Its main drawbacks
are (1) that the day-by-day decision is too crude, and
(2) the spatial correlation of good samples is not ex-
ploited. Because of (1), a moderate number of bad
samples at an otherwise good detector will never be
flagged. By (2), we mean that some errors that are not
visible from a single detector can be readily recognized
if its relationship with its spatial and temporal neigh-
bors is considered. For example, for neighboring de-
tectors i and j , if the absolute difference |qi(t)−qj (t)|
is too big, either �i = 1 or �j = 1 or both. This
has to do with the high lane-to-lane (and location-
to-location) correlation of both q and k. Figure 1 il-
lustrates these points. Loops in the first and second
lanes suffer from transient malfunctions, which cannot
be easily detected from one-dimensional marginal dis-
tributions, but which are immediately clear from the
two-dimensional joint distributions. From their rela-
tionships with lanes three and four, one can conclude
that both detectors are bad.

The Washington algorithm and the DSA are ad hoc
in conception, and can surely be improved upon. A sys-
tematic and principled algorithm is hard to develop
mainly due to the size and complexity of the problem.

An ideal detection algorithm needs to work well with
thousands of detectors, all with potentially unknown
types of malfunction. Even constructing a training set
is not trivial since there is so much data to examine and
it is not always possible to be absolutely sure if the data
are correct even after careful visual inspection. [For
example, suppose a detector reports (q, k) = (0,0). It
could be that the detector is stuck at “off” position but
good detectors will also report (0,0) when there are no
vehicles in the detection period. Similarly, occupancy
measurements stuck at a reasonable value will not trig-
ger any alarm if one considers only a single detector
and a single time.] New approaches should include a
method of delineating acceptance/rejection regions for
k and q for multiple sensors, combining traffic dynam-
ics theory and manual identification of good or bad
data points, with the help of interactive data analy-
sis tools such as XGobi (http://www.research.att.com/
areas/stat/xgobi/), and an intelligent way of combining
evidence from various sensors to make decisions about
a particular sensor/observation.

4. IMPUTATION

Holes in the data due to missing or bad observa-
tions must be filled with imputed values. Because of
the high lane-to-lane and location-to-location correla-
tion of q and k, it is natural to use measurements from
neighboring detectors. Although there is flexibility in
the choice of a neighborhood, in practice we use the
neighborhood defined by the set of loops at the same
location. Let N (i) denote the set of neighboring detec-
tors of i and consider imputing flow, for example.

A natural imputation algorithm is the prediction of
qi(t) based on its neighbors:

q̂i(t) = ĝ
(
qN (i)(t)

)
,(2)

where the prediction function ĝ is fit from histori-
cal data {(qi(t),qN (i)(t), t = 1, . . . , T )}. (Note that the
prediction function must be able to properly take into
account possible configurations of missing and bad
values among the neighbors; the latter are especially
problematic, since bad readings may not be flagged as
such.)

The simplest idea would be estimation by the mean

q̂i(d, t) = 1∑
j∈N (i) 1(�̂j (d, t) = 0)

· ∑
j∈N (i)

qj (d, t)1
(
�̂j (d, t) = 0

)

http://www.research.att.com/areas/stat/xgobi/
http://www.research.att.com/areas/stat/xgobi/
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or median

q̂i(d, t) = median{q̂j (d, t) : j ∈ N (i), �̂j (d, t) = 0}
to be more robust. However, such simple interpolation
is not desirable since the relationships between occu-
pancy and flows in neighboring loops are nontrivial,
that is, qi(t) �= qj (t), j ∈ N (i), in general. For ex-
ample, at many freeway locations, the inner lane has
higher flow and lower occupancy for general free flow
condition than do the outer lanes. Also, if one is close
to on- or off-ramps, the relationships can be quite dif-
ferent.

The prediction function is rather hard to manage in
its full generality because of its high dimensionality
and because one does not know which values will cor-
respond to correctly functioning detectors [�j(t) = 0].
From a computational point of view, the following al-
gorithm is thus appealing:

q̂i(t) = average
(
q̂ij (t) : j ∈ N (i), �̂j = 0

)
,(3)

where q̂ij (t) = ĝij (qj (t)) is the regression of qi(t)

on qj (t). One computes q̂ij (t) for all j ∈ N (i) and
averages over only those values regressed on “good”
neighbors. The “average” can be either mean or a ro-
bust location estimate such as the median. The latter
seems preferable since all bad samples from detectors
j ∈ N (i) may not be flagged.

Individual regression function gij (qj (t)) can be fit in
various ways. Chen et al. (2003) considered the linear
regression

qi(t) = α0(i, j) + α1(i, j)qj (t) + noise

to produce

q̂i,j (d, t) = α0(i, j) + α1(i, j)qj (d, t)

for each pair of neighbors (i, j), where the parameters
α0(i, j), α1(i, j) are estimated by the least square us-
ing historical data. This is the approach currently being
used by PeMS.

Since this approach relies upon using historical data
to learn how pairs of neighboring loops behave, estima-
tion of the regression functions must be able to cope
with bad data as well. Cleaning the historical data to
detect malfunctions is thus necessary, and robust esti-
mation procedures may be preferable to least squares.
We also note that an empirical Bayes perspective may
be useful in jointly estimating the large set of regres-
sion functions.

5. ESTIMATING VELOCITY

As we have noted earlier, single-loop detectors do
not directly measure velocity. This is unfortunate, be-
cause velocity is perhaps the single most useful vari-
able for traffic control and traveller information sys-
tems. In this section we present the method currently
being used to estimate velocity from single-loop data.

Let us fix a day d and a time of day t and con-
sider the following situation. Suppose that at a given
detector during a 30-second time interval, N vehicles
pass with (effective) lengths L1, . . . ,LN and velocities
v1, . . . , vN . (The effective vehicle length is equal to the
length of the vehicle plus the length of the loop’s detec-
tor zone.) The occupancy is given by k = ∑N

i=1 Li/vi .
Now, if all velocities are equal, v = v1 = · · · = vN , it
follows that

k = 1

v

N∑
i=1

Li = NL̄

v
,(4)

where L̄ = ∑N
i=1 Li/N is the average of the vehi-

cle lengths. We see that if the average vehicle length
is known, we can infer the common velocity. We
model the lengths Li as random variables with com-
mon mean μ. Note that the Li and L̄ are not directly
observed. If μ were known, while the average L̄ is
not, then a sensible estimate of the common velocity
may be obtained by replacing the average by the mean
in (4):

v̂ = Nμ

k
.(5)

Rewriting, we find v̂ = vμ/L̄. Since the expectation of
1/L̄ is not equal to 1/μ, the expectation of v̂ is not
equal to v. In other words, v̂ is not an unbiased estima-
tor of v, despite our assumption that all vi are equal.
However, if the number of vehicles N is not too small,
then L̄ should be reasonably close to its mean and the
bias negligible. Henceforth, we neglect this bias issue
and use formula (5) to estimate velocity. We thus focus
on estimating the mean vehicle length, μ.

5.1 Estimation of the Mean Vehicle Length

Currently, it is a widespread practice to take the
mean vehicle length to be constant, independent of
the time of day. The validity of this assumption has
been examined by many authors (e.g., Hall and Per-
saud, 1989 and Pushkar et al., 1994), including our-
selves (Jia et al., 2001) and it is now generally recog-
nized that it does not generally hold. This is further
illustrated by double-loop data from Interstate 80 near
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FIG. 3. Velocity (top) and effective vehicle length (bottom) for four weekdays on I-80.

San Francisco, which allows direct measurement of ve-
locity. Figure 3 shows the velocity and the average (ef-
fective) vehicle length at detector station 2 in the east-
bound outer lane 5. We believe that the clear daily trend
can be ascribed to the ratio of trucks to cars varying
with the time of day. This is confirmed by the fact that
the vehicle length in the fast lanes 1 and 2, with neg-
ligible truck presence, is almost constant. We thus as-
sume that the mean vehicle length depends on the time
of day, denote it by μt to reflect this dependence, and
consider how μt can be estimated.

Suppose we have observed N(d, t) and k(d, t) for
a number of days. Let α0.6 denote the 60th percentile
of the observed occupancies. Assume that during all
time intervals when k(d, t) < α0.6 all vehicles travel at
a common velocity vFF . Since we may assume that any
freeway is uncongested at least 60% of the time, vFF

may be regarded as the free flow velocity. Throughout
this paper we assume that vFF is known or estimated
from exterior sources of information.

By our assumption on constant free flow velocity, we
have for all (d, t) such that k(d, t) < α0.6

L̄(d, t) = vFF k(d, t)

N(d, t)
.

If we assume that the average vehicle length L̄(d, t)

does not depend on whether the occupancy is above or
below the threshold, then

E
(
L̄(d, t) | k(d, t) < α0.6

) = EL̄(d, t) = μt .

For fixed t we can obtain an unbiased estimate of μt as

μ̂t = 1

#{d :k(d, t) < α0.6}
∑

d : k(d,t)<α0.6

vFF k(d, t)

N(d, t)
.

In Figure 4 we have plotted the time of day t versus
vFF k(d, t)/N(d, t) for all times (d, t) when k(d, t) <

α0.6. We can now estimate the expectation μt of the ef-
fective vehicle length by fitting a regression line to this
scatter plot, via loess (Cleveland, 1979). The smooth
regression line seen in Figure 4 is our estimator μ̂t

of μt . Note the absence of points for times between
3 P.M. and 6 P.M. when I-80 East is always congested
[k(d, t) > α0.6].

Once we have an estimator μ̂t of μt , we define a
(preliminary) estimator of v(d, t) as

v̂(d, t) = N(d, t)μ̂t

k(d, t)
.(6)

This estimator and the velocity found by the double-
loop detector are plotted in Figure 5. We see that it
performs very well during heavy traffic and conges-
tion. In particular, it exhibits little bias during the time
period 3 P.M. to 6 P.M. over which the smoothing
shown in Figure 4 was extrapolated. Unfortunately, the
variance of the estimator during times of light traffic,
particularly in the early hours of each day, is unac-
ceptably large. This is clearly visible in Figure 5 with
estimated velocities on day 3 around 1 A.M. shoot-
ing up to 120 mph shortly before plummeting to 30
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FIG. 4. Estimation of the mean effective vehicle length μt .

mph. The true velocity at that time is nearly constant
at 64 mph. Recall that our preliminary estimate (6)
is obtained by replacing the average (effective) vehi-
cle length L̄(d, t) by (an estimate of) its expectation
μt . When only a few vehicles pass the detector during
a given time interval, the average vehicle length will

have a large variance. Hence, in light traffic, the aver-
age vehicle length is likely to differ substantially from
the mean. For instance, if only 10 vehicles pass, then it
makes a big difference if there are 6 cars and 4 trucks or
7 cars and 3 trucks. This explains the large fluctuations
of our preliminary estimator v̂ during light traffic.

FIG. 5. Our preliminary estimate, defined in (6), superimposed on the true velocity.
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5.2 Smoothing

Coifman (2001) suggests a simple fix for the unsta-
ble behavior of v̂ during light traffic. He sets the es-
timated velocity equal to the free flow velocity vFF

when the occupancy is low:

v̂coifman(d, t) =
{

v̂(d, t), if k(d, t) ≥ α0.6,
vFF , otherwise.

The performance of this estimator, in terms of mean
squared error, is certainly not bad. However, about 16
out of every 24 hours (60%), the estimated velocity is
a constant and that is not realistic. We can do better, in
appearance as well as in mean squared error.

It is clear that we need to smooth our preliminary es-
timate v̂(d, t), but only when the volume is small. For
the purpose of real-time traffic management, it is im-
portant that our smoother be causal and easy to com-
pute with minimal data storage. Taking all this into
consideration, we used an exponential filter with vary-
ing weights. A smoothed version ṽ of v̂ is defined re-
cursively as

ṽ(d, t) = w(d, t)v̂(d, t)
(7)

+ (
1 − w(d, t)

)
ṽ(d, t − 1),

where

w(d, t) = N(d, t)

N(d, t) + C
,(8)

and C is a smoothing parameter to be specified. If the
time interval is of length 5 minutes, then a reasonable
value would be C = 50. With this value of C, if the vol-
ume N(d, t) approaches capacity, say N(d, t) = 100
vehicles per 5 minutes, then there is hardly any need
for smoothing and the new observation receives sub-
stantial weight 2/3. On the other hand, if the volume
is very small, say N(d, t) = 10, then the smoothing
is quite severe with the new observation receiving a
weight of only 1/6.

Our filtered estimator ṽ is plotted in Figure 6. The
correspondence with the true velocity is very good.
The large variability during light traffic that plagued
the preliminary estimator v̂ has been suppressed, while
its good performance during heavy traffic and conges-
tion has been retained.

We will now explain how our filter is “inspired” by
the familiar Kalman filter. Suppose that the true, unob-
served velocity evolves as a simple random walk:

vt = vt−1 + εt , εt ∼ N (0, τ 2).(9)

Suppose we observe v̂t = Ntμ̂t/kt = vtμt/L̄t , where
μ̂t is our estimate of EL̄t = μt . We will work con-
ditionally on the observed volume Nt . The condi-
tional expectation of v̂t is—though not quite equal—
hopefully close to vt . Using a one-step Taylor approxi-
mation, we find that the conditional variance of v̂t is of

FIG. 6. Our estimate Ṽ , defined in (7), superimposed on the true velocity.
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the order 1/Nt . This “inspires” a measurement equa-
tion

v̂t = vt + ξt ,
(10)

ξt ∼ N (0, σ 2
t ) = N (0, σ 2/Nt).

Finally, we assume that all error terms εt and ξt are in-
dependent. Note that the variance of the measurement
error ξt depends inversely on the observed volume Nt .
In light traffic, when Nt is small the variance is large.
This is exactly the problem we noted in Figure 5.

The Kalman filter recursively computes the condi-
tional expectation of the unobserved state variable vt

given the present and past observations v̂1, v̂2, . . . , v̂t :

ṽt = E(vt | v̂1, v̂2, . . . , v̂t ).

In our simple model we can easily derive the Kalman
recursions. They are

ṽt = wt v̂t + (1 − wt)ṽt−1,

with

wt = Pt−1 + τ 2

Pt−1 + τ 2 + σ 2
t

= Nt

Nt + σ 2/(Pt−1 + τ 2)
,

where Pt is the prediction error E(vt − ṽt )
2.

We note the similarity of these Kalman recursions
with our filter (7), although C in (7) is constant and
the analogue in the Kalman filter is not. We decided
not to try to estimate σ 2 and τ 2 partly because we feel
that would be difficult to do reliably and partly because
that would mean taking our simple model a little too
seriously.

5.3 Known Free Flow Velocity

We assume that the free flow velocity vFF is known,
which is typically not true. We believe that free flow
velocity depends primarily on the number of lanes and
on the lane number, so in practice we use values like
those shown in Table 1, which are loosely based on
experience and empirical evidence from locations with
double-loop detectors.

Clearly, it would be preferable to have an indepen-
dent method to estimate site-specific free flow velocity.
Petty et al.’s (1998) cross-correlation approach works
well when occupancy and volume are measured in
1-second intervals. However, 20- or 30-second mea-
surement intervals are more common and at such ag-
gregation this method breaks down.

TABLE 1
Measured average free flow speeds (mph) for each lane (rows) of a

multilane freeway depending on the total number of
lanes (columns)

Number of lanes

Lane number 2 3 4 5

1 71.3 71.9 74.8 76.5
2 65.8 69.7 71.0 74.0
3 62.7 67.4 72.0
4 62.8 69.2
5 64.5

5.4 Further Assumptions on Mean Vehicle Length

We have assumed that the mean (expected) vehicle
length μt depends on the time of day only. However,
we have noticed that μt also depends on:

1. Day of the week. The vehicle mix on a Monday dif-
fers from a Sunday.

2. Lane. There is a higher fraction of trucks in the
outer lanes.

3. Location of the detector station. Certain routes are
more heavily traveled by trucks than others.

4. Detector sensitivity. Loop detectors are fairly crude
instruments that are almost impossible to calibrate
accurately. If a detector is not properly calibrated,
the occupancy measurements will be biased.

To account for all this, we must form separate estimates
of μt to cover these different situations. We store esti-
mates of μt for every 5-minute interval, for every day
of the week and for every lane at every detector station.
In real time, the appropriate values are retrieved, mul-
tiplied by the observed volume-to-occupancy ratio and
filtered.

5.5 Other Methods

We briefly review two other methods that also do
not assume a fixed value for L̄(d, t), beginning with
a method described in Jia et al. (2001). Suppose that
we have a state variable X(d, t) which is 0 during con-
gestion and 1 during free flow. The state variable may
be defined, for instance, by thresholding the occupancy
k(d, t). While the state is “free flow,” the algorithm
tracks L̄(d, t), assuming constant free flow velocity. As
soon as the state becomes “congested,” L̄(d, t) is kept
fixed and the velocity v(d, t) is tracked.

The main problem we experienced with this algo-
rithm is that it depends crucially on X(d, t). In par-
ticular, if X(d, t) = 1 (free flow) while congestion has
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already set in, the method goes badly astray. We found
it difficult to develop a good rule to define X(d, t). In
fact, this difficulty was the main reason for us to look
for a different approach.

Building on work of Dailey (1999), Wang and Ni-
han (2000) propose a model-based approach to esti-
mate L̄(d, t) and v(d, t). Their log-linear model relates
L̄(d, t) to the expectation and variance of the occu-
pancy k(d, t), to the volume N(d, t) and to two in-
dicator functions that distinguish between high flow
and low flow situations. The model has five parameters
which need to be estimated from double-loop data. It is
not at all clear if these parameter estimates carry over
to a particular, single-loop location of interest. Wang
and Nihan (2000) defer this issue to future research.

6. PREDICTION

We now turn our attention to travel time predic-
tion between any two points of a freeway network
for any future departure time. Regular drivers, such
as commuters, choose their routes based on histori-
cal experience, but factors including daily variation in
demand, environmental conditions and incidents can
change traffic conditions. Since heavy congestion oc-
curs at the time that most drivers need travel time infor-
mation, free flow travel times, such as those provided
by MapQuest, are of little use. The result may be ineffi-
cient use of the network. Route guidance systems based
on current travel time predictions such as variable mes-
sage boards could thus improve network efficiency.

We are currently developing an Internet application
which will give the commuters of Caltrans District 7
(Los Angeles) the opportunity to query the prediction
algorithm we describe below. The user will access our
Internet site and state origin, destination and time of
departure (or desired time of arrival), either using text
input or interactively querying a map of the freeway
system by pointing and clicking. He or she will then
receive a prediction of the travel time and the best
(fastest) route to take. It would also be possible to make
our service available for users of cellular telephones,
and in fact we plan to do so in the near future.

6.1 Methods of Prediction

The task is to forecast the time of a trip from loop a

to loop b departing at some time in the future, using
the information recorded up to the current time from
all intervening loop detectors. One possible approach
would be to model the physical process of traffic flow,
using, for example a simulation program such as those

mentioned in the Introduction. However, such simula-
tions would have to be run in real time and be cali-
brated precisely. In general, it is not clear that the best
way to predict a functional of the complex process of
traffic flow is via modeling the entire process. For this
reason, various purely statistical approaches, includ-
ing multivariate state-space methods (Stathapoulis and
Karlaftis, 2003), space–time autoregressive integrated
moving average model (Kamarianakis and Prastacos,
2005), and neural networks (Dougherty and Cobbett,
1997; Van Lint and Hoogendoorn, 2002) have been
proposed.

It is not obvious how to use the information from
all the intervening loops, but we have found a method
based on a simple compression (feature) of this data
to be remarkably effective (Rice and van Zwet, 2004;
Zhang and Rice, 2003). From v evaluated at an array
of times and loops, we can compute travel times Td(t)

that should approximate the time it took to travel from
loop a to loop b starting at time t on day d , by “walk-
ing” through the velocity field. We can also compute a
proxy for these travel times which is defined by

T ∗
d (t) =

b−1∑
i=a

2ui

vi(d, t) + vi+1(d, t)
,(11)

where ui denotes the distance from loop i to loop
(i + 1). We call T ∗ the current status travel time (a.k.a.
the snap-shot or frozen field travel time). It is the travel
time that would have resulted from departure from
loop a at time t on day d were there no changes in the
velocity field until loop b was reached. It is important
to notice that the computation of T ∗

d (t) only requires
information available at time t , whereas computation
of Td(t) requires information at later times.

Suppose we have observed vl(d, t) for a number of
days d ∈ D in the past, that a new day e has begun,
and we have observed vl(e, t) at times t ≤ τ . We call τ

the “current time.” Our aim is to predict Te(τ + δ), the
time a trip that departs from a at time τ + δ will take
to reach b. Note that even for δ = 0 this is not trivial.

Define the historical mean travel time as

ν(t) = 1

|D|
∑
d∈D

Td(t).(12)

Two naive predictors of Te(τ + δ) are T ∗
e (τ ) and

ν(τ + δ). We expect—and indeed this is confirmed by
experiment—that T ∗

e (τ ) predicts well for small δ and
ν(τ + δ) predicts better for large δ. We aim to improve
on both these predictors for all δ.
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6.1.1 Linear regression. From the extensive PeMS
data, we have observed an empirical fact: that there ex-
ist linear relationships between T ∗(t) and T (t + δ) for
all t and δ. This empirical finding has held up in all of
numerous freeway segments in California that we have
examined. It is illustrated by Figures 7 and 8, which
are scatter plots of T ∗(t) versus T (t + δ) for a 48-mile
stretch of I-10 East in Los Angeles. Note that the rela-
tion varies with the choice of t and δ. We thus propose
the following model:

T (t + δ) = α(t, δ) + β(t, δ)T ∗(t) + ε,(13)

where ε is a zero mean random variable modeling ran-
dom fluctuations and measurement errors. Note that the
parameters α and β are allowed to vary with t and δ.
Linear models with varying parameters are discussed
in Hastie and Tibshirani (1993).

Fitting the model to our data is a familiar lin-
ear regression problem which we solve by weighted
least squares. Define the pair (α̂(t, δ), β̂(t, δ)) to mini-
mize ∑

d∈D
s∈T

(
Td(s) − α(t, δ) − β(t, δ)T ∗

d (t)
)2

(14)
· K(t + δ − s),

where K denotes the Gaussian density with mean zero
and a variance which is a bandwidth parameter. The
purpose of this weight function is to impose smooth-
ness on α and β as functions of t and δ. We as-
sume that α and β are smooth in t and δ because
we expect that average properties of the traffic do not

FIG. 7. T ∗(9 A.M.) vs. T (9 A.M. + 0 min). Also shown is the
regression line with slope α(9 A.M., 0 min) = 0.65 and intercept
β(9 A.M., 0 min) = 17.3.

FIG. 8. T ∗(3 P.M.) vs. T (3 P.M. + 60 min). Also shown is the
regression line with slope α(3 P.M., 60 min) = 1.1 and intercept
β(3 P.M., 60 min) = 9.5.

change abruptly. The actual prediction of Te(τ + δ) be-
comes

T̂e(τ + δ) = α̂(τ, δ) + β̂(τ, δ)T ∗
e (τ ).(15)

Writing α(t, δ) = α′(t, δ)ν(t + δ), we see that (13)
expresses a future travel time as a linear combination
of the historical mean and the current status travel time,
our two naive predictors. Hence our new predictor may
be interpreted as the best linear combination of our
naive predictors. From this point of view, we can ex-
pect our predictor to do better than both, and it does, as
is demonstrated below.

Another way to think about (13) is by remembering
that the word “regression” arose from the phrase “re-
gression to the mean.” In our context, we would ex-
pect that if T ∗ is much larger than average, signifying
severe congestion, then congestion will probably ease
during the course of the trip. On the other hand, if T ∗
is much smaller than average, congestion is unusually
light and the situation will probably worsen during the
journey.

In addition to comparing our predictor to the histor-
ical mean and the current status travel time, we sub-
ject it to a more competitive test. We consider two
other predictors that may be expected to do well, one
resulting from principal component analysis and one
from the nearest-neighbors principle. Next, we de-
scribe these two methods.

6.1.2 Principal components. Our predictor T̂ only
uses information at one time point: the “current
time” τ . However, we do have information prior to that
time. The following method attempts to exploit this by
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using the entire trajectories of Te and T ∗
e which are

known up to time τ .
Formally, let us assume that the travel times on dif-

ferent days are independently and identically distrib-
uted and that for a given day d , {Td(t) : t ∈ T } and
{T ∗

d (t) : t ∈ T } are jointly multivariate normal. We es-
timate the large covariance matrix of this multivari-
ate normal distribution by retaining only a few of the
largest eigenvalues in the singular value decomposi-
tion of the empirical covariance of {(Td(t), T ∗

d (t)) :
d ∈ D, t ∈ T }. Define t ′ to be the largest t such that
t + Te(t) ≤ τ . That is, t ′ is the (random) start time of
the latest trip that we would have seen completed if we
observed day d until time τ . With the estimated covari-
ance we can now compute the conditional expectation
of Te(τ + δ) given {Te(t) : t ≤ t ′} and {T ∗

e (t) : t ≤ τ }.
This is a standard computation which is described, for
instance, in Mardia et al. (1979). The resulting predic-
tor is T̂ PC

e (τ + δ).

6.1.3 Nearest neighbors. As an alternative, we now
consider another attempt to use information prior to the
current time τ , based on nearest neighbors. This non-
parametric method makes fewer assumptions (such as
joint normality) on the relation between T ∗ and T than
does the principal components method, but is tied to a
particular metric.

The nearest-neighbor method uses that day in the
past which is most similar to the present day in some
appropriate sense. The remainder of that past day be-
yond time τ is then taken as a predictor of the remain-
der of the present day.

The method requires a suitable distance m between
days. We have investigated two possible distances:

m1(e, d) = ∑
i=a,...,b,t≤τ

|vi(e, t) − vi(d, t)|(16)

and

m2(e, d) =
(∑

t≤τ

(
T ∗

e (t) − T ∗
d (t)

)2
)1/2

.(17)

Now, if day d ′ minimizes the distance to e among all
d ∈ D, our prediction is

T̂ NN
e (τ + δ) = Td ′(τ + δ).(18)

Sensible modifications of the method are windowed
nearest neighbors and k-nearest neighbors. Windowed-
NN recognizes that not all information prior to τ is
equally relevant. Choosing a window size w, it takes
the above summation to range over all t between τ −w

and τ . The k-nearest neighbor modification finds the k

closest days in D and bases a prediction on a (possibly
weighted) combination of these. However, neither of
these variants appears to significantly improve on the
vanilla T̂ NN .

6.2 Results

To compare these methods we used flow and oc-
cupancy data from 116 single-loop detectors along
48 miles of I-10 East in Los Angeles (between post-
miles 1.28 and 48.525). Measurements were done at
5-minute aggregation at times t ranging from 5 A.M. to
9 P.M. for 34 weekdays between June 16 and Septem-
ber 8, 2000. We used the methods we have previously
described to convert flow and occupancy to velocity.

The quality of our I-10 data is quite good and we
have used simple interpolation to impute wrong or
missing values. The resulting velocity field vi(d, t) is
shown in Figure 9 where day d is June 16. The hori-
zontal streaks typically indicate detector malfunction.

From the velocities we computed travel times for
trips starting between 5 A.M. and 8 P.M. Figure 10
shows these Td(t) where time of day t is on the hori-
zontal axis. Note the distinctive morning and afternoon
congestions and the huge variability of travel times, es-
pecially during those periods. During afternoon rush
hour we find travel times of 45 minutes to up to two
hours. Included in the data are holidays July 3 and 4
which may readily be recognized by their very short
travel times.

We have estimated the root mean squared (RMS) er-
ror of our various prediction methods for a number of
“current times” τ (τ = 6 A.M., 7 A.M., . . . ,7 P.M.) and
lags δ (δ = 0 and 60 minutes). The RMS errors were

FIG. 9. Velocity field V (d, l, t) where day d = June 16, 2000.
Darker shades indicate lower speeds.



MEASURING TRAFFIC 595

FIG. 10. Travel times Td(·) for 34 days on a 48-mile stretch of
I-10 East.

estimated by leaving out one day at a time, performing
the prediction for that day on the basis of the remain-
ing other days, and averaging the squared prediction
errors.

The prediction methods all have smoothing parame-
ters that must be specified. For the regression method
we chose the standard deviation of the Gaussian ker-
nel K to be 10 minutes. For the principal compo-
nents method we chose the number of eigenvalues re-
tained to be four. For the nearest-neighbors method we
have chosen distance function (17), a window w of
20 minutes and the number k of nearest neighbors to
be two. The results were fairly insensitive to these pre-
cise choices.

Figures 11 and 13 show the estimated RMS predic-
tion errors of the historical mean ν(τ + δ), the cur-

FIG. 11. Estimated RMSE, lag = 0 minutes. Historical mean
(– · –), current status (- - -) and linear regression (—).

FIG. 12. Estimated RMSE, lag = 0 minutes. Principal compo-
nents (– · –), nearest neighbors (- - -) and linear regression (—).

rent status predictor T ∗
e (τ ) and our regression pre-

dictor (15) for lag δ equal to 0 and 60 minutes,
respectively. Note how T ∗

e (τ ) performs well for small
δ (δ = 0) and how the historical mean does not become
worse as δ increases. Most importantly, however, no-
tice how the regression predictor dominates both.

Figures 12 and 14 again show the RMS prediction
error of the regression estimator. This time, it is com-
pared to the principal components predictor and the
nearest-neighbors predictor (18). Again, the regres-
sion predictor comes out on top, although the nearest-
neighbors predictor shows comparable performance.

The RMS error of the regression predictor stays be-
low 10 minutes even when predicting an hour ahead.
We feel that this is impressive for a trip of 48 miles
through the heart of Los Angeles during rush hour.

FIG. 13. Estimated RMSE, lag = 60 minutes. Historical mean
(– · –), current status (- - -) and linear regression (—).
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FIG. 14. Estimated RMSE, lag = 60 minutes. Principal compo-
nents (– · –), nearest neighbors (- - -) and linear regression (—).

Comparison of the regression predictor to the prin-
cipal components and nearest-neighbors predictors is
surprising: the results indicate that given T ∗(τ ), there
is not much information left in the earlier T ∗(t) (t < τ )
that is useful for predicting T (τ + δ), at least by the
methods we have considered. In fact, we have come to
believe that for the purpose of predicting travel times,
all the information in the vl(d, t) up to time τ is well
summarized by one single number: T ∗(τ ).

Recently, Nikovski et al. (2005) compared the per-
formance of several statistical methods on data from a
15-km stretch of freeway in Japan. Their conclusions
mirrored ours: a regression approach outperformed
neural networks, regression trees and nearest-neighbor
methods. They also reached the conclusion that the pre-
dictive information is contained in the current travel
time.

6.3 Further Remarks

It is of practical importance to note that our predic-
tion can be performed in real time. Computation of the
parameters α̂ and β̂ is time consuming but it can be
done off-line in reasonable time. The actual prediction
is then trivial to compute.

We conclude this section by briefly pointing out two
extensions of our prediction method:

1. For trips from a to c via b we have

Td(a, c, t) = Td(a, b, t)
(19)

+ Td

(
b, c, t + Td(a, b, t)

)
.

We have found that it is sometimes more practical
or advantageous to predict the terms on the right-
hand side than to predict Td(a, c, t) directly. For

instance, when predicting travel times across net-
works (graphs), we need only predict travel times
for the edges and then use (19) to piece these to-
gether to obtain predictions for arbitrary routes.

2. In the discussion above we regressed the travel
time Td(t + δ) on the current status T ∗

d (t), where
Td(t + δ) is the travel time departing at time t + δ.
Now, define Sd(t) to be the travel time arriving at
time t on day d . Regressing Sd(t + δ) on T ∗

d (t) al-
lows us to make predictions on the travel time sub-
ject to arrival at time t + δ. The user can thus ask
what time he or she should depart in order to reach
an intended destination at a desired time.

7. CONCLUSION

Modern communication and computational facilities
make possible, in principle, systematic use of the vast
quantities of historical and real-time data collected by
traffic management centers. Such efforts invariably re-
quire substantial use of statistical methodology, often
of a nonstandard variety, sensitive to computational ef-
ficiency.

This paper has concentrated on data collected by
inductance loops in freeways, but similar data is of-
ten available on arterial streets as well, which have
more complex flows and geometry. There is also in-
formation from other types of sensors. For example,
declining costs make video monitoring an attractive
technology, bringing with it challenging problems in
computer vision and statistics. As another example,
data derived from transponders installed in individual
vehicles for automatic toll payments is a potentially
rich source of information about traffic flow, since the
tags can in principle be sensed at locations other than
toll booths. Effective extraction of information will re-
quire active collaborations of statisticians, traffic engi-
neers, and specialists in various other disciplines.
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