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REGULARIZED ESTIMATION OF LARGE
COVARIANCE MATRICES

BY PETER J. BICKEL AND ELIZAVETA LEVINA1

University of California, Berkeley and University of Michigan

This paper considers estimating a covariance matrix of p variables from
n observations by either banding or tapering the sample covariance matrix,
or estimating a banded version of the inverse of the covariance. We show that
these estimates are consistent in the operator norm as long as (logp)/n → 0,
and obtain explicit rates. The results are uniform over some fairly natural
well-conditioned families of covariance matrices. We also introduce an ana-
logue of the Gaussian white noise model and show that if the population co-
variance is embeddable in that model and well-conditioned, then the banded
approximations produce consistent estimates of the eigenvalues and associ-
ated eigenvectors of the covariance matrix. The results can be extended to
smooth versions of banding and to non-Gaussian distributions with suffi-
ciently short tails. A resampling approach is proposed for choosing the band-
ing parameter in practice. This approach is illustrated numerically on both
simulated and real data.

1. Introduction. Estimation of population covariance matrices from samples
of multivariate data has always been important for a number of reasons. Principal
among these are (1) estimation of principal components and eigenvalues in order
to get an interpretable low-dimensional data representation (principal component
analysis, or PCA); (2) construction of linear discriminant functions for classifi-
cation of Gaussian data (linear discriminant analysis, or LDA); (3) establishing
independence and conditional independence relations between components using
exploratory data analysis and testing; and (4) setting confidence intervals on linear
functions of the means of the components. Note that (1) requires estimation of the
eigenstructure of the covariance matrix while (2) and (3) require estimation of the
inverse.

The theory of multivariate analysis for normal variables has been well worked
out—see, for example [1]. However, it became apparent that exact expressions
were cumbersome, and that multivariate data were rarely Gaussian. The remedy
was asymptotic theory for large samples and fixed relatively small dimensions.
In recent years, datasets that do not fit into this framework have become very
common—the data are very high-dimensional and sample sizes can be very small
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relative to dimension. Examples include gene expression arrays, fMRI data, spec-
troscopic imaging, numerical weather forecasting, and many others.

It has long been known that the empirical covariance matrix for samples of size
n from a p-variate Gaussian distribution, Np(μ,�p), has unexpected features if
both p and n are large. If p/n → c ∈ (0,1) and the covariance matrix �p = I

(the identity), then the empirical distribution of the eigenvalues of the sample co-
variance matrix �̂p follows the Marĉenko–Pastur law [26], which is supported on
((1−√

c)2, (1+√
c)2). Thus, the larger p/n, the more spread out the eigenvalues.

Further contributions to the theory of extremal eigenvalues of �̂p have been made
in [3, 14, 32], among others. In recent years, there have been great developments
by Johnstone and his students in the theory of the largest eigenvalues [21, 28] and
associated eigenvectors [22]. The implications of these results for inference, other
than indicating the weak points of the sample covariance matrix, are not clear.

Regularizing large empirical covariance matrices has already been proposed in
some statistical applications—for example, as original motivation for ridge re-
gression [17] and in regularized discriminant analysis [12]. However, only re-
cently has there been an upsurge of both practical and theoretical analyses of such
procedures—see [10, 13, 18, 25, 33] among others. These authors study different
ways of regularization. Ledoit and Wolf [25] consider Steinian shrinkage toward
the identity. Furrer and Bengtsson [13] consider “tapering” the sample covariance
matrix, that is, gradually shrinking the off-diagonal elements toward zero. Wu and
Pourahmadi [33] use the Cholesky decomposition of the covariance matrix to per-
form what we shall call “banding the inverse covariance matrix” below, and Huang
et al. [18] impose L1 penalties on the Cholesky factor to achieve extra parsimony.
Other uses of L1 penalty include applying it directly to the entries of the covari-
ance matrix [2] and applying it to loadings in the context of PCA to achieve sparse
representation [34]. Johnstone and Lu [22] consider a different regularization of
PCA, which involves moving to a sparse basis and thresholding. Fan, Fan and Lv
[10] impose sparsity on the covariance via a factor model.

Implicitly these approaches postulate different notions of sparsity. Wu and
Pourahmadi’s interest focuses, as does ours, on situations where we can expect
that |i − j | large implies near independence or conditional (given the intervening
indexes) independence of Xi and Xj . At the very least our solutions are appropri-
ate for applications such as climatology and spectroscopy, where there is a natural
metric on the index set. Huang et al.’s regularization is more flexible but also de-
pends on the order of variables. In other contexts, notably in finance applications,
the sparsity implicit in a factor model of Fan et al. is more suitable. Johnstone and
Lu’s method relies on the principal eigenvectors being sparse in some basis.

The asymptotic frameworks and convergence results, if at all considered, vary
among these studies. Wu and Pourahmadi [33] consider convergence in the sense
of single matrix element estimates being close to their population values in prob-
ability, with pn → ∞ at a certain rate determined by the spline smoothers they
used. Ledoid and Wolf [25] show convergence of their estimator in “normalized”
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Frobenius norm ‖A‖2
F /p if p/n is bounded, whereas Furrer and Bengtsoon [13]

use the Frobenius norm itself, ‖A‖2
F = tr(AAT ), which we shall argue below is too

big. Fan, Fan and Lv [10] also show that the Frobenius norm is too big in the fac-
tor model context, and employ a different norm based on a sequence of covariance
matrices, which is closely related to the entropy loss [20]. Johnstone and Lu [22]
show convergence of the first principal component of their estimator when p/n →
const.

We have previously studied [5] the behavior of Fisher’s discriminant function
for classification as opposed to the so-called “naive Bayes” procedure which is
constructed under the assumption of independence of the components. We showed
that the latter rule continues to give reasonable results for well-conditioned �p as
long as logp

n
→ 0 while Fisher’s rule becomes worthless if p/n → ∞. We also

showed that using k-diagonal estimators of the covariance achieves asymptotically
optimal classification errors if �p is Toeplitz and kn → ∞ at a certain rate. How-
ever, the performance of the banded estimators was only evaluated in the context
of LDA.

In this paper we show how, by either banding the sample covariance matrix or
estimating a banded version of the inverse population covariance matrix, we can
obtain estimates which are consistent at various rates in the operator norm as long
as logp

n
→ 0 and �p ranges over some fairly natural families. This implies that

maximal and minimal eigenvalues of our estimates and �p are close. We intro-
duce the banding approach for the covariance matrix and for the Cholesky factor
of the inverse in Section 2. In Section 3 we give the main results: description of
classes of covariance matrices for which banding makes sense (Section 3.1), con-
vergence and rates results for the banded covariance estimator (Section 3.2), which
we generalize to smooth tapering (Section 3.3) and extend to banding the inverse
via its Cholesky factor (Section 3.4). In Section 4 we introduce an analogue of
the Gaussian white noise model for covariance matrices and show that if our ma-
trices are embeddable in that model and are well conditioned, then our banded
approximations are such that the eigenstructures (individual eigenvalues and asso-
ciated eigenvectors) of the estimate and population covariance are close. Another
approximation result not dependent on existence of the limit model is presented
as well. In Section 5 we describe a resampling scheme that can be used to choose
the banding parameter k in practice. In Section 6 we give some numerical results,
from both simulations and real data. Both theory and simulations indicate that the
optimal k depends on p, n, and the amount of dependence in the underlying model.
Section 7 concludes with discussion, and the Appendix contains all the proofs.

2. The model and two types of regularized covariance estimates. We as-
sume throughout that we observe X1, . . . ,Xn, i.i.d. p-variate random variables
with mean 0 and covariance matrix �p , and write

Xi = (Xi1, . . . ,Xip)T .
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For now we will assume that the Xi are multivariate normal, and shall argue sep-
arately that it suffices for X2

1j to have subexponential tails for all j (see Extension
I after Theorem 1). We want to study the behavior of estimates of �p as both p

and n → ∞. It is well known that the usual MLE of �p , the sample covariance
matrix,

�̂p = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T(1)

behaves optimally as one might expect if p is fixed, converging to �p at rate
n−1/2. However, as discussed in the Introduction, if p → ∞, �̂p can behave very
badly unless it is “regularized” in some fashion. Here we consider two methods of
regularization.

2.1. Banding the sample covariance matrix. For any matrix M = [mij ]p×p ,
and any 0 ≤ k < p, define,

Bk(M) = [mij 1(|i − j | ≤ k)]
and estimate the covariance by �̂k,p ≡ �̂k = Bk(�̂p). This kind of regularization
is ideal in the situation where the indexes have been arranged in such a way that in
�p = [σij ]

|i − j | > k ⇒ σij = 0.

This assumption holds, for example, if �p is the covariance matrix of Y1, . . . , Yp ,
where Y1, Y2, . . . is a finite inhomogeneous moving average process, Yt =∑k

j=1 at,t−j εj , and εj are i.i.d. mean 0. However, banding an arbitrary covariance
matrix does not guarantee positive definiteness—see a generalization to general
tapering which avoids this problem in Section 3.3.

2.2. Banding the inverse. This method is based on the Cholesky decomposi-
tion of the inverse which forms the basis of the estimators proposed by Wu and
Pourahmadi [33] and Huang et al. [18]. Suppose we have X = (X1, . . . ,Xp)T de-
fined on a probability space, with probability measure P , which is Np(0,�p),
�p ≡ [σij ]. Let

X̂j =
j−1∑
t=1

ajtXt = ZT
j aj(2)

be the L2(P ) projection of Xj on the linear span of X1, . . . ,Xj−1, with
Zj = (X1, . . . ,Xj−1)

T the vector of coordinates up to j − 1, and aj = (aj1, . . . ,

aj,j−1)
T the coefficients. If j = 1, let X̂1 = 0. Each vector aT

j can be computed as

aj = (Var(Zj ))
−1 Cov(Xj ,Zj ).(3)
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Let the lower triangular matrix A with zeros on the diagonal contain the co-
efficients aj arranged in rows. Let εj = Xj − X̂j , d2

j = Var(εj ) and let D =
diag(d2

1 , . . . , d2
p) be a diagonal matrix. The geometry of L2(P ) or standard regres-

sion theory imply independence of the residuals. Applying the covariance operator
to the identity ε = (I − A)X gives the modified Cholesky decompositions of �p

and �−1
p :

�p = (I − A)−1D[(I − A)−1]T ,
(4)

�−1
p = (I − A)T D−1(I − A).

Suppose now that k < p. It is natural to define an approximation to �p by

restricting the variables in regression (2) to Z(k)
j = (Xmax(j−k,1), . . . ,Xj−1), that

is, regressing each Xj on its closest k predecessors only. Replacing Zj by Z(k)
j

in (3) gives the new coefficients a(k)
j . Let Ak be the k-banded lower triangular

matrix containing the new vectors of coefficients a(k)
j , and let Dk = diag(d2

j,k) be
the diagonal matrix containing the corresponding residual variances. Population
k-banded approximations �k,p and �−1

k,p are obtained by plugging in Ak and Dk

in (4) for A and D.
Given a sample X1, . . . ,Xn, the natural estimates of Ak and Dk are obtained

by performing the operations needed under P̂ , the empirical distribution, that is,
plugging in the ordinary least squares estimates of the coefficients in Ak and the
corresponding residual variances in Dk . In the general case the variables must be
centered first. We will refer to these sample estimates as Ãk = [ã(k)

j t ], and D̃k =
diag(d̃2

j,k). Plugging them into (4) for A and D gives the final estimates of �−1
p

and �p via the Cholesky decomposition, which we will refer to as �̃−1
k,p and �̃k,p ,

respectively.
Note that since Ãk is a k-banded lower triangular matrix, �̃−1

k is k-banded non-
negative definite. Its inverse �̃k is in general not banded, and is different from �̂k .
Similarly, �̃−1

k is not the same as Bk(�̂
−1), which is in any case ill-defined when

p > n.

3. Main results. All our results can be made uniform on sets of covari-
ance matrices which we define in Section 3.1. Banding the covariance matrix
is analyzed in Section 3.2 and generalized to tapering in Section 3.3; results on
banding the inverse via the Cholesky decomposition are given in Section 3.4.
All the results show convergence of estimators in the matrix L2 norm, ‖M‖ ≡
sup{‖Mx‖ :‖x‖ = 1} = λ

1/2
max(M

T M), which for symmetric matrices reduces to
‖M‖ = maxi |λi(M)|.
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3.1. Classes of covariance matrices. All our sets will be subsets of the set
which we shall refer to as well-conditioned covariance matrices, �p , such that,
for all p,

0 < ε ≤ λmin(�p) ≤ λmax(�p) ≤ 1/ε < ∞.

Here, λmax(�p), λmin(�p) are the maximum and minimum eigenvalues of �p ,
and ε is independent of p.

As noted in Bickel and Levina [5], examples of such matrices include covari-
ance matrices of (U1, . . . ,Up)T where {Ui, i ≥ 1} is a stationary ergodic process
with spectral density f , 0 < ε ≤ f ≤ 1

ε
and, more generally, of Xi = Ui + Vi ,

i = 1, . . . , where {Ui} is a stationary process as above and {Vi} is a noise process
independent of {Ui}. This model includes the “spiked model” of Paul [28] since a
matrix of bounded rank is Hilbert–Schmidt.

We define the first class of positive definite symmetric well-conditioned matri-
ces � ≡ [σij ] as follows:

U(ε0, α,C) =
{
� : max

j

∑
i

{|σij | : |i − j | > k} ≤ Ck−α for all k > 0,

(5)

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ 1/ε0

}
.

Contained in U for suitable ε0, α, C is the class

L(ε0,m,C) = {
� : σij = σ(i − j) (Toeplitz) with spectral density f�,

0 < ε0 ≤ ‖f�‖∞ ≤ ε−1
0 ,

∥∥f (m)
�

∥∥∞ ≤ C
}
,

where f (m) denotes the mth derivative of f . By Grenander and Szegö [16], if � is
symmetric, Toeplitz, � ≡ [σ(i − j)], with σ(−k) = σ(k), and � has an absolutely
continuous spectral distribution with Radon–Nikodym derivative f�(u), which is
continuous on (−1,1), then

‖�‖ = sup
u

|f�(u)|,
(6)

‖�−1‖ =
[
inf
u

|f�(u)|
]−1

.

Since ‖f (m)
� ‖∞ ≤ C implies that

|σ(t)| ≤ Ct−m(7)

which in turn implies
∑

t>k |σ(t)| ≤ C(m − 1)−1k−m+1, we conclude from 6 and
7 that

L(ε0,m,C) ⊂ U(ε0,m − 1,C).(8)
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A second uniformity class of nonstationary covariance matrices is defined by

K(m,C) = {� :σii ≤ Ci−m, all i}.
The bound C independent of dimension identifies any limit as being of “trace
class” as operator for m > 1.

Although K is not a well-conditioned class,

T (ε0,m1,m2,C1,C2) ≡ L(ε0,m1,C1) ⊕ K(m2,C2) ⊂ U(ε,α,C),(9)

where α = min{m1 − 1,m2/2 − 1}, C ≤ (C1/(m1 − 1) + C2/(m2/2 − 1), ε−1 ≤
ε−1

0 + C2. To check claim (9), note that

ε0 ≤ λmin(L) ≤ λmin(L + K) ≤ λmax(L + K)

≤ ‖L‖ + ‖K‖ ≤ ε−1
0 + C2

and

max
j≥k

∑
i : |i−j |>k

|Kij | ≤ max
j≥k

∑
i : |i−j |>k

|Kii |1/2|Kjj |1/2

≤ C2(m2/2 − 1)−1k−m2/2+1,

max
j<k

∑
i : |i−j |>k

|Kii |1/2|Kjj |1/2 ≤ C
1/2
2

p∑
i=k+2

|Kii |1/2

≤ C2(m2/2 − 1)(k + 2)−m2/2+1.

We will use the T and L classes for �p and �−1
p for convenience.

3.2. Banding the covariance matrix. Our first result establishes rates of con-
vergence for the banded covariance estimator.

THEOREM 1. Suppose that X is Gaussian and U(ε0, α,C) is the class of co-
variance matrices defined above. Then, if kn  (n−1 logp)−1/(2(α+1)),

‖�̂kn,p − �p‖ = OP

((
logp

n

)α/(2(α+1)))
= ‖�̂−1

kn,p − �−1
p ‖(10)

uniformly on � ∈ U.

The proof can be found in the Appendix. Note that the optimal kn in general
depends not only on p and n, but also on the dependence structure of the model,
expressed by α. An approach to choosing k in practice is discussed in Section 5.

From Theorem 1, we immediately obtain:
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COROLLARY 1. If α = min{m1 − 1, m2
2 − 1}, m1 > 1, m2 > 2, then (10)

holds uniformly for � ∈ T (ε0,m1,m2,C1,C2).

Extensions of Theorem 1. I. The Gaussian assumption may be replaced by
the following. Suppose Xi = (Xi1, . . . ,Xip)T are i.i.d., X1j ∼ Fj , where Fj is
the c.d.f. of X1j , and Gj(t) = Fj (

√
t) − Fj (−√

t) is the c.d.f. of X2
1j . Then for

Theorem 1 to hold it suffices to assume that

max
1≤j≤p

∫ ∞
0

exp(λt) dGj (t) < ∞ for 0 < |λ| < λ0(11)

for some λ0 > 0. This follows by using the argument of Lemma A.3 and verifying
condition (P) on page 45 of [29].

II. If we only assume E|Xij |β ≤ C, β > 2, for all j , we can replace (A4) in the
proof of Theorem 1 by

P [‖Bk(�̂
0) − Bk(�p)‖∞ ≥ t] ≤ Cn−β/4(2k + 1)pt−β/2.(12)

Then a few appropriate modifications of the proof (details omitted here) imply that
if kn  (n−1/2p2/β)−γ (α) where γ (α) = (1 + α + 2/β)−1, then,

‖Bkn(�̂) − �p‖ = OP

(
(n−1/2p2/β)αγ (α)).(13)

The rate of kn is still asymptotically optimal.

Remarks on convergence rates. (1) Theorem 1 implies that ‖Bkn(�̂) −
�p‖ P−→0 if logp

n
→ 0, uniformly on U. It is not hard to see that if �p = S + K

where S is Toeplitz, ε0 ≤ fS ≤ ε−1
0 and K is trace class in the sense of Section 4,

�iK(i, i) < ∞, then, if logp
n

→ 0, there exist kn ↑ ∞ such that, for the given {�p},

‖Bkn(�̂) − �p‖ + ‖[Bkn(�̂)]−1 − �−1
p ‖ P−→0.(14)

(2) The same claim can be made under (11). On the other hand, under only the

moment bound of Extension II with Ee
λX2

ij = ∞, λ > 0 we may only conclude
that (14) holds if

p4/β

n
→ 0.(15)

Related results of Furrer and Bengtsson [13] necessarily have rates of the type
(15) not because of tail conditions on the variables, but because they consider the
Frobenius norm.
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3.3. General tapering of the covariance matrix. One problem with simple
banding of the covariance matrix is the lack of assured positive definiteness. How-
ever, Furrer and Bengtsson [13] have pointed out that positive definiteness can be
preserved by “tapering” the covariance matrix, that is, replacing �̂p with �̂p ∗ R,
where ∗ denotes Schur (coordinate-wise) matrix multiplication, and R = [rij ] is
a positive definite symmetric matrix, since the Schur product of positive definite
matrices is also positive definite. This fact was proved by Schur [30] and is also
easily seen via a probabilistic interpretation: if X and Y are independent, mean 0
random vectors with Cov(X) = A, Cov(Y) = B , then Cov(X ∗ Y) = A ∗ B .

In the general case, let A be a countable set of labels of cardinality |A|. We can
think of a matrix as [mab]a∈A, b∈A. Let ρ : A × A → R+, ρ(a, a) = 0 for all a,
be a function we can think of as distance of the point (a, b) from the diagonal. As
an example think of a and b as identified with points in Rm and ρ(a, b) = |a − b|
where | · | is a norm on Rm.

Now suppose R = [rab]a,b∈A is symmetric positive definite with rab = g(ρ(a,

b)), g :R+ → R+. Suppose further that g(0) = 1 and g is decreasing to 0. Then
R ∗ M is a regularization of M . Note that g(t) = 1(t ≤ k), ρ(i, j) = |i − j | gives
banding (which is not nonnegative definite).

In general, let Rσ = [rσ (a, b)], where

rσ (a, b) = g

(
ρ(a, b)

σ

)
, σ ≥ 0.

ASSUMPTION A. g is continuous, g(0) = 1, g is nonincreasing, g(∞) = 0.
Examples of such positive definite symmetric Rσ include

rσ (i, j) =
(

1 − |i − j |
σ

)
+

and rσ (i, j) = e−|i−j |/σ .

With this notation define

Rσ (M) ≡ [mabrσ (a, b)]
with R0(M) = M . Clearly, as σ → ∞, Rσ (M) → M .

Our generalization is the following. Denote the range of gσ (ρ(a, b)) by
{gσ (ρ1), . . . , gσ (ρL)} where {0 < ρ1 < · · · < ρL} is the range of ρ(a, b), a ∈ A,
b ∈ A. Note that L depends on |A| = p.

THEOREM 2. Let 
(σε) = ∑L
l=1 gσ (ρl). Note that 
 depends on |A| = p

and the range of ρ. Suppose Assumption A holds. Then if


  (n−1 logp)−1/2(α+1),

the conclusion of Theorem 1 holds for Rσ (�̂).
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The proof of Theorem 2 closely follows the proof of Theorem 1 with (A3)
replaced by Lemma A.1 in the Appendix. Both the result and the lemma are of
independent interest. The remarks after Theorem 1 generalize equally.

3.4. Banding the Cholesky factor of the inverse. Theorems 1 and 2 give the
scope of what can be accomplished by banding the sample covariance matrix. Here
we show that “banding the inverse” yields very similar results.

If �−1 = T (�)T D−1(�)T (�) with T (�) lower triangular, T (�) ≡ [tij (�)],
let

U−1(ε0,C,α) =
{
� : 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ ε−1

0 ,

max
i

∑
j<i−k

|tij (�)| ≤ Ck−α for all k ≤ p − 1

}
.

THEOREM 3. Uniformly for � ∈ U−1(ε0,C,α), if kn  (n−1 logp)−1/2(α+1)

and n−1 logp = o(1),

‖�̃−1
kn,p − �−1

p ‖ = OP

((
logp

n

)α/2(α+1))
= ‖�̃kn,p − �p‖.

The proof is given in the Appendix. Note that the condition n−1 logp = o(1) is
needed solely for the purpose of omitting a cumbersome and uninformative term
from the rate (see Lemma A.2 in the Appendix for details).

It is a priori not clear what � ∈ U−1 means in terms of �. The following corol-
lary to Theorem 3 gives a partial answer.

COROLLARY 2. For m ≥ 2, uniformly on L(ε0,m,C), if kn  (n−1 ×
logp)−1/2m,

‖�̃−1
kn,p − �−1

p ‖ = OP

((
logp

n

)(m−1)/2m)
= ‖�̃kn,p − �‖.

The proof of Corollary 2 is given in the Appendix. The reason that the argument
of Theorem 1 cannot be invoked simply for Theorem 3 is that, as we noted before,
�̃−1 is not the same as Bk(�̂

−1), which is not well defined if p > n.

4. An analogue of the Gaussian white noise model and eigenstructure ap-
proximations. In estimation of the means μp of p-vectors of i.i.d. variables, the
Gaussian white noise model [9] is the appropriate infinite-dimensional model into
which all objects of interest are embedded. In estimation of matrices, a natural
analogue is the space B(l2, l2), which we write as B, of bounded linear opera-
tors from l2 to l2. These can be represented as matrices [mij ]i≥1,j≥1 such that
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�i[�j mijxj ]2 < ∞ for all x = (x1, x2, . . .) ∈ l2. It is well known (see Böttcher
[7], e.g.) that if M is such an operator, then

‖M‖2 = sup{(Mx,Mx) : |x| = 1} = supS(M∗M),

where M∗M is a self-adjoint member of B with nonnegative spectrum S. Recall
that the spectrum S(A) of a self-adjoint operator is Rc(A), where R(A) ≡ {λ ∈
R :A − λJ ∈ B} where J is the identity. To familiarize ourselves with this space
we cite some properties of � ∈ B where

� = [Cov(X(i),X(j))]i,j≥1(16)

is the matrix of covariances of a Gaussian stochastic process {X(t) : t = 1,2, . . .}:
1. It is easy to see that the operators � for all ergodic AR processes, X(t) =

ρX(t −1)+ε(t) where ε(t) are i.i.d. N (0,1) and |ρ| < 1, are in B, and �−1 ∈ B.
This is, in fact, true of all ergodic ARMA processes. On the other hand, X(t) ≡∑t

j=1 ε(j) is evidently not a member of B.

2. The property � ∈ B, �−1 ∈ B which we shall refer to as being well condi-
tioned, has strong implications. By a theorem of Kolmogorov and Rozanov (see
[19]), if � is Toeplitz, this property holds iff the corresponding stationary Gaussian
process is strongly mixing.

We now consider sequences of covariance matrices �p such that �p is the up-
per p × p matrix of the operator � ∈ B. That is, � is the covariance matrix of
{X(t) : t = 1,2, . . .} and �p that of (X(1), . . . ,X(p)).

By Böttcher [7], if � is well conditioned, then

�p(x) → �(x)

as p → ∞ for all x ∈ l2. We now combine Theorem 6.1, page 120 and Theo-
rem 5.1, page 474 of Kato [24] to indicate in what ways the spectra and eigen-
structures (spectral measures) of Bkn(�̂p) are close to those of �p .

Suppose that the conditions of the remark following Theorem 1 hold. That is,
�p corresponds to � = S + K , where S ∈ B is a Toeplitz operator with spectral
density fS such that, 0 < ε0 ≤ fS ≤ ε−1

0 and K is trace class,
∑

u K(u,u) < ∞
which implies K ∈ B.

Let M be a symmetric matrix and O be an open set containing S(M) ≡
{λ1, . . . , λp} where λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) are the ordered eigenvalues
of M and let E(M)(·) be the spectral measure of M which assigns to each eigen-
value the projection operator corresponding to its eigenspace. Abusing notation,
let Ep ≡ E(�p), Êp ≡ E(�̂k,p), S ≡ S(�p). Then, Ep(O) = Ep(S) = J , the
identity.

THEOREM 4. Under the above conditions on �p ,

|Êp(O)(x) − x| P−→ 0(17)
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for all x ∈ l2. Further, if I is any interval whose endpoints do not belong to S, then

|Êp(I ∩ S)(x) − Ep(I)(x)| P−→ 0.

Similar remarks apply to �̃k,p . This result gives no information about rates. It
can be refined (Theorem 5.2, page 475 of Kato [24]) but still yields very coarse
information. One basic problem is that � typically has at least in part continuous
spectrum and another is that the errors involve the irrelevant bias |(�p − �)(x)|.
Here is a more appropriate formulation whose consequences for principal compo-
nent analysis are clear. Let

G(ε,α,C,
,m)
(18)

= {�p ∈ U(ε,α,C) :λj (�p) − λj−1(�p) ≥ 
, 1 ≤ j ≤ m}.
Thus the top m eigenvalues are consecutively separated by at least 
 and all eigen-
values λj with j ≥ m+ 1 are separated from the top m by at least 
. Furthermore,
the dimension of the sum of the eigenspaces of the top m eigenvalues is bounded
by l independent of n and p. We can then state

THEOREM 5. Uniformly on G as above, for k as in Theorem 1, X Gaussian,

|λj (�̂k,p) − λj (�p)| = OP

((
logp

n

)1/2(
logn + α

2
logp

))
(19)

= ‖Ej(�̂k,p) − Ej(�p)‖ for 1 ≤ j ≤ m.

That is, the top m eigenvalues and principal components of �p , if the eigen-
values are all simple, are well approximated by those of �̂k,p . If we make an
additional assumption on �p ,∑p

j=m+1 λj (�p)∑p
j=1 λj (�p)

≤ δ,(20)

we can further conclude that the top m principal components of �̂k,p capture
100(1 − δ)% of the variance of X. To verify (20) we need that

tr(�̂p − �p)

tr(�p)
= oP (1).(21)

This holds if, for instance, tr(�p) = �P (p) which is certainly the case for all
�p ∈ T . Then, Theorem 5 follows from Theorem 6.1, page 120 of Kato [24], for
instance. For simplicity, we give a self-contained proof in the Appendix.
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5. Choice of the banding parameter. The results in Section 3 give us the rate
of k = kn that guarantees convergence of the banded estimator �̂k , but they do not
offer much practical guidance for selecting k for a given dataset. The standard way
to select a tuning parameter is to minimize the risk

R(k) = E‖�̂k − �‖(1,1),(22)

with the “oracle” k given by

k0 = arg min
k

R(k).(23)

The choice of matrix norm in (22) is somewhat arbitrary. In practice, we found the
choice of k is not sensitive to the choice of norm; the l1 to l1 matrix norm does just
slightly better than others in simulations, and is also faster to compute.

We propose a resampling scheme to estimate the risk and thus k0: divide the
original sample into two samples at random and use the sample covariance matrix
of one sample as the “target” to choose the best k for the other sample. Let n1,
n2 = n − n1 be the two sample sizes for the random split, and let �̂ν

1 , �̂
(ν)
2 be the

two sample covariance matrices from the νth split, for ν = 1, . . . ,N . Alternatively,
N random splits could be replaced by K-fold cross-validation. Then the risk (22)
can be estimated by

R̂(k) = 1

N

N∑
ν=1

∥∥Bk

(
�̂

(ν)
1

) − �̂
(ν)
2

∥∥
(1,1)(24)

and k is selected as

k̂ = arg min
k

R̂(k).(25)

Generally we found little sensitivity to the choice of n1 and n2, and used n1 =
n/3 throughout this paper. If n is sufficiently large, another good choice (see, e.g.,
Bickel, Ritov and Zakai [6]) is n1 = n(1 − 1/ logn).

The oracle k0 provides the best choice in terms of expected loss, whereas k̂ tries
to adapt to the data at hand. Another, and more challenging, comparison is that of
k̂ to the best band choice for the sample in question:

k1 = arg min
k

‖�̂k − �‖(1,1).(26)

Here k1 is a random quantity, and its loss is always smaller than that of k0. The
results in Section 6 show that k̂ generally agrees very well with both k0 and k1,
which are quite close for normal data. For heavier-tailed data, one would expect
more variability; in that case, the agreement between k̂ and k1 is more important
that between k̂ and k0.

It may be surprising that using the sample covariance �̂2 as the target in (24)
works at all, since it is known to be a very noisy estimate of �. It is, however, an
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unbiased estimate, and we found that even though (24) tends to overestimate the
actual value of the risk, it gives very good results for choosing k.

Criterion (24) can be used to select k for the Cholesky-based �̃k as well. An
obvious modification—replacing the covariance matrices with their inverses in
(24)—avoids additional computational cost and instability associated with com-
puting inverses. One has to keep in mind, however, that while �̂k is always well-
defined, �̃k is only well-defined for k < n, since otherwise regressions become
singular. Hence, if p > n, k can only be chosen from the range 0, . . . , n − 1, not
0, . . . , p − 1.

6. Numerical results. In this section, we investigate the performance of the
proposed banded estimator of the covariance �̂k and the resampling scheme for
the choice of k, by simulation and on a real dataset. The Cholesky-based �̃k and
its variants have been numerically investigated by extensive simulations in [33]
and [18], and shown to outperform the sample covariance matrix. Because of that,
we omit �̃k from simulations, and only include it in the real data example.

6.1. Simulations. We start from investigating the banded estimator by simu-
lating data from N (0,�p) with several different covariance structures �p . For
all simulations, we report results for n = 100 and p = 10, 100, and 200. Qualita-
tively, these represent three different cases: p � n, p ∼ n and p > n. We have also
conducted selected simulations with p = 1000, n = 100, which qualitatively cor-
responds to the case p � n; all the patterns observed with p > n remain the same,
only more pronounced. The number of random splits used in (24) was N = 50,
and the number of replications was 100.

EXAMPLE 1 (Moving average covariance structure). We take �p to be the
covariance of the MA(1) process, with

σij = ρ|i−j | · 1{|i − j | ≤ 1}, 1 ≤ i, j ≤ p.

The true �p is banded, and the oracle k0 = 1 for all p. For this example we take
ρ = 0.5. Figure 1 shows plots of the true risk R(k) and the estimated risk R̂(k)

from (24). While the risk values themselves are overestimated by (24) due to the
extra noise introduced by �̂2, the agreement of the minima is very good, and that
is all that matters for selecting k.

Table 1 shows the oracle values of k0 and k1, the estimated k̂, and the losses
corresponding to all these along with the loss of the sample covariance �̂. When
the true model is banded, the estimation procedure always picks the right banding
parameter k = 1, and performs exactly as well as the oracle. The covariance matrix,
as expected, does worse.
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FIG. 1. MA(1) covariance: True (averaged over 100 realizations) and estimated risk (single real-
ization) as a function of k, plotted for k ≤ 30. Both risks are increasing after k = 1 for all p.

EXAMPLE 2 (Autoregressive covariance structure). Let �p be the covariance
of an AR(1) process,

σij = ρ|i−j |, 1 ≤ i, j ≤ p.

For this simulation example, we take ρ = 0.1, 0.5 and 0.9. The covariance matrix
is not sparse, but the entries decay exponentially as one moves away from the
diagonal. Results in Figure 2 and Table 2 show that the smaller ρ is, the smaller
the optimal k. Results in Table 2 also show the variability in k̂ increases when the
truth is far from banded (larger ρ), which can be expected from the flat risk curves
in Figure 2. Variability of k1 increases as well, and k1 − k̂ is not significantly
different from 0. In terms of the loss, the estimate again comes very close to the
oracle.

EXAMPLE 3 (Long-range dependence). This example is designed to challenge
the banded estimator, since conditions (5) will not hold for covariance matrix of a
process exhibiting long-range dependence. Fractional Gaussian noise (FGN), the
increment process of fractional Brownian motion, provides a classic example of
such a process. The covariance matrix is given by

σij = 1
2 [(|i − j | + 1)2H − 2|i − j |2H + (|i − j | − 1)2H ], 1 ≤ i, j ≤ p,

TABLE 1
MA(1): Oracle and estimated k and the corresponding loss values

Mean (SD) Loss

p k0 k1 k̂ k1 − k̂ �̂
k̂

�̂k0 �̂k1 �̂

10 1 1 (0) 1 (0) 0 (0) 0.5 0.5 0.5 1.2
100 1 1 (0) 1 (0) 0 (0) 0.8 0.8 0.8 10.6
200 1 1 (0) 1 (0) 0 (0) 0.9 0.9 0.9 20.6



214 P. J. BICKEL AND E. LEVINA

FIG. 2. AR(1) covariance: True (averaged over 100 realizations) and estimated risk (single real-
ization) as a function of k.

TABLE 2
AR(1): Oracle and estimated k and the corresponding loss values

Mean (SD) Loss

p ρ k0 k1 k̂ k1 − k̂ �̂
k̂

�̂k0 �̂k1 �̂

10 0.1 1 0.5 (0.5) 0.0 (0.2) 0.5 (0.6) 0.5 0.5 0.4 1.1
10 0.5 3 3.3 (0.8) 2.0 (0.6) 1.3 (1.1) 1.1 1.0 1.0 1.3
10 0.9 9 8.6 (0.7) 8.9 (0.3) −0.4 (0.7) 1.5 1.5 1.5 1.5

100 0.1 0 0.2 (0.4) 0.1 (0.3) 0.1 (0.6) 0.6 0.6 0.6 10.2
100 0.5 3 2.7 (0.7) 2.3 (0.5) 0.4 (1.0) 1.6 1.6 1.5 10.6
100 0.9 20 21.3 (4.5) 15.9 (2.6) 5.5 (5.8) 9.2 8.8 8.5 13.5
200 0.1 1 0.2 (0.4) 0.2 (0.4) −0.0 (0.6) 0.7 0.6 0.6 20.4
200 0.5 3 2.4 (0.7) 2.7 (0.5) −0.2 (1.0) 1.8 1.7 1.7 20.8
200 0.9 20 20.2 (4.5) 16.6 (2.4) 3.6 (5.6) 9.9 9.7 9.5 24.5
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TABLE 3
FGN: Oracle and estimated k and the corresponding loss values

Mean (SD) L1 Loss

p H k0 k1 k̂ k1 − k̂ �̂
k̂

�̂k0 �̂k1 �̂

10 0.5 0 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.3 0.3 0.3 1.1
10 0.7 5 5.0 (1.8) 2.3 (1.5) 2.7 (2.5) 1.4 1.2 1.1 1.2
10 0.9 9 8.6 (0.6) 9.0 (0.1) −0.4 (0.6) 1.5 1.5 1.5 1.5

100 0.5 0 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.4 0.4 0.4 10.2
100 0.7 4 4.9 (2.2) 4.1 (1.6) 0.8 (2.9) 5.5 5.5 5.4 10.7
100 0.9 99 82.1 (10.9) 85.1 (15.5) −3.1 (19.0) 17.6 16.6 16.6 16.6
200 0.5 0 0.0 (0.0) 0.0 (0.1) −0.0 (0.1) 0.4 0.4 0.4 20.1
200 0.7 3 4.2 (2.2) 4.9 (2.1) −0.7 (3.4) 7.9 7.7 7.7 20.9
200 0.9 199 164.0 (22.7) 139.7 (38.9) 24.3 (47.4) 37.8 33.3 33.3 33.3

where H ∈ [0.5,1] is the Hurst parameter. H = 0.5 corresponds to white noise,
and the larger H , the more long-range dependence in the process. Values of H up
to 0.9 are common in practice, for example, in modeling Internet network traffic.
For simulating this process, we used the circulant matrix embedding method [4],
which is numerically stable for large p.

Results in Table 3 show that the procedure based on the estimated risk correctly
selects a large k (k ≈ p) when the covariance matrix contains strong long-range
dependence (H = 0.9). In this case banding cannot help—but it does not hurt,
either, since the selection procedure essentially chooses to do no banding. For
smaller H , the procedure adapts correctly and selects k = 0 for H = 0.5 (diagonal
estimator for white noise), and a small k for H = 0.7.

Another interesting question is how the optimal choice of k depends on dimen-
sion p. Figure 3 shows the ratio of optimal k to p, for both oracle k0 and estimated
k̂, for AR(1) and FGN [for MA(1), the optimal k is always 1]. The plots confirm
the intuition that (a) the optimal amount of regularization depends on �, and the
faster the off-diagonal entries decay, the smaller the optimal k; and (b) the same
model requires relatively more regularization in higher dimensions.

6.2. Call center data. Here we apply the banded estimators �̂k and �̃k to the
call center data used as an example of a large covariance estimation problem by
[18], who also provide a detailed description of the data. Briefly, the data consist
of call records from a call center of a major U.S. financial institution. Phone calls
were recorded from 7:00 am until midnight every day in 2002, and weekends, holi-
days and days when equipment was malfunctioning have been eliminated, leaving
a total of 239 days. On each day, the 17-hour recording period was divided into
10-minute intervals, and the number of calls in each period, Nij , was recorded
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FIG. 3. The ratio of optimal k to dimension p for AR(1) (as a function of ρ) and FGN (as a function
of H ).

for each of the days i = 1, . . . ,239 and time periods j = 1, . . . ,102. A standard
transformation xij = (Nij +1/4)1/2 was applied to make the data closer to normal.

The goal is to predict arrival counts in the second half of the day from counts in
the first half of the day. Let xi = (x(1)

i ,x(2)
i ), with x(1)

i = (xi1, . . . , xi,51), and x(2)
i =

(xi,52, . . . , xi,102). The mean and the variance of V x are partitioned accordingly,

μ =
(

μ1
μ2

)
, � =

(
�11 �12
�21 �22

)
.(27)

The best linear predictor of x(2)
i from x(1)

i is then given by

x̂(2)
i = μ2 + �21�

−1
11

(
x(1)
i − μ1

)
.(28)

Different estimators of � in (27) can be plugged into (28). To compare their per-
formance, the data were divided into a training set (January to October, 205 days)
and a test set (November and December, 34 days). For each time interval j , the
performance is measured by the average absolute forecast error

Ej = 1
34

239∑
i=206

|x̂ij − xij |.

The selection procedure for k described in Section 5 to both �̂k and �̃k . It turns
out that the data exhibit strong long-range dependence, and for �̂k the selection
procedure picks k = p = 102, so banding the covariance matrix is not beneficial
here. For �̃k , the selected k = 19 produces a better prediction for almost every
time point than the sample covariance �̂ (see Figure 4).

This example suggests that a reasonable strategy for choosing between �̂k and
�̃k in practice is to estimate the optimal k for both and use the one that selects a
smaller k. The two estimators are meant to exploit different kinds of sparsity in the
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FIG. 4. Call center forecast error using the sample covariance �̂ and the best Cholesky-based
estimator �̃k , k = 19.

data, and a smaller k selected for one of them indicates that that particular kind of
sparsity is a better fit to the data.

7. Discussion. I. If σ ij = 0, |i − j | > k and ‖�−1‖ ≤ ε−1
0 , then X is a kth-

order autoregressive process and as we might expect, �̃k,p is the right estimate.
Now suppose σ ii ≤ ε−1

0 for all i and we only know that σ ij = 0 for each i and
p − (2k + 1) j ’s. This condition may be interpreted as saying that, for each i

there is a set Si with |Si | ≤ k, i /∈ S0, such that, Xi is independent of {Xt, t /∈
Si, t �= i} given {Xj : j ∈ Si}. Although banding would not in general give us sparse
estimates, the following seem intuitively plausible:

(1) Minimize a suitable objective function �(P̂ ,�) ≥ 0 where P̂ is the empirical
distribution of X1, . . . ,Xn and

�(P,�p) = 0

subject to ‖�‖(1,1) ≤ γn,p .
(2) Let γn,p → 0 “slowly.” This approach should yield estimates which con-

sistently estimate sparse covariance structure. Banerjee, D’Aspremont and El
Ghaoui [2] and Huang et al. [18] both use normal or Wishart-based log-
likelihoods for � and a Lasso-type penalty in this context. We are currently
pursuing this approach more systematically.

II. The connections with graphical models are also apparent. If D is the depen-
dency matrix of �−1, with entries 0 and 1, then ‖D‖(1,1) is just the maximum
degree of the graph vertices. See Meinshausen and Buhlmann [27] for a related
approach in determining covariance structure in this context.
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III. A similar interpretation can be attached if we assume � is k0 banded
after a permutation of the rows. This is equivalent to assuming that there is a
permutation of variables after which Xi is independent of {Xj : |j − i| > k} for
all i.

IV. In the case when � is the covariance of a stationary process, there
is a possibility of regularizing the covariance function via inverting a regu-
larized estimate of the spectral density. There is a large literature on spec-
tral density estimate (see, e.g., [11] for an approach based on local smooth-
ing and a review). Exploring this connection further, and in particular, under-
standing the equivalent of banding in the spectral domain, is a topic for future
work.

APPENDIX: ADDITIONAL LEMMAS AND PROOFS

In addition to the operator norm ‖M‖ from l2 to l2 we have defined, in what
follows we use additional matrix norms. For a vector x = (x1, . . . , xp)T , let

‖x‖1 =
p∑

j=1

|xj |, ‖x‖∞ = max
j

|xj |.

For a matrix M = [mij ], the corresponding operator norms from l1 to l1 and l∞ to
l∞ are, respectively,

‖M‖(1,1) ≡ sup{‖Mx‖1 :‖x‖1 = 1} = max
j

∑
i

|mij |,
(A1)

‖M‖(∞,∞) ≡ sup{‖Mx‖∞ :‖x‖∞ = 1} = max
i

∑
j

|mij |.

We will also write ‖M‖∞ ≡ maxi,j |mij |.
For symmetric matrices, ‖M‖(1,1) = ‖M‖(∞,∞). The l1 to l1 norm arises natu-

rally through the inequality (see, e.g., Golub and Van Loan [15])

‖M‖ ≤ [‖M‖(1,1)‖M‖(∞,∞)

]1/2 = ‖M‖(1,1) for M symmetric.(A2)

PROOF OF THEOREM 1. It is easy to see that (A2) and (A2) imply

‖Bk(�̂) − Bk(�)‖ = OP

(
k‖Bk(�̂) − Bk(�)‖∞

)
.(A3)

Let �̂0 = 1
n

∑n
i=1 XT

i Xi and w.l.o.g. EX1 = 0. By an application of a result
of Saulis and Statulevičius [29] (see Lemma A.3) and the union sum inequal-
ity,

P [‖Bk(�̂
0) − Bk(�)‖∞ ≥ t] ≤ (2k + 1)p exp{−nt2γ (ε0, λ)}(A4)
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for |t | ≤ λ ≡ λ(ε0). By choosing t = M(
log(pk)

n
)1/2 for M arbitrary we conclude

that, uniformly on U,

‖Bk(�̂
0) − Bk(�p)‖∞ = OP ((n−1 log(pk))1/2)

(A5)
= OP ((n−1 logp)1/2)

since k < p. On the other hand, by 5,

‖Bk(�p) − �p‖∞ ≤ Ck−α(A6)

for �p ∈ U(ε0, α,C).
Combining (A5) and (A6), the result follows for Bk(�̂

0). But, if X̄ =
(X̄1, . . . , X̄p)T ,

‖Bk(�̂
0) − Bk(�̂)‖ ≤ ‖Bk(X̄T X̄)‖ ≤ (2k + 1) max

1≤j≤p
|X̄j |2

= OP

(
k logp

n

)
= OP

(
(n−1 logp)α/(2(α+1))).

Since

‖[Bkn(�̂)]−1 − �−1
p ‖ = �P (‖Bkn(�̂) − �p‖),

uniformly on U, the result follows. �

The key to Theorem 2 is the following lemma which substitutes for (A3). Con-
sider symmetric matrices M indexed by (a, b), a, b ∈ A, a finite index set. Suppose
for each a ∈ A there exist Na ≤ N sets Sa,j such that the Sa,j form a partition of
A − {a}. Define, for any 1 ≤ j ≤ N , M = [m(a, b)] as above:

r(j) = max{|m(a, b)| : b ∈ Sa,j , a ∈ A}
and μ = maxa |m(a, a)|.

LEMMA A.1. Under Assumption A,

‖M‖ ≤ μ +
N∑

j=1

r(j).(A7)

PROOF. Apply (A2) noting that

∑{|m(a, b)| : b ∈ A} ≤
N∑

j=1

r(j) + μ

for all a ∈ A. �

PROOF OF COROLLARY 2. An examination of the proof of Theorem 1 will
show that the bound of ‖�p − Bk(�p)‖(1,1) was used solely to bound ‖�p −
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Bk(�p)‖. But in the case of Corollary 2, a theorem of Kolmogorov (De Vore and
Lorentz [8], page 334) has, after the identification (A1),

‖�p − Bk(�p)‖ ≤ C′ log k

km
(A8)

where C′ depends on C and m only, for all �p ∈ L(ε0,m,C). The result follows.
Note that Corollary 1 would give the same results as the inferior bound C′k−(m−1).

�

To prove Theorem 3 we will need:

LEMMA A.2. Under conditions of Theorem 3, uniformly on U,

max
{∥∥ã(k)

j − a(k)
j

∥∥∞ : 1 ≤ j ≤ p
} = OP (n−1/2 log1/2 p),(A9)

max{|d̃2
j,k − d2

j,k| : 1 ≤ j ≤ p} = OP

(
(n−1 logp)α/(2(α+1)))(A10)

and

‖Ak‖ = ‖D−1
k ‖ = O(1),(A11)

where ã(k)
j = (ã

(k)
j1 , . . . , ã

(k)
j,j−1) are the empirical estimates of the vectors a(k)

j =
(a

(k)
j1 , . . . , a

(k)
j,j−1) and d̃2

j,k, 1 ≤ j ≤ p are the empirical estimates of the d2
j,k .

To prove Lemma A.2 we need an additional lemma, obtained from results of
Saulis and Statulevičius [29].

LEMMA A.3. Let Zi be i.i.d. N (0,�p) and λmax(�p) ≤ ε−1
0 < ∞. Then, if

�p = [σab],

P

[∣∣∣∣∣
n∑

i=1

(ZijZik − σjk)

∣∣∣∣∣ ≥ nν

]
(A12)

≤ C1 exp(−C2nν2) for |ν| ≤ δ,

where C1, C2 and δ depend on ε0 only.

PROOF. Write

P

[∣∣∣∣∣
n∑

i=1

(ZijZik − σjk)

∣∣∣∣∣ ≥ nν

]

= P

[∣∣∣∣∣
n∑

i=1

(Z∗
ijZ

∗
ik − ρjk)

∣∣∣∣∣ ≥ nν

(σjjσkk)1/2

]
,
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where ρjk = σjk(σjjσkk)
−1/2 and (Z∗

ij , Z∗
ik) ∼ N2(0,0,1,1, ρjk). Now,

n∑
i=1

(Z∗
ijZ

∗
ik − ρjk)

= 1
4

[
n∑

i=1

[(Z∗
ij + Z∗

ik)
2 − 2(1 + ρjk)](A13)

+
n∑

i=1

[(Z∗
ij − Z∗

ik)
2 − 2(1 − ρjk)]

]
and reduce the problem to estimating

2P

[∣∣∣∣∣
n∑

i=1

(V 2
i − 1)

∣∣∣∣∣ ≥ nν

2(1 − ρjk)(σjjσkk)1/2

]
,

where Vi are i.i.d. N (0,1). Since χ2
1 satisfies condition (P) (3.12) on page 45 of

[29], the lemma follows from Theorem 3.2, page 45 and (2.13) on page 19, since
(σjjσkk)

1/2|1 − ρjk| ≤ 2ε−1
0 . �

PROOF OF LEMMA A.2. Note first that

‖Var X − V̂ar X‖∞ = OP (n−1/2 log1/2 p),(A14)

by Lemma A.3. Hence,

max
j

∥∥V̂ar−1(
Z(k)

j

) − Var−1(
Z(k)

j

)∥∥∞ = OP (n−1/2 log1/2 p).(A15)

To see this, note that the entries of V̂ar X−Var X can be bounded by n−1|∑n
i=1 Xia

Xib − σab| + n−2|∑n
i=1 Xia||∑n

i=1 Xib|, where w.l.o.g. we assume EX = 0.
Lemma A.3 ensures that

P

[
max
a,b

∣∣∣∣∣n−1
n∑

i=1

(XiaXib − σab)

∣∣∣∣∣ ≥ ν

]
≤ C1p

2 exp(−C2nν2)

for |ν| ≤ δ. Now take ν = (
logp2

nC2
)1/2M for M arbitrary. The second term is simi-

larly bounded.
Also,

‖�−1‖ = ‖(VarX)−1‖ ≤ ε−1
0 .

Claim (A9) and the first part of (A11) follow from 3, (A14) and (A15). Since

d̃2
jk = V̂arXj − V̂ar

( j−1∑
t=j−k

ã
(k)
j t Xt

)
,

d2
jk = VarXj − Var

( j−1∑
t=j−k

a
(k)
j t Xt

)
,
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and the covariance operator is linear,

|d̃2
jk − d2

jk| ≤ |Var(Xj ) − V̂arXj |

+
∣∣∣∣∣V̂ar

j−1∑
t=j−k

(
ã

(k)
j t − a

(k)
j t

)
Xt

∣∣∣∣∣(A16)

+
∣∣∣∣∣V̂ar

j−1∑
t=j−k

a
(k)
j t Xt − Var

j−1∑
t=j−k

a
(k)
j t Xt

∣∣∣∣∣.
The sum

∑j−1
t=j−k is understood to be

∑j−1
t=max(1,j−k). The maximum over j of the

first term is OP (n−1/2 log1/2 p) by Lemma A.3. The second can be written as∣∣∣∑{(
ã

(k)
js − a

(k)
js

)(
ã

(k)
j t − a

(k)
j t

)
Ĉov(Xs,Xt) : j − k ≤ s, t ≤ j − 1

}∣∣∣
≤

( j−1∑
t=j−k

∣∣ã(k)
j t − a

(k)
j t

∣∣V̂ar1/2
(Xt)

)2

(A17)
≤ k2 max

t

(
ã

(k)
j t − a

(k)
j t

)2 max
t

V̂ar(Xt)

= OP (k2n−1(logp)2) = OP

(
(n−1 logp)α/(2(α+1)))

by (A9) and ‖�p‖ ≤ ε−1
0 . Note that in the last equality we used the assumption

n−1 logp = o(1). The third term in (A16) is bounded similarly. Thus (A10) fol-
lows. Further, for 1 ≤ j ≤ p,

d2
jk = Var

(
Xj − ∑{

a
(k)
j t Xt : max(1, j − k) ≤ t ≤ j − 1

})
(A18)

≥ ε0

(
1 + ∑(

a
(k)
j t

)2
)

≥ ε0

and the lemma follows. �

PROOF OF THEOREM 3. We parallel the proof of Theorem 1. We need only
check that

‖�̃−1
k,p − �−1

k,p‖∞ = OP (n−1/2 log1/2 p)(A19)

and

‖�−1
k,p − Bk(�

−1
p )‖ = O(k−α).(A20)

We first prove (A19). By definition,

�̃−1
k,p − �−1

k,p
(A21)

= (I − Ãk)D̃
−1
k (I − Ãk)

T − (I − Ak)D
−1
k (I − Ak)

T
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where Ãk , D̃k are the empirical versions of Ak and Dk . Apply the standard in-
equality ∥∥A(1)A(2)A(3) − B(1)B(2)B(3)

∥∥
≤

3∑
j=1

∥∥A(j) − B(j)
∥∥ ∏

k �=j

‖B(k)‖(A22)

+
3∑

j=1

∥∥B(j)
∥∥ ∏

k �=j

∥∥A(k) − B(k)
∥∥ +

3∏
j=1

∥∥A(j) − B(j)
∥∥.

Take A(1) = [A(3)]T = I −Ãk , B(1) = [B(3)]T = I −Ak , A(2) = D̃−1
k , B(2) = D−1

k

in (A22) and (A19) follows from Lemma A.2. For (A20), we need only note that
for any matrix M ,

‖MMT − Bk(M)Bk(M
T )‖

≤ 2‖M‖‖Bk(M) − M‖ + ‖Bk(M) − M‖2

and (A20) and the theorem follows from our definition of U−1. �

LEMMA A.4. Suppose � = [ρ(j − i)] is a Toeplitz covariance matrix; ρ(k) =
ρ(−k) for all k, � ∈ L(ε0,m,C). Then, if f is the spectral density of �:

(i) �−1 = [ρ̃(j − i)], ρ̃(k) = ρ̃(−k),
(ii) �−1 has spectral density 1

f
,

(iii) �−1 ∈ L(ε0,m,C′(m, ε0,C)).

PROOF. That ‖( 1
f
)(m)‖∞ ≤ C′(m, ε0,C) and ε0 ≤ ‖ 1

f
‖∞ ≤ ε−1

0 is immediate.

The claims (i) and (ii) follow from the identity, 1
f

= ∑∞
k=−∞ ρ̃(k)e2πiku in the L2

sense and

1 =
∞∑

k=−∞
δ0ke

2πiku = f (u)
1

f
(u).

�

PROOF OF COROLLARY 2. Note that � ∈ L(ε0,m,C0) implies that

f
−1/2
� (u) = a0 +

∞∑
j=1

ak cos(2πju)(A23)

is itself m times differentiable and∥∥(f −1/2
� )(m)

∥∥∞ ≤ C′(C0, ε0).(A24)
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But then,

f�−1(u) = b0 +
∞∑

j=1

bj cos 2πju

(A25)

=
(
a0 +

∞∑
j=1

aj cos 2πju

)2

,

where bi = ∑i
j=0 ajai−j . All formal operations are justified since

∑∞
j=0 |aj | < ∞

follows from Zygmund [35], page 138. But (A25) can be reinterpreted in view of
Lemma A.4 as �−1 = AAT where A = [ai−j 1(i ≥ j)] and aj are real and given
by (A25). Then, if Ak ≡ Bk(A), Bk(A)BT

k (A) has spectral density,

f
�−1

k,p
(u) =

(
k∑

j=0

aj cos 2πju

)2

.(A26)

Moreover, from (A25) and (A26)

‖f
�−1

k,p
− f

�−1
p

‖∞

≤
∥∥∥∥∥

∞∑
j=k+1

aj cos 2πju

∥∥∥∥∥∞

(
‖f −1/2

�p
‖∞ +

∥∥∥∥∥
∞∑

j=k+1

aj cos 2πju

∥∥∥∥∥∞

)
.

By (A24) |aj | ≤ C′j−m, hence finally,

‖�−1
k,p − �−1

p ‖ = ‖f
�−1

k,p
− f�−1‖∞ ≤ Ck−(m−1).(A27)

Corollary 2 now follows from (A27) and (A9) and (A10) by minimizing

C1
k3 log1/2(pk)

n1/2 + C2k
−(m−1). �

PROOF OF THEOREM 5. We employ a famous formula of Kato [23] and Sz.-
Nagy [31]. If R(λ,M) ≡ (M − λJ )−1 for λ ∈ Sc, the resolvent set of M and λ0
is an isolated eigenvalue, |λ − λ0| ≥ 
 for all λ ∈ S, λ �= λ0, then (formula (1.16),
page 67, Kato [24])

E0(x) = 1

2πi

∫
�

R(λ,M)dλ,(A28)

where E0 is the projection operator on the eigenspace corresponding to λ0 and
� is a closed simple contour in the complex plane about λ0 containing no other
member of S. The formula is valid not just for symmetric M but we only employ
it there. We argue by induction on m. For m = 1, |λ1(M) − λ1(N)| ≤ ‖M − N‖
for M , N symmetric by the Courant–Fischer theorem. Thus, if ‖�̂k,p − �p‖ ≤ 


2
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(say), we can find � containing λ1(�̂k,p) and λ1(�p) and no other eigenvalues of
either matrix with all points on � at distance at least 
/4 from both λ1(�̂k,p) and
λ1(�p). Applying (A28) we conclude that

‖Ê1 − E1‖ ≤ max
�

{‖R(λ,�p)‖‖R(λ, �̂k,p)‖}‖�̂k,p − �‖.
But, ‖R(λ,�p)‖ ≤ {maxj |λ − λj (�p)|}−1 ≤ 2/
 by hypothesis, and similarly
for ‖R(λ, �̂k,p)‖. Therefore,

‖Ê1 − E1‖ ≤ 16
−2‖�̂k,p − �‖,(A29)

and the claims (19) and (20) are established for m = 1. We describe the induc-
tion step from m = 1 to m = 2 which is repeated with slightly more cumbersome
notation for all m (omitted). Consider a unit vector,

x =
p∑

j=2

Ejx ⊥ E1x = (Ê1 − E1)x + (J − Ê1)x.(A30)

Then, ∣∣(x, �̂k,px) − (
(J − Ê1)�̂k,p(J − Ê1)x, x

)∣∣
(A31)

≤ ‖�̂k,p‖(
2‖Ê1 − E1‖ + ‖Ê1 − E1‖2)

.

Therefore,

λ2(�̂k,p) = max
{(

x, (J − Ê1)�̂k,p(J − Ê1)x
)

: |x| = 1
}

≤ O(‖Ê1 − E1‖) + λ2(�p).

Inverting the roles of �̂k,p and �p , we obtain

|λ2(�̂k,p) − λ2(�p)| = OP (‖�̂k,p − �p‖).
Now repeating the argument we gave for (A29), we obtain

‖Ê2 − E2‖ = OP (‖�̂k,p − �p‖).(A32)

The theorem follows from the induction and Theorem 1. �

Note that if we track the effect of 
 and m, we in fact have

‖Êj − Ej‖ = OP (j
−2‖�̂k,p − �p‖), 1 ≤ j ≤ m.

Also note that the dimension of
∑m

j=1 Ej is immaterial.
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