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Abstract

This note compares some current theoretical mathematical work on
spatial networks with data on inter-city road networks within States.
In designing a network, a natural constraint is the total length, and
a natural objective is to want the route length `(i, j) between typical
cities i, j to be not much longer than straight line distance d(i, j).
Write r(i, j) = `(i,j)

d(i,j) − 1 for the relative excess route-length. With an
n-city network there are

(
n
2

)
such numbers r(i, j). A recent theoretical

insight is that, from a mathematical viewpoint, a good way to combine
these into a single “route-length efficiency” statistic R∗ is to define R∗

as the maximum over d of the average of r(i, j) over city-pairs with
d(i, j) ≈ d. The optimal tradeoff between total network length and R∗

is discussed elsewhere in a theoretical model of randomly-placed cities.
What about real networks? For each of 10 U.S. States we studied the
road network linking the 20 largest cities. In this note we present the
data and discuss the relationship between data and the predictions
from theory.
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1 Introduction, theory and data

Quantitative aspects of road networks have been studied from many differ-
ent viewpoints – see [6] for a brief recent review and section 2.4 for previous
work most closely related to ours. This note is a facet of an ongoing math-
ematical project with somewhat different focus (see [1] for an overview) to
which we would like to draw the attention of those interested in mathemati-
cal aspects of transportation research. If a goal of a transportation network
linking cities is to provide short routes, with a constraint on the total length
of the network, then one can compare a real network on given cities with
a hypothetical optimal network of the same total length, choosing the hy-
pothetical network to optimize some statistic R measuring how efficient a
network is in providing short routes. For reasons discussed in [1] we use
the following non-obvious statistic, specified more carefully in section 2.3
below. For cities i, j write `(i, j) for route-length and d(i, j) for straight line
distance between i and j. Then write r(i, j) = `(i,j)

d(i,j) − 1 for the relative
excess route-length. Now define a function

ρ(d) = average of r(i, j) over city-pairs with d(i, j) ≈ d (1)

and finally define
R∗ = max

d
ρ(d). (2)

The mathematical theory [1] assumes a model in which cities are at ran-
dom positions and follows a methodology based on taking limits as the num-
ber n of cities tends to infinity; within that framework it studies the optimal
relationship between R∗ and a normalized total network length statistic L
(normalizations are described in section 2.1). Of course neither “random
positions of cities” not “number of cities → ∞” seems very realistic. Can
there be any connection between this theory and real networks?

For each of 10 U.S. States we studied the road network linking the 20
largest cities. Figure 1 shows the scatter diagrams of all values of r(i, j) and
normalized distance d(i, j) for 4 of the States (the entire set of 10 diagrams
and complete underlying data is available1), together with estimates of the
curve ρ(d), with and without population-weighting (see section 2.3). Here
are two aspects of the data that can be compared with theoretical predictions
for optimal networks.

1http://www.stat.berkeley.edu/users/aldous/Spatial/
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Qualitative features of the curve ρ(d). Nearby cities are more likely
than distant cities to have a direct road link, so one might naively suppose
that ρ(d) would increase smoothly with d. But in fact theory predicts (see
Figure 2 and its legend) that ρ should increase rapidly to a maximum at
normalized distance 2 - 3, then very slowly decrease as d increases further.
Our data is not extensive enough to indicate small d behavior, but it does
show that ρ is roughly constant over 1 ≤ d ≤ 5, consistent with the part of
the theoretical prediction that ρ should be almost constant over 2 ≤ d ≤ 5.

Tradeoff between R∗ and normalized network length L. There is a
theoretical prediction for the tradeoff between R∗ and normalized network
length L in near-optimal networks, shown in Figure 3, where it is compared
with the values of the pair (L,R∗) of statistics for each of the 10 States
data. At first sight there seems almost no relation between theory and this
raw data. However there is an issue not yet addressed. Theory envisages
cities positioned uniformly randomly in a State of area A, and the value of
A enters into the normalization. The left outliers in Figure 3 are Michigan
and California, in which the 20 largest cities are concentrated in relatively
small-area regions of the State. In comparing data with theory it would be
better to replace the full area A (in normalization formula (3)) by a smaller
area A′ representing the “effective area” in which the largest cities lie. This
would have the effect of increasing the normalized network length L. But
any way of actually implementing this replacement seems rather arbitrary,
so we have not done so.

1.1 Conclusions.

One can only draw tentative conclusions from such a small set of data, and
indeed our main goal is to encourage professionals with better experience of
GIS databases to examine larger data-sets from this viewpoint, for instance
for the road networks of large European countries and the rail networks of
India and China.

The conceptual point of the underlying theory was to try to quantify
the obvious qualitative “law of diminishing returns”, that to improve route-
length efficiency beyond a certain point requires a substantial increase in
total network length. The theoretical results in Figure 3 suggest values
of around 2 for normalized length and around 0.25 for R∗ as a reasonable
trade-off. We boldly conjecture than for real-world networks in which short
route-lengths are a major desideratum, and that are perceived as efficient in
actually having short routes, their summary statistics (L,R∗) will typically
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be near those values, after some correction for the “effective area” issue
above.
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Figure 1. Scatter diagrams of normalized distance and relative excess route-
length for city-pairs, together with estimates of the nonlinear regression function
ρ(d) as predictor for r(i, j) given d(i, j) = d.

6



1 2 3
Normalized distance d

4 5

0.1

0.2

ρ(d)

0.3

0.4

r r r r r r r r r r r r r r r r r r r r r r r r r Gabriel

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b b Relative n’hood

b b b b b b b b b b b b b b b b b b b b b b b b b Delaunay

Figure 2. The function ρ(d) for three theoretical networks on random cities
(copied from Figure 6 of [1]). Irregularities are Monte Carlo random variation.
The numerical values differ because the total network lengths differ; but for every
reasonable-looking theoretical network we have studied, the curve ρ(d) shows the
same characteristic shape, increasing rapidly to a maximum at normalized distance
2 - 3, then very slowly decreasing.
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Figure 3. Tradeoff, for different networks, between the normalized network
length L and the route length efficiency statistic R∗. The ◦ show the beta-skeleton
family [3], a theoretical family believed to be near-optimal for uniform random
points (this part copied from Figure 7 of [1]). The • show the values for our data
on the road network on 20 cities in each of 10 States.
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2 Some technical details

2.1 Normalizations

To compare networks with different numbers n of cities and in spatial regions
of different areas A, it is convenient to normalize by setting

standard unit of length =
√
A/n (3)

so that the density of cities is 1 per unit area. Then, measuring distances
in standard units, we can define

L := n−1 × (total length of network)

as normalized network length per city, and we regard L as the “normalized
cost” of the network.

2.2 Data collection

The States studied were CA, TX, NY, FL, IL, PA, OH, MI, GA, NC. Data
on inter-city distances, route-lengths, city populations and States areas is
readily accessible (we used Google Earth). To find the total network length
is harder – we need the total length of the subnetwork of the State road
network that is used in the shortest route between some two of the largest 20
cities – and we could not completely automate this process, instead needing
to manually derive and examine the subnetwork. This is the practical reason
we were unable to analyze larger networks.

2.3 Estimating the curve ρ(d) from data

Conceptually, ρ(d) is a nonlinear regression predictor for r(i, j) given d(i, j) =
d. One could derive it from data using whatever algorithm is built into one’s
statistical package; instead we did the more naive procedure of averaging
over city-pairs whose distance apart (in standard units) was the same when
rounded to the closest integer. This gives averages ρ̃(1), ρ̃(2), . . . plotted in
Figure 1, and the reported value of R∗ was the maximum over 1 ≤ d ≤ 5
(because there were very few city-pairs at larger distance).

Such unweighted averaging does not take city populations into account.
Intuitively we expect that larger cities are more likely to have direct road
links, so we also calculated weighted averages, where each city-pair was
weighted by the product of population sizes. Confirming intuition, the Fig-
ure 1 data shows the weighted version of ρ to typically be slightly smaller
than the unweighted version.
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Trying to estimate ρ(d) from data for small d (say, d < 1/2) isn’t very
sensible for obvious reasons; a city is not really a single point, and (repre-
senting a city by some arbitrary central point) freeways are typically not
designed to run through city centers, so the model isn’t realistic on such a
small scale.

2.4 Related work

Spatial networks arise in many different disciplines, and the idea of compar-
ing route length and straight line length also arises naturally. Road networks
in different countries were studied in [2] who calculated (in our notation)
the average of r(i, j) over all pairs, finding a wide variation between coun-
tries (from 0.12 to 1.1) and in particular obtaining 0.2 for the network on
299 U.S. cities. Theoretical work in computer science studies the maximum
value of r(i, j) over all pairs, under the name stretch [5]. The only occurence
we know of a curve analogous to ρ(d) is in [4] Figure 3, in the context of
home-work commutes in an intra-metropolitan network. There ρ decreases
sharply, from 0.42 in the 5-10 km range to 0.2 in the 45-50 km range. How-
ever there are so many real-world factors here – house-building along roads
with good access to city center – that one expects such networks to be statis-
tically quite different from inter-city networks, for which we advocate using
R as summary statistic.
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