
Notes on project in progress. All the simulatioms are by Weijian Han.

Waves in a spatial queue and Brownian scaling

Long queues of people. In classical models of queues, randomness enters
via assumed randomness of arrival and service times. (xxx cite) We consider
a setting where randomness enters in a conceptually quite different way.
Imagine joining the end of a long line – at airport security, or for the first
showing of a popular movie. The people at the front are being served in a
regular way. What if you’re the 100th person in line? If people were robots,
each time one person departed, everyone might move forwards exactly the
same distance, so the times between your successive moves would be the
times between the departures. But in our everyday experience, what actually
happens is that you move forwards less frequently but by a larger distance
than the inter-person distance. In other words, each departure creates a
“wave” of movement of the people near the front of the queue, but often
this wave dies out before reaching the end of the line. There is a rather
obvious qualitative explanation. Humans have a “comfort zone” – we want
to stand neither too close to, nor too far behind, the person in front of us;
so when that person moves, we move only if we need to move in order to
remain in that comfort zone.

Figure 1 shows a schematic. People are lined up left-to-right at time 0.
At time 1 the head person in stage 0 has been served, the next person has
moved to the front of the line, the next two people have moved forward but
the other people have not moved. At time 2 the next person has moved to
the front, the next seven people have moved forward, but the eighth has not
moved.

time 0

time 1

time 2

Figure 1. Schematic for a waiting line, with the person being served at
the left end. The • indicates the center of a person.

We will study a simple stochastic model for this phenomenon, seeking to
understand quantitative behavior of the model. Curiously, we do not know
previous work on this natural-looking model.
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The queue model. There is a single parameter c > 1. In words, the de-
scription is very simple. The “comfort zone” is the interval [1, c] of distance.
To the qualitative description earlier we add the rule

For sucessive people (i − 1, i), if i − 1 moves to a position at
distance more than c ahead of i, then i moves forward, to the
position at a distance ξ behind i− 1, where ξ is uniform random
on [1, c].

To say this more formally, at each discrete time t = 0, 1, 2, . . . there are
people at an infinite set of positions 0 = Xt(0) < Xt(1) < Xt(2) < . . . on
the real half-line, these positions satisfying

1 ≤ Xt(i)−Xt(i− 1) ≤ c for each t ≥ 0 and each i ≥ 1.

Given Xt = (Xt(0), Xt(1), . . .), take ξt(1), ξt(2), . . . independent uniform on
[1, c] and construct Xt+1 by

Xt+1(0) = 0
if Xt(2) ≤ c then set Xt+1(i) = Xt(i + 1), i ≥ 1 and the construction is

finished; otherwise set Xt+1(1) = ξt(1) and continue as follows;
if Xt(3) −Xt+1(1) ≤ c then set Xt+1(i) = Xt(i + 1), i ≥ 2 and the con-

struction is finished; otherwise set Xt+1(2) = Xt+1(1) + ξt(2) and continue;
. . . . . . . . .

Note that in this notation, i is the current rank of a person; so the successive
positions of a particular individual are Xt(i), Xt+1(i − 1), Xt+2(i − 2), . . ..
Note also that the case where the comfort zone is [c1, c2] can be reduced to
our case [1, c] by scaling.

Remarks on the model. The actual phenomenon we will study – the
“waves” of motion – is unaffected by adding more realistic structure such as
random service times, or non-instantaneous moves of the people in line; our
results just depend on the model for where people stand relative to the per-
son in front. That is clear a priori. Even more emerges (at last intuitively)
from the asymptotic analysis: we don’t require the same “comfort zone”
distribution for each person, just that for a given person their successive
moves involve IID distances ξ.

A too-simple heuristic. We start with a simple heuristic for visualizing
a limit process; this turns out to be only partly correct but points the way
to the correct picture.
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Consider a spatial interval of fixed length, say [x ± 10], as x becomes
large. Suppose that when a wave reaches this region, the individuals move
forward by more than 20 units. Then after the move the position of new
people in this interval will be approximately a realization of the stationary
renewal process associated with ξ, independent of the pre-wave configura-
tion. Because this configuration is unchanged until the next wave arrives,
we see the approximation

over the interval [x ± 10] for large x, a wave replaces one re-
alization of the stationary renewal process by an independent
realization.

Consider the person nearest to the right of x before a wave. In the wave he
moves some distance D. The positions, relative to this same person, of the
j’th successive people, before and after the wave, will be independent partial
sum processes (Sj =

∑j
i=1 ξi, j ≥ 0) and (S′j =

∑j
i=1 ξ

′
i, j ≥ 0). The wave

will continue to move some number J of people, where J is approximately
the first j such that Sj − S′j = −D. So in terms of the mean-zero random

walk (S̃j =
∑j

i=1(ξi− ξ′i, j ≥ 0), J is approximately the first hitting time on
−D. This is essentailly saying that the way that waves overshoot position x
is the same as the way that positive excursions of the mean-zero random walk
overshoot x, and suggests the following picture for the x→∞ asymptotics:

(i) Waves reach x with probability proportional to x−1/2

(ii) The distance moved in such a wave by a person near x has Rayleigh
distribution with mean proportional to x1/2

(iiii) Successive waves reach x at the times of a Poisson process of rate
proportional to x−1/2, and the distances moved are i.i.d.

(Here the Rayleigh distribution arises at the terminal state of Brownian
meander).

Simulations. In these we set c = 3.0, maintained a line of 10,000 people,
and ran for 10,000 steps.

Figure 1 shows the number of waves involving more than i people. This
appears to follow a power law i−γ with γ ≈ 0.56, reasonably consistent
with (i). Figure 2 shows, for the 5000’th person, the proportion of times
G(x) that a move distance is > x. Consistent with (ii), this is a close fit to
(smooth curve) the Rayleigh distribution exp(−ax2) for the best-fit value of
a.
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Figure 1. log-log plot of relative number of waves involving more than i
people.

Figure 2. Complementary distribution function of move distances.

Next we considered inter-move times (the time between successive waves
reaching the 5,000’th person). Figure 3 (left) shows H(y) = proportion of
inter-move times > y, and Figure 3 (right) is a scatter diagram showing
sucessive inter-move times. The former fits not the exponential distribution
predicted by (iii) but a Rayleigh distribution, and the second has correlation
= −0.2 rather than the predicted 0.

Figure 3. Inter-move times: complementary distribution function and se-
rial correlation.
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The correct picture? Figure 3 indicates that our previous guess (i)-(iii)
for asymptotic behavior was over-simplistic. Here is what we believe is the
correct asymptotic picture.

As a preliminary, consider the σ-finite Ito measure Ψ on positive Brow-
nian excursions, but extend such excursions to functions ζ(x), 0 ≤ x < ∞
by continuing as Brownian motion. Consider a deterministic continuous
function h(x) with h(0) = 0. Given ζ(·) define

τ(ζ, h) = inf{x > 0 : ζ(x) ≤ h(x)}

If τ(ζ, h) > 0 write [ζ;h] for the function obtained from h by replacing h(·)
by ζ(·) over the interval 0 ≤ x ≤ τ(ζ, h).

Note that the property

Ψ{ζ : τ(ζ, h) > δ} <∞ ∀δ > 0

may or may not hold, depending on the behavior of h(x) as x → 0. Let H
be the set of “good” h for which this property holds.

We seek to define a process whose state space is C0[0,∞), the space of
continuous functions h : [0,∞) → R with h(0) = 0. Write this process as
H(t, x), so x→ H(t, x) is the state at time t. Here is the informal description
of the process dynamics, which involve two mechanisms.

Associated with Ψ is the space-time Poisson process of (extended) Brow-
nian excursions – paths ζ appear at random times. When ζ appears at t, if
τ(ζ,H(t, ·)) > 0 then replace H(t, ·) by [ζ,H(t, ·)].

Secondly, there is a determinstic drift downwards at rate 1:

d
dtH(t, x) = −1

Call this process the continuous model. Of course, from a rigorous
viewpoint it is not obvious that such a process exists. But some heuristic
self-consistency arguments make it plausible that there is a time-invariant
distribution (H∗(x), 0 ≤ x <∞) which is (space-)invariant under Brownian
scaling. Qualitatively, Brownian scaling suggests that the intensity measure
ν for the lengths τ of the replacement segments will be ν{τ > x} ∝ x−1/2.
Consider the process t → H(t, x) for fixed x. It decreases at rate 1 until a
segment with τ > t appears, and because the appearance rate is order x−1/2

we expect the values of H(t, x) to stay in the range [0±O(x1/2)].
To relate this continuous model to the queue model, let N(s, y) be the

number of people in interval [0, y] at time s, in the queue model. Fix a large
distance L and set

HL(t, x) =
N(L1/2t, xL)− xL/µ

L1/2
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where µ = (1 + c)/2 is the mean of ξ. (xxx scale involves s.d. too). The
motivation for considering the continuous process H is as the presumed
L→∞ limit of this process HL.

The project. So for a rigorous treatment we would like:

• For the queue model, can we prove directly (e.g. via the natural cou-
pling) that it converges in distribution to a unique stationary distri-
bution?

• For the continuous model, give a rigorous construction, and prove it
has a stationary distribution (H∗(x), 0 ≤ x <∞).

• Prove the stationary distribution is (space-)invariant under Brownian
scaling.

• Any explicit formulas for aspects of the continuous model?

• Prove weak convergence of the queue model (represented as HL) to
the continuous model H under approporiate initial conditions.

Bottom line conclusions. The actual bottom line, regarding the queue
model, should be the Brownian scaling properties.

– the chance that the wave reaches at least as far as the m’th person in
line scales as m−1/2, or equivalently that for the m’th person the frequency
of moves scales as m−1/2 and the typical distance moved forward (when the
person does move) scales as m1/2.

More simulations. The figure shows (left) a realization of

N(t) = number of people in [0, 10, 000]

where c = 3, so µ = 2. Of course N9t) usually just decreases by 1 each step,
but when a wave hits it will jump up. The right figure shows

H(i) = proportion of times t over 0 ≤ t ≤ 10, 000 that N(t) ≥ i.
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Figure 4. xxx
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