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Introduction 
In this paper, we will be testing whether the frequency of family names from the 2000 Census 
follow a power law distribution.  Power law distributions are usually used to model data whose 
frequency of an event varies as a power of some attribute of that event.  In our case, we will see 
if the frequency of family names vary as a power of the family names itself.  In other words, we 
will see if there are a few family names that are very common and if there are many family 
names that are not as common.  We will extract 1000 family names from this website: 
http://www.census.gov/genealogy/www/data/2000surnames/index.html, upload the data in R, 
and analyze the counts for each family name.  Clearly the family names are ranked according to 
frequency, from largest to smallest, which can make it easier for us to follow what we are 
analyzing.  Our procedure for analyzing the data will follow the procedure in the paper: POWER-
LAW DISTRIBUTIONS IN EMPIRICAL DATA, while using R code to implement them. 
 
Observing the data: 

 
 
Based on the histogram and plot of the family surnames, it seems that the shape of the curve and 
histogram follows some kind of power law distribution.  However, the power law does not seem 
like the only distribution that can fit the data of family names, and we will test other possible 
distributions later in the paper. 
 

Estimating  Parameters 



 
The first step we need to do is to estimate the two important parameters alpha and xmin.  The 
trickiest part of this is estimating xmin.  The procedure we used involves using the Kolmogorov-
Smirnoff(KS) statistic, page 11 of the paper, in which we would find the xmin that minimizes the 
value of the KS statistic.   
 
To find the best possible xmin value, we run through our data set to and use each data as our xmin, 
truncate our data to include every data above and including our chosen xmin, use these data to 
compute empirical cdf and the theoretical cdf P(x) = (x/xmin)^(-α+1), where x is our data, and 
take the maximum of the absolute value of the difference between each theoretical and empirical 
cdf value, which is the KS statistic.  Note that the cdf of the power law given in the paper is a 
complementary cdf, since P(x) was computed by integrating the pdf of the power law from x to 
infinity.  Thus, we would need to compare the power law cdf to the vector (1,(n-1)/n,...,2/n,1/n), 
which is the empirical cdf.   We do this for each data point and compile the KS statistics into one 
vector.  Afterwards, we then pick the minimum of the KS statistics, find the corresponding xmin 
value, and designate this to be our parameter xmin.   
 
Finding the parameter α is not as tricky, since we have our xmin and we would just use the MLE 
estimate to compute a plausible value for α.  After performing these necessary steps, we estimate 
our parameters to be xmin=117939 and α = 2.542679. 
 

Goodness of Fit 
To test how well our power law distribution fits our observed data, we will perform the 
Kolmogorov Smirnoff (KS) test to see if the generated data from the power law distribution with 
our chosen parameters and the observed data come from the same distributions.  We do this by 
following the paper's procedure, which involves generating a large number of synthetic data sets 
of the power law distribution with our chosen parameters xmin=117939 and α = 2.542679.  We 
then compare each of these data sets to our observed data and see if these two data sets come 
from a similar distribution by performing the KS test for the observed data and generated data.  
To determine when we would reject or fail to reject for each KS test, we will use the significance 
level of 0.10, which means if the p value is greater than .10, we fail to reject the null and 
conclude that both data sets come from the same distribution, whereas if the p-value is less than 
or equal to 0.10, we reject the null and conclude that the data sets do not come from a power law 
distribution.  Since we chose the our significance level to be about 0.10, we would expected 
about 10% or less of the tests to reject the null hypothesis.  If this is the case, then our power law 
distribution with our chosen parameters is a good fit. 
 
Now we just need to choose how many KS tests to perform.  We would want our p-values to be 
correct within two decimal points, since we want to compare our p-value to our chosen 
significance level 0.10.  Thus, we would follow the suggestion of the paper and perform 2500 
KS tests to determine whether the observed data  and the synthetic data sets generated from a 
power law random generator with our chosen parameters are from the same distribution.  This 
will help us determine whether the power law distribution with our chosen parameters is a good 
fit to the data on number of family names.  
 



After performing 2500 tests, 2483 of the tests failed to reject the null hypothesis, meaning that 
less than 10% of the tests rejected the null.  This means that our power law distribution fit is a 
good fit to the data of family names. 
 
 

 
One of the curves of the above plot includes the observed data of the family names and a data set 
of randomly generated power law distribution with the parameters xmin=117939 and α = 
2.542679.  This graph is an example of how a randomly generated data of power law distribution 
is very closely related to the observed data of family names, which suggests that the family 
names do follow the power law distribution very closely. 
 

Alternative Distributions 
Just because we came to the conclusion that the power law distribution is a good fit to the data of 
family names, it does not mean that the power law is the best fit.  There can be other 
distributions that can be just as good or even a better fit.  Other possible distributions that can 
potentially be a good fit to our data are the exponential and log-normal distributions.  Thus, we 
need to fit an exponential and log-normal distribution to our data and perform a goodness of fit 
test to see if these fits are any good.  We picked these two distributions to test because they seem 
to be the next closes distributions that could fit our data.  The procedures for fitting exponential 
and log normal distributions and testing their goodness of fit will be similar to the procedures for 
the power law distribution.  To ensure that either or both of these distributions are a good fit or 
not, we will fit each of these distributions with and without xmin values.  If either the exponential 
and log-normal distributions is a good fit to our data, then this means that the power law is not 



necessarily the best fit for the data.  If both the exponential and log-normal distributions are not 
good fits, then the power law is a decent fit to the model. 
  
i) Exponential w/ xmin: 
 
Estimated Parameters: 
> xmin 
[1] 276400 
 
Note, when calculating the KS statistic, we compared the cdf of the exponential with the vector 
(1/n,2/n,...,(n-1)/n,1), since the cdf of the exponential here is the integration of the pdf from 
negative infinity to x, unlike the cdf of the power law.  This same method will be used for the log 
normal distribution with xmin. 
 
> lambda 
[1] 3.088112e-06 
 
After performing 2500 KS tests, none of the KS test fails to reject the null, which means the 
exponential data sets and the family name data sets do not come from the same distribution.  This 
implies that number of family names do not follow an exponential distribution. 
 
ii) Exponential w/out xmin: 
 
Estimated Parameter: 
> lambda2 
[1] 9.137274e-06 
 
Similarly, none of the KS test fails to reject the null, further proving that the number of family 
names do not follow an exponential distribution. 
 
Thus, the exponential distribution is not a good fit to the data of family names. 
 
iii) Log Normal w/ xmin: 
 
Estimated Parameters: 
> mu 
[1] 13.01822 
> sigmasq 
[1] 0.2733221 
 
After performing the KS tests, none of the tests fail to reject the null hypothesis, which means 
the number of family names do not follow the log-normal distribution. 
 
iv) Log Normal w/out xmin: 
 
Estimated Parameters: 



> mu2 
[1] 11.21085 
> sigmasq2 
[1] 0.5531002 
 
None of the KS tests fail to reject the null, further proving that the data on family names do not 
follow the log-normal distribution. 
 
Thus, the log-normal distribution do not fit the data on family names. 
 

Conclusion 
Overall, we have ruled out the possibility that the closest distributions, the exponential and log-
normal distributions, can be a good fit to the data of family names.  This means that the 
likelihood ratio test is not necessary, since based on our tests, the power law is a good fit, while 
the exponential and log-normal distributions are not.  Therefore, we can conclude that the power 
law distribution is a good fit to the data of family names from the 2000 Census. 
 

Other Data: 
Other data sets were obtained and analyzed using the same methods as described above.  For 
each data set, the plot and histogram of the data set are shown, the estimated parameters are 
stated for the distribution being analyzed, and what the tests results say regarding whether the 
distribution is a good fit or not.   
 
POPULATION CHANGE OF CITIES WITH 50K POPULATION OR MORE  

 
POWER LAW: 
 
The parameters calculated for the power law distribution were xmin = 28167 and α = 2.764328.  
The test results were that 2451 out of 2500 KS tests failed to reject the null hypothesis that the 
data were from different distributions.  Since 2451/2500 is clearly greater than 90%, this means 
the power law distribution could be a good fit. 
 
EXPONENTIAL w/ xmin: 



The parameters calculated are xmin = 9343 and lambda = 3.964158e-05.  None of the ks tests 
failed to reject the null, which means the exponential distribution with the xmin parameter were a 
good fit 
 
EXPONENTIAL: 
The parameter calculated to fit an exponential distribution is lambda = 5.673477e-05.  Similar to 
the exponential with xmin, all of the KS test rejected the null hypothesis that the data and 
generated data from the exponential distribution came from the same distribution. 
 
LOG NORMAL W/ Xmin: 
The parameters calculated were µ = .999135 and σ2 = 1.754466.  1781 out of 2500 KS tests 
failed to reject the null, which is only 71.24 percent of the tests that failed to reject, meaning 
more than 10% rejected the null.  This implies that the log normal with the xmin parameter is not 
a good fit to the data. 
 
LOG NORMAL W/out xmin: 
The parameters calculated are µ = 8.852362 and σ2 = 2.303018.  About 1935 out of 2500 tests 
failed to reject the null, which is 77.4 percent of the tests failed to reject, meaning more than 10 
percent of the tests failed to reject.  Thus, the log normal distribution without the xmin parameter 
is not a good fit. 
 
Overall, since the exponential and log-normal distributions, with or without the xmin parameter, 
were not good fits to the data set and only the power law fit, this means the power law 
distribution is a good fit to this data set. 
 
DATA ON INCOME OF HOUSEHOLDS 

 
POWER LAW: 
The parameters calculated are α = 6.041705 and xmin = 4933.  About 2481 out of 2500 KS tests 
failed to reject the null, which suggests that the power law distribution may be a good fit. 
 
EXPONENTIAL W/ XMIN: 
The parameters calculated are λ = 0.0003855868 and xmin = 358.  About 2220 out of 2500 KS 
tests failed to reject the null, which is about 88.8 % of the tests, which means the exponential 
distribution with xmin is not a good enough fit. 



 
EXPONENTIAL 
The parameter calculated is λ = 0.0003538839.  About 2475 out of 2500 KS tests, that is about 
99% of the tests, failed to reject the null, which suggests an exponential distribution is a good fit. 
 
LOGNORMAL w/ XMIN 
The parameters calculated are xmin = 1236, µ = 8.107043, σ2 = 0.2988621.  About 34 out of 
2500 KS tests reject the null, which means the log normal distribution with the xmin parameter is 
not a good fit. 
 
LOGNORMAL w/out XMIN 
The calculated parameters are µ = 7.565269 and σ2 = 0.9121128.  About 2461 out of 2500 
tests(about 98.44%) failed to reject the null, which suggests that the log normal distribution is a 
good fit to the data. 
 
 
Overall, it seems that the power law distribution, exponential, and log normal distributions are 
good fits to the data, despite not seeming so when observing the graphs alone.  This means that 
the power law distribution is not necessary a good fit as there are other distributions that could be 
a better fit to the data. 
 
DATA ON POP CHANGE IN US COUNTIES: 

 
POWER LAW: 
The parameters calculated are α = 2.378352 and xmin = 34262.  About 2440 out of 2500 KS 
tests ( about 97.6% of the tests) fail to reject the null, which means the power law distribution 
may be a good fit. 
 
EXPONENTIAL W/ XMIN: 
The calculated parameters are λ = 8.367428e-06 and xmin = 107311.  None of the ks tests fail to 
reject the null, which means the exponential with xmin does not fit the data. 
 
EXPONENTIAL REGULAR: 
The parameter calculated is λ = 0.0001020548.  None of the KS tests fail to reject the null, which 
means the exponential distribution is not a good fit either. 
 
LOGNORMAL W/ XMIN 



The parameters are µ = 7.289496 and σ2
 = 3.723756, and xmin = 1.  About 51 of the 2500 KS 

tests fail to reject the null, which is clearly less than 10%, which means the log normal 
distribution with the xmin parameter does not fit the data. 
 
LOGNORMAL REGULAR: 
The parameters are µ = 7.289496 and σ2 = 3.723756.  In this case, 46 out of 2500 tests fail to 
reject the null, which means the log normal distribution without the xmin parameter is not a good 
fit either.  Note that the parameters µ and σ2 for the log normal distribution without the xmin 
parameter are the same as that of the log normal distribution with the xmin parameter. This is 
because the xmin parameter calculated is 1, which means the entire data set were used to fit a 
power law distribution.  Thus, both log normal distributions did lead to the same results. 
 
Overall, since the power law distribution is the only distribution that fits the data, the power law 
must be a good fit to the data of population change in US counties. 
 
DATA ON POPULATION CHANGE FOR METRO AREAS IN US: 

 
POWER LAW: 
The calculated parameters are α = 2.055709 and xmin = 61216.  About 2417 of the 2500 KS tests 
(96.68% of the tests) fail to reject the null, which suggests the power law distribution to be a 
good fit to the data. 
 
EXPONENTIAL W/ XMIN: 
The calculated parameters are λ = 3.457706e-06 and xmin = 161058.  About 119 of the 2500 KS 
tests failed to reject the null, which means the exponential distribution with xmin does not fit the 
data well. 
 
REGULAR EXPONENTIAL: 
The calculated parameter is λ = 1.377229e-05.  None of the KS tests fail to reject, which implies 
that the exponential distribution is not a good fit. 
 
LOG NORMAL TEST W/ Xmin: 
The calculated parameters are µ = 10.05736, σ2

 = 2.293322, and xmin = 218.  About 2411 out of 
2500 (96.44%) of the KS tests fail to reject the null, which means the log normal distribution 
with xmin may be a good fit to the data. 
 
LOG NORMAL REGULAR: 



The parameters are µ = 10.05736 and σ2 = 2.293322.  About 2407 out of 2500 (96.28%) of the 
KS tests fail to reject the null, which suggests that the log normal distribution without the xmin 
parameter is a good fit to the data. 
 
Overall, we have that the power law distribution and the log normal distributions, with or 
without the xmin parameter, are good fits to the data.  This means the power law distribution is 
not necessarily the best fit to the model, as there can be other models that is a good fit. 
 
DATA ON POPULATION CHANGE IN MICROPOLITAN AREAS IN PUERTO RICO: 

 
POWER LAW  
The calculated parameters are α = 2.879117 and xmin = 6356.  About 2439 out of 2500 (97.56%) 
of the tests fail to reject the null, which means the power law distribution may be a good fit. 
 
EXPONENTIAL W/ XMIN: 
The parameters are λ = 0.0001659792 and xmin = 4036.  None of the tests fail to reject the null, 
which means the exponential with xmin is not a good fit to the data. 
 
EXPONENTIAL REGULAR: 
The parameter calculated is λ = 0.000256736.  About 44 out of 2500 KS tests fail to reject the 
null, which means the exponential distribution is not a good fit. 
 
LOG NORMAL W/ XMIN: 
The estimated parameters are µ = 7.625002, σ2 = 1.444097 and xmin = 93.  About 2456 out of 
2500 KS tests (98.24% of the tests) fail to reject the null, which means the log normal 
distribution with the xmin parameter may be a good fit.   
 
LOG NORMAL REGULAR: 
The estimated parameters are µ = 7.505166 and σ2 = 1.939343.  About 1600 out of 2500 KS tests 
failed to reject the null, which is 64% of the tests.  This means that the log normal distribution 
without the xmin parameter is not such a good fit to the data. 
 
 
Overall, the only distribution that seems to fit the data well are the power law and the log normal 
with xmin.  This suggests that the power law is not necessarily a good fit to the data since 
another distribution could fit just as well to the data. 
 



Appendix: R Code 
#DATA ON FAMILY NAMES: 
topfamilynames = read.csv('1000familynames.csv',stringsAsFactors=FALSE) 
namecount = topfamilynames[-1,1:3] 
names(namecount) = c('Surnames','Rank','Count') 
famnamecount = as.numeric(namecount$Count) 
data = famnamecount 
data = sort(data,decreasing=TRUE) 
hist(data,xlab='Number of Family Surnames',main='Histogram of Family Surnames') 
plot(data,type='l',ylab='Frequency of Family Surnames',main='Plot of Family Surnames') 
 
 
#DATA ON POPULATION CHANGE OF CITIES WITH 50K POPULATION OR MORE 
changepop = read.csv('pop change 1.csv',stringsAsFactors=FALSE) 
changepop1 = changepop[6:784,5] 
popchange = as.numeric(gsub(',','',changepop1)) 
popchange1 = popchange[!is.na(popchange)] 
data = abs(popchange1) 
data = sort(data,decreasing=TRUE) 
hist(data,main='Population Change for Places with population of 50K or more',xlab='Size of 
Population Change') 
plot(data,type='l',main='Population Change for Places with population of 50K or 
more',ylab='Size of Population Change') 
 
 
#DATA ON SINGLE GRADE ON ENROLLMENT AND HIGH SCHOOL GRADUATION 
FOR PEOPLE 3 YEARS AND OLDER: OCTOBER 2006 
enroll = read.csv('enrollment.csv',stringsAsFactors=FALSE) 
enroll1 = enroll[9:39,3] 
enroll2 = as.numeric(gsub(',','',enroll1)) 
data = enroll1 
data = sort(data,decreasing=TRUE) 
hist(data,main='Single Grade',xlab='Size of Population Change') 
plot(data,type='l',main='Population Change for Places with population of 50K or 
more',ylab='Size of Population Change') 
 
 
#DATA ON INCOME OF HOUSEHOLDS 
census = readLines('http://www.census.gov/hhes/www/cpstables/032011/hhinc/new06_000.htm') 
pattt = '^([0-9 /,\\*]+)$' 
cen1 = grep(pattt,census,value=TRUE) 
cen2 = cen1[2:259] 
cen3 = matrix(cen2,ncol=6,byrow=TRUE) 
cen4 = cen3[-1,1] 
cen5 = as.numeric(gsub(',','',cen4)) 
data = sort(cen5,decreasing=TRUE) 



hist(data,main='Income Distribution to $250,000 or More for Households: 2010',xlab='Size of 
Household for Each Income Bracket') 
plot(data,type='l',main='Income Distribution to $250,000 or More for Households: 
2010',ylab='Size of Household for Each Income Bracket') 
 
#DATA ON CHANGE OF POP IN COUNTIES 
#http://www.census.gov/population/www/cen2010/cph-t/cph-t-1.html 
popmun = read.csv('pop change municipios.csv',stringsAsFactors=FALSE) 
popmun1 = popmun[7:3229,5] 
popmun2 = as.numeric(gsub(',','',popmun1)) 
popchange1 = popmun2[!is.na(popmun2)] 
data = abs(popchange1) 
data = sort(data,decreasing=TRUE) 
hist(data,main='Population Change for US Counties: 2000 to 2010',xlab='Size of Population 
Change') 
plot(data,type='l',main='Population Change for US Counties: 2000 to 2010',ylab='Size of 
Population Change') 
 
 
#http://www.census.gov/population/www/cen2010/cph-t/cph-t-2.html 
#DATA ON POP CHANGE IN METROPOLITAN  
popmetro = read.csv('pop change metro.csv',stringsAsFactors=FALSE) 
popmetro1 = popmetro[7:372,4] 
popmetro2 = as.numeric(gsub(',','',popmetro1)) 
data = abs(popmetro2) 
data = sort(data,decreasing=TRUE) 
hist(data,main='Population Change for Metropolitan Areas in the US: 2000 to 2010',xlab='Size 
of Population Change') 
plot(data,type='l',main='Population Change for Metropolitan Areas in the US: 2000 to 
2010',ylab='Size of Population Change') 
 
 
#DATA ON POP CHANGE IN MICROPOLITAN 
popmetro = read.csv('pop change metro.csv',stringsAsFactors=FALSE) 
popmicro = popmetro[375:950,4] 
popmicro2 = as.numeric(gsub(',','',popmicro)) 
data = abs(popmicro2) 
data = sort(data,decreasing=TRUE) 
hist(data,main='Population Change for Micropolitan Areas in Puerto Rico: 2000 to 
2010',xlab='Size of Population Change') 
plot(data,type='l',main='Population Change for Micropolitan Areas in Puerto Rico: 2000 to 
2010',ylab='Size of Population Change') 
 
 
xmins = unique(data) # search over all unique values of data 
 



dat = numeric(length(xmins)) 
z = sort(data) 
 
for (i in 1:length(xmins)){ 
   xmin = xmins[i]               # choose next xmin candidate 
   z1 = z[z>=xmin]                 # truncate data below this xmin value 
   n = length(z1)  
   a = 1+ n*(sum(log(z1/xmin)))^-1     # estimate alpha using direct MLE 
   cx = (n:1)/n                      # construct the empirical CDF 
   cf = (z1/xmin)^(-a+1)              # construct the fitted theoretical CDF 
   dat[i] = max(abs(cf-cx))    # compute the KS statistic 
   } 
 
D = min(dat[dat>0],na.rm=TRUE)                      # find smallest D value 
xmin = xmins[which(dat==D)] # find corresponding xmin value 
z = data[data>=xmin]  
z = sort(z) 
n = length(z) 
alpha = 1 + n*(sum(log(z/xmin)))^-1 # get corresponding alpha estimate 
 
library(gsl) 
library(numDeriv) 
 
# the following code, up to the rpowerlaw, came from this website: 
http://www.rickwash.com/papers/cscw08-appendix/powerlaw.R 
 
dpowerlaw <- function(x, alpha=2, xmin=1, log=F) { 
  if (log) 
    log(alpha-1) - log(xmin) - alpha * log(x / xmin) 
  else 
    ((alpha - 1) / xmin) * ((x / xmin) ^ (-alpha)) 
} 
 
ppowerlaw <- function(q, alpha=2, xmin=1, lower.tail=T, log.p = F) { 
  p <- (q / xmin) ^ (- alpha + 1) 
  if (lower.tail) 
    p <- 1-p 
  if (log.p) 
    p <- log(p) 
  p 
} 
 
qpowerlaw <- function(p, alpha=2, xmin=1, lower.tail=T, log.p = F) { 
  if (!lower.tail) 
    p <- 1-p 
  if (log.p) 



    p <- exp(p) 
  xmin * ((1 - p) ^ (-1 / (alpha - 1))) 
}   
 
rpowerlaw <- function(n, alpha=2, xmin=1) { 
  qpowerlaw(runif(n, 0, 1), alpha, xmin) 
} 
 
testresult = numeric(2500) 
for (i in 1:2500){ 
    power = rpowerlaw(length(z),alpha,xmin)   #randomly generate power law data using the 
parameters we found 
    w = ks.test(z,power)     #using KS test to see how good the fit is 
    if (w$p.value > 0.10){ 
       testresult[i] = 1} 
    if (w$p.value <= 0.10){ 
       testresult[i] = 0} 
    } 
sum(testresult) 
 
#FITTING AN EXPONENTIAL: 
dat2 = numeric(length(xmins)) 
z = sort(data) 
 
for (i in 1:length(xmins)){ 
   xmin = xmins[i]               # choose next xmin candidate 
   z2 = z[z>=xmin]                 # truncate data below this xmin value 
   n = length(z2)  
   lambda = 1/(mean(z2)-xmin)     # estimate lambda using direct MLE 
   cx = (1:n)/n                      # construct the empirical CDF 
   cf = 1 - exp(lambda*(xmin-z2))              # construct the fitted theoretical CDF 
   dat2[i] = max(abs(cf-cx))    # compute the KS statistic 
   } 
 
D = min(dat2[dat2>0],na.rm=TRUE)                      # find smallest D value  
xmin = xmins[which(dat2==D)]                          # find corresponding xmin value 
z = data[data>=xmin]  
z = sort(z) 
n = length(z) 
lambda = 1/(mean(z)-xmin) 
 
testresult2 = numeric(2500) 
for (i in 1:2500){ 
    expfit = rexp(length(z),lambda)   #randomly generate exponential data using the parameters 
we found 
    w1 = ks.test(expfit,z)     #using KS test to see how good the fit is 



    if (w1$p.value > 0.10){ 
       testresult2[i] = 1} 
    if (w1$p.value <= 0.10){ 
       testresult2[i] = 0} 
    } 
sum(testresult2) 
 
#REGULAR EXPONENTIAL TEST: 
lambda2 = 1/mean(data)     
testresult3 = numeric(length(data)) 
for (i in 1:2500){ 
    expfit = rexp(length(data),lambda2)   #randomly generate exponential data using the 
parameters we found 
    w2 = ks.test(expfit,data)     #using KS test to see how good the fit is 
    if (w2$p.value > 0.10){ 
       testresult3[i] = 1} 
    if (w2$p.value <= 0.10){ 
       testresult3[i] = 0} 
    } 
sum(testresult3) 
 
LOG NORMAL TEST W/ Xmin: 
dat3 = numeric(length(xmins)) 
z = sort(data) 
 
for (i in 1:length(xmins)){ 
   xmin = xmins[i]               # choose next xmin candidate 
   z3 = z[z>=xmin]                 # truncate data below this xmin value 
   n = length(z3)  
   mu = sum(log(z3))/length(z3) 
   sigmasq = sum((log(z3)-mu)^2)/length(z3)     # estimate lamda using direct MLE 
   cx = (1:n)/n                      # construct the empirical CDF 
   cf = pnorm((log(z3)-mu)/sqrt(sigmasq))            # construct the fitted theoretical CDF 
   dat3[i] = max(abs(cf-cx))    # compute the KS statistic 
   } 
 
D = min(dat3[dat3>0],na.rm=TRUE)                      # find smallest D value 
xmin = xmins[which(dat3==D)]                          # find corresponding xmin value 
z = data[data>=xmin]  
z = sort(z) 
n = length(z) 
mu = sum(log(z))/length(z) 
sigmasq = sum((log(z)-mu)^2)/length(z) 
 
 
testresult4 = numeric(2500) 



for (i in 1:2500){ 
    lognfit = rlnorm(length(data),mean=mu,sd=sqrt(sigmasq))   #randomly generate exponential 
data using the parameters we found 
    w3 = ks.test(lognfit,data)     #using KS test to see how good the fit is 
    if (w3$p.value > 0.10){ 
       testresult4[i] = 1} 
    if (w3$p.value <= 0.10){ 
       testresult4[i] = 0} 
    } 
sum(testresult4) 
 
REGULAR LOG NORMAL TEST: 
mu2 = sum(log(data[data>0]))/length(data[data>0]) 
sigmasq2 = sum((log(data[data>0])-mu2)^2)/length(data[data>0]) 
testresult5 = numeric(2500) 
for (i in 1:2500){ 
    lognfit = rlnorm(length(data),mean=mu2,sd=sqrt(sigmasq2))   #randomly generate exponential 
data using the parameters we found 
    w3 = ks.test(lognfit,data)     #using KS test to see how good the fit is 
    if (w3$p.value > 0.10){ 
       testresult5[i] = 1} 
    if (w3$p.value <= 0.10){ 
       testresult5[i] = 0} 
    } 
sum(testresult5) 
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