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1 INTRODUCTION
Many different models of random trees have arisen in a variety of applied
setting, and there is a large but scattered literature on exact and asymptotic
results for particular models. For several years I have been interested in
what kinds of "general theory" (as opposed to ad hoc analysis of particular
models) might be useful in studying asymptotics of random trees. In this
paper, aimed at theoretical probabilists, I discuss aspects of this incipient
general theory which are most closely related to topics of current interest
in theoretical stochastic processes. No prior knowledge of this subject is
assumed: the paper is intended as an introduction and survey.

To give the really big picture in a paragraph, consider a tree on n vertices.
View the vertices as points in abstract (rather than d-dimensional) space, but
let the edges have length (= 1, as a default) so that there is metric structure:
the distance between two vertices is the length of the path between them.
Consider the average distance between pairs of vertices. As n -> oo this av-
erage distance could stay bounded or could grow as order n, but almost all
natural random trees fall into one of two categories. In the first (and larger)
category, the average distance grows as order log n. This category includes
supercritical branching processes, and most "Markovian growth" models such
as those occurring in the analysis of algorithms. This paper is concerned with
the second category, in which the average distance grows as order n1/2. This
occurs with Galton-Watson branching processes conditioned on total popu-
lation size = n (in brief, CBP(n)). At first sight that seems an unnatural
model, but it turns out to coincide (see section 2.1) with various combina-
torial models, and is similar to more general models of critical branching
processes conditioned to be large (in any reasonable way). The fundamental
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fact is that, by scaling edges to have length n-1/2, these random trees con-
verge in distribution as n -+ oo to a limit we call the CCRT (for compact
continuum random tree). This was treated explicitly in Aldous [2] in a spe-
cial case and in Aldous [3] in the natural general case, though (as we shall
see) many related results are implicit in recent literature. Thus asymptotic
distributions for these models of discrete random trees can be obtained im-
mediately from distributions associated with the limit tree. The limit tree is
closely connected with Brownian excursion. In fact two different 1-parameter
processes associated with the tree - the search depth process and the height
profile process - are intimately connected with Brownian excursion (sections
2.4 and 3.2). Section 2 is a chatty account of 4 different ways of looking at
the CCRT. In section 3 I take natural distributional questions about CBP(n)
asymptotics (with known or unknown answers), which can be expressed in
terms of the CCRT and see what can be said about the limit distributions,
using the Brownian excursion representation in particular. Nothing I say is
essentially new: I use the word "novel" (intended to be weaker than "new")
to refer to results about CBP(n) asymptotics obtainable from known Brown-
ian excursion results (e.g. Corollaries 3 and 6, and Proposition 12) and vice
versa (e.g. (41) as a fact about Brownian excursion). One could conversely
pick haphazardly some facts about- Brownian excursion and apply them to
random trees, but that somehow seems less interesting.

Scaling the edges of CBP(n) to have length n-° (0 < a < 1/2) gives (section
2.5) another limit tree I call the SSCRT (self-similar continuum random tree).
Further, the same limit tree is obtained whether we root at the progenitor or
whether we re-root at a uniform random individual in the population. This
limit tree - which relates to the 3-dimensional Bessel process BES(3) in the
same way that the CCRT relates to Brownian excursion - is less natural
from the combinatorial viewpoint. But being more tractable (from the self-
similarity inherited from BES(3)) it is useful in the theoretical stochastic
process investigations below.

Sections 5 and 6 are speculative. There has been recent theoretical interest in
existence, uniqueness and properties of "Brownian motion" whose state space
is some deterministic fractal set in d dimensions, the set typically constructed
by some recursive procedure giving strong regularity properties. Our limit
trees are "dimension 2" (inherited from Brownian sample paths), and it is
intuitively clear that "Brownian motion" can be defined with these trees as its
state space. Unlike other exotic state spaces, we can actually do some simple
distributional calculations with these Brownian motions, and the purpose of
section 5 is to present these back-of-an-envelope calculations. To develop
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rigorously a theory of Brownian motion on general continuum trees would be
an interesting project, and some thoughts are presented in section 5.2.

Section 6 is a quixotic venture into superprocesses. It is trivial to construct
Markov processes indexed by a continuum tree. Making the index set the
particular CCRT or SSCRT gives variants of the usual superprocess. This
is the idea developed by theoreticians under the name "historical process",
but the theoretical literature makes this appear a deep and sophisticated
object. I assert one should start from scratch and regard a superprocess as
a tree-indexed process rather than as a measure-valued process. My purpose
is to indicate (section 6.1) how this leads to insights which seem simpler or
different from those obtained in the traditional approach.

Acknowledgements. I thank Jim Pitman for much help with and information
about Brownian excursion and BES(3), Steve Evans for help with superpro-
cesses, and Martin Barlow for discussions on diffusions on fractals.

2 THE BIG PICTURE
The first four subsections elaborate on the following four fundamental facts.

Conditioned Galton-Watson branching processes correspond to a natu-
ral and well-studied class of combinatorial models of random trees.

One particular model can be constructed from simple random walk
conditioned on first return to 0 at time 2n, and so its asymptotics can
be expressed in terms of Brownian excursion.

Another particular model can be constructed from a direct (i.e. not
involving conditioning) algorithm, and by taking limits one gets a direct
algorithm for global construction of a limit tree.

By considering asymptotics of subtrees spanned by a fixed number of
randomly chosen vertices, one sees that the limit random tree must be
the same (up to a scale factor) for all models in the class.

Foundational work giving rigorous definitions and proofs concerning existence
of "continuum trees" (without any specific probability model present) and
abstract convergence results is in Aldous [3], and it is not worth repeating
such "general abstract nonsense" here.

2.1 CBP(n) and Combinatorial Models
Let > 0 be integer-valued and satisfy

E=1
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0<vare= .2<oo. (1)

Such a is d-lattice, for some d > 1. We want to allow d > 1 for natural
combinatorial examples (e.g. binary trees). Associate with the distribution

defined by
+ 1)P( = i + 1), i > 0 (2)

and note that

Consider the simple Galton-Watson branching process with offspring distri-
bution , starting with 1 individual in generation 0. Write T for the "family
tree" of this branching process. Let T have the distribution of T condi-
tioned on the total population size DTI = n. This CBP(n) (for "conditioned
branching process") distribution is our object of study.

Tangential remarks. 1. If and y come from the same exponential family,
i.e. for some (c, 0)

i>0
then the conditioned branching processes constructed from and from y are
identical. Thus we lose no generality by considering only critical branching
processes. The chance that the total population size is exactly n decreases
exponentially fast for sub- and super-critical branching processes, but only
polynomially fast in the critical case: in this sense the critical case is most
natural as a model for n-trees.

2. In the language of freshman statistics, if e is "number of daughters of a
randomly-picked mother", then at (2) is "number of sisters of a randomly-
picked girl". The two distributions are identical iff they are the Poisson(1)
distribution.

3. I use "Galton-Watson process" to mean the family tree of the process.
Old-fashioned textbooks use it to mean the process of population sizes in
successive generations, which I call the "height profile" of the Galton-Watson
process.

Simply generated trees. Results about CBP(n) appear in the combinatorial
literature under this name (introduced by Meir and Moon 135], apparently
unaware of the branching process connection). Though the identification
has subsequently become well known, there seems no convenient "translation
guide" in existence, so I give one here.
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A "rooted" tree simply has one vertex distinguished and called the root:
imagine a family tree of descendants of a single progenitor, the root. We
consider only rooted trees. Such a tree is called ordered if we distinguish birth
order: if an individual (vertex) has 3 offspring then these are distinguished as
"first", "second" and "third". Consider the family tree T of the unconditioned
Galton-Watson branching process with offspring . Write pi = P( = i).
Then the distribution of T on rooted ordered trees t is

P(T = t)

i>O

w(t) say (3)

where d(v, t) is the out-degree (number of children) of vertex v in t, and Di(t)
is the number of vertices in t with out-degree i. Thus the distribution of the
CBP(n) tree Tn is specified by

P(Tn = t) is proportional to w(t) on It : Itl = n} (4)

where Itl denotes the number of vertices in t.

One can get to (4) without explicitly mentioning Galton-Watson processes.
Let (ci; i > 0) be non-negative constants with co = 1, and let

0(y) _ ciyi

be the associated generating function. Let ca(t) be some collection of non-
negative "weights" for trees. Define

yn = E W(t)
t:Itl rn

and let Y(x) = En ynxn be the associated generating function. Then it is
easy to see the following are equivalent.

Y(x) x¢(Y(x)) (5)
(6)w(t) _ cDi(t)

i>o

A combinatorial definition of "simply generated tree" is "a family of weights
satisfying (5), or equivalently (6)". So a random simply generated tree Tn is
defined as

P(Tn = t) is proportional to ca(t) on it : Itl = n}.
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To see why this is really the same as the CBP(n) model, note that for any T
with O(T) < oo we can define a probability distribution

P(S = i) = pi = ciri/o(T), i > 0. (7)

Choose the T which makes E = 1. For w(t) defined at (3), we see

w(t) = w(t) Titl-1/0ItI(,r)

Thus on It : Itl = n} w is proportional to Cv, and so the two models for T.
are identical.

Elementary calculations from (7) show that the condition "E = 1" specifying
T is the condition

,ro,(T) = 40
and that the variance v2 = var(y) is

U2 = 720"(T)/Y'(T). (8)

The right-side expression appears in combinatorial papers without mention
of its simple interpretation as "offspring variance".

Examples. The idea of all the combinatorial examples is that all n-vertex
trees of a certain type should be equally likely. One aspect of "type" is that
we can place restrictions on out-degrees. Another aspect is that sometimes
we want to distinguish birth-order (ordered trees) and sometimes we don't.
In the set-up above, ordered trees become the case

ci = 1 if i is an allowed out-degree, = 0 if not

and unordered trees become the case

ci = 1/i! if i is an allowed out-degree, = 0 if not

Various offspring distributions pi = P( = i) are recorded below as a handy
reference: the values of o are needed to connect our results with those in
the combinatorial literature on special models. To reiterate the point: the
uniform distribution on the following "types of n-vertex tree" coincides with
the CBP(n) description with the stated offspring distribution.

ordered (= planar) trees.
Unrestricted degree: shifted geometric distribution pi = 2 i >_ 0; Q2 = 1.
Strict binary (0 or 2 offspring): po = p2 = 1/2; Q2 = 1.
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Strict t-ary (0 or t offspring): po = 1 - 1/t, pt = 1/t; az = t - 1.
Unary-binary (0, 1 or 2 offspring): PO = Pi = P2 = 1/3; az = 2/3.

unordered labelled trees.
Unrestricted degree: Poisson distribution pi = el/i!, i > 0; az = 1.
Unary-binary: po = 2+,727 P1 = z+2zp3 = 2+72; az = z+ z
Strict t-ary: same as ordered case.

Remark. I have slid over one issue: in the combinatorial story the trees are
regarded as rooted and labelled, i.e. the n vertices are distinguishable. The
distinction between labelled and unlabelled is irrelevant for ordered rooted
trees (because the ordering serves to distinguish vertices anyway) but relevant
for unordered trees. The model "all unordered unlabelled trees equally likely"
does not fit into this set-up, and no simple probabilistic description is known.

2.2 Ordered Trees and Brownian Excursion
With a finite rooted ordered tree t on n vertices we can associate the following
two sequences (the terminology is not standard).

The height profile (h(j);j > 0), where h(j) is the number of vertices at
distance j from the root.

The search depth (x(i); 1 < i < 2n - 1) defined as follows. At each vertex
v, suppose the edges at v leading away from the root are ordered as "first",
"second", etc. Then depth-first search of the tree is the following deterministic
walk (v(i) : 1 < i < 2n - 1) around the vertices. Let v(1) = root. Given v(i)
choose (if possible) the first (in the ordering) edge at v(i) leading away from
the root which has not already been traversed, and let (v(i), v(i + 1)) be that
edge. If not possible, let (v(i), v(i + 1)) be the edge from v(i) leading towards
the root.

This walk terminates with v(2n - 1) = root, having traversed each edge
exactly once in each direction. Finally, define the search depth x(i) = distance
from root to v(i).

There is a connection between the two sequences: for j > 1

h(j) = number of upcrossings of (j - 1j) by the sequence x(i). (9)

For a random tree distributed as CBP(n) these become random sequences
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(H(j)) and (X(i)), say. Define the rescaled cumulative height profile process

Hr = n-1 H(j), t > 0 (10)
j<nl/2t

and the rescaled search depth process

Xt = n-112X([2nt]), 0 < t < 1. (11)

Conventions about rescaling constants are awkward - e.g. one might want to
rescale by (2n) -1/2 in (11) - but my conventions are chosen to make rescaled
edge-lengths = n-1/2 consistently.

Returning to the unscaled process X(i), set X(0) = X(2n) = -1. For any
model, the process X(i) has steps ±1 and first returns to the starting level af-
ter step 2n. The simplest model for such a random process would be "simple
symmetric random walk, conditioned on first return to starting level at time
2n". The key fact is that this describes the depth search process in one par-
ticular model of random trees: the combinatorial model of "uniform ordered
trees", which is the CBP(n) model with shifted geometric (1/2) offspring
distribution.

Various forms of this fact have been known to combinatorialists for a long time
But its significance for probabilistic asymptotics was overlooked until recently
(I learned it from Durrett et al [17], who attribute it to Harris). It is intuitively
obvious (and true [16] - see also [13] and [9] p. 104 for references and history)
that conditioned random walk rescales to Brownian excursion, and so (for this
special model of random trees) the rescaled search depth process converges
to Brownian excursion. It is equally intuitively obvious from (9) that the
rescaled height profile process converges to the total occupation density of
Brownian excursion.

On a finite tree, the search depth process determines the ordered tree in a
simple way: each +1 step draws a new edge, and each -1 step retraces an
existing edge toward the root. So it is intuitively clear that, for the special
"uniform ordered n-tree" model, there is a limit tree whose realizations can
be constructed from realizations of sample paths f (t) of Brownian excursion.
In non-standard terms, an infinitesimal positive increment of f draws an
infinitesimal new edge, and an infinitesimal negative increment of f retraces
an existing edge toward the root. In standard terms, given 0 < t1 < t2 <
... < tk < 1, let si = mint;<t<t;+1 f (t). Draw an edge of length f (t1), and
label one end "root" and the other end "t1". Inductively, from ti move back



Aldous: The continuum random tree II 31

distance f (t;) -s1 toward the root, then make a new edge of length f (t;+i) -si

and label its endpoint "t;+,". The shapes of these trees are consistent as (t;)

varies, and define a "continuum tree" with vertices labelled by 0 < t < 1.

T t2

t3.

root
t5

tl t2 t3 t4 t5 L

figure 1

A rigorous treatment of constructing continuum trees from continuous func-

tions is given in [3], Theorem 13: it turns out that distributional properties
of Brownian excursion are irrelevant, and that any continuous function fo
with certain qualitative properties (e.g. local minima are dense) can be used.

Later we shall use (So, ,ao) to denote the continuum tree constructed from

such a fo. Regard So as the vertex-set, labelled by 0 < t < 1, and regard µo

as the "uniform probability distribution" on So induced from Lebesgue mea-

sure. Write (S, µ) for the particular continuum random tree ("the CCRT")

constructed from (2x) Brownian excursion.
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2.3 The Limit Trees: Global Constructions
Another special case of CBP(n) is where the offspring distribution is Pois-
son(1). Combinatorially, this is the uniform random unordered labelled tree.
Many algorithms for simulating this random tree are known: the following
was discovered in Aldous [5].

Algorithm 1 Fix n > 2.
Take a root vertex 1.
For 2 < i < n connect vertex i to vertex V, = min(U;, i -1), where U2,.. ., U
are independent and uniform on 1, . . . , n.
Randomly permute the labels.

The advantage of this particular algorithm is that the n --+ oo limit behavior
is intuitively easy to see. It is proved in Aldous [2] that the first process (the
CCRT) described informally below is the limit when edges are rescaled to
length n-1/2, and the second process (the SSCRT) is the limit when edges
are rescaled to length n-a, 0 < a < 1/2, or more generally to length 1/a(n)
where a(n) --+ oo,a(n) = o(n1/2).

The compact continuum random tree (S, µ).
Take a half-line [0, oo), and cut-and-paste as follows. Let C1, C2, ... be the
times of a non-homogeneous Poisson process of rate r(t) = t. Cut the half-
line into intervals [C1, C;+1) . Start with the line segment [0, C1), and make 0
the root. Grow a tree inductively by adding [C;, C;+1) as a branch connected
to a random point J;, chosen uniformly over the existing tree. The process is
the closure of the union of all branches.

The self-similar continuum random tree (R, v).
Start at time 0 with an infinite continuous line [0, oo), and make 0 the root.
At time 0 < t < oo there is a tree composed of the original line and of
finite line segments connected with each other; only a finite number of such
segments connecting with each finite interval of the original line. The process
grows according to the rules
(i) in each time increment (t, t + dt), in each segment (x, x + dx) of the tree
constructed at time t, there is chance dt dx of a "birth";
(ii) if a birth occurs at time t and place x, then a new branch with random
exponential(rate t) length is instantly attached at x.
The process is the closure of the tree at time infinity.

In these limit processes, regard S and R as random sets, indicating the spatial
position of the limit "continuum tree". Then p and v are random measures
supported by S and R, representing how the vertices are spread over the tree.
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In other words, with the tree T constructed by Algorithm 1 we associate the
empirical distribution µ of the vertices: p, puts mass 1/n on each vertex.
As space-rescaled T converges to S, so does p,, (with the induced space-
rescaling) converge to p. Similarly, when edge-lengths of T. are rescaled to
length 1/a(n) to get the limit R, let v be the measure putting mass 1/a2(n)
on each vertex: then v,,, with the induced space-rescaling, converges to v.

As the notation suggests, we shall see below that the CCRT (S, p) constructed
above is the same as that constructed from (2x) Brownian excursion in the
previous section.

2.4 The Convergence Result for CBP(n)
The results in the previous two sections depended on exact combinatorial
relations for finite n, in the two special cases. A natural first step in seeking
to generalize is to consider the general CBP(n) model. Neither of the previous
methods works: there is in general no constructive algorithm like Algorithm 1
known, and while any tree can be coded as a walk with steps ±1 as in section
2.2, the process obtained from general CBP(n) does not have any standard
dependence structure which makes convergence to Brownian excursion look
easy to prove. But using different techniques (outlined below), an abstract
result "rescaled general CBP(n) converges to the CCRT" is proved in Aldous
[3] Theorem 23. Without setting up the precise statement of the abstract
result, let us state the concrete consequence (which actually turns out to be
equivalent to the a priori stronger abstract result - c.f. [3]) for the rescaled
search depth process X" at (11).

Theorem 2 For CBP(n), as n - oo

(Xz;0<t<1) - (2Q-1Wt;0<t<1)
where W = (Wt; 0 < t < 1) is standard Brownian excursion.

Here "convergence in distribution" is the usual weak convergence of processes.
Note we use "Brownian excursion" to mean Brownian excursion of duration
1.

An immediate corollary is the result for the rescaled cumulative height profile
process H" at (10).

Corollary 3 For CBP(n), as n --> oo
(H,,; s > 0) -+ (Ho,/2i s > 0) (12)
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where

f
1

l(w,<8)dt.H. =
0

To use an old-fashioned term, the abstract result behind Theorem 2 is an
invariance principle: the distribution of the limit tree S doesn't depend on
the offspring distribution , except through the s.d. a as a scale factor. (This
may be thought surprising - one's first guess might be that a would affect
the shape of the tree). As with the classical invariance principle (convergence
of i.i.d. partial sums to Brownian motion) one might expect the result to be
true for much more general models, and we discuss this briefly in section 4.

A final ingredient of the big picture is an "intrinsically tree-ish" description
of the CCRT S. To give this, we need to introduce a different species of tree
t. Let t have k labelled leaves, a root with degree 1, and binary branchpoints
(and hence 2k - 1 edges). Let the edge-lengths be positive reals, and regard
the tree as unordered. Such a tree t can be specified by its topological shape
t*, say, and by the 2k - 1 edge-lengths (ii). Define R(k) to be a random tree
of this type with density

2k-1
f (t*, 11, ... , 12k-1) = s exp(-s2/2), s = 1,. (13)

i-1

In other words, the edge-lengths are independent of the shape of the tree,
which is uniform on all shapes; moreover the edge-lengths are exchangeable
(and hence we didn't need to specify exactly which edge was edge i). These
random trees satisfy the natural consistency condition in k. It turns out that
the distribution of (S, p) is specified by the fact that the subtree R(k) spanned
by k "uniform" (i.e. chosen according to it) random vertices has density (13).
More generally, just as ordinary stochastic processes can be specified via
consistent families of f.d.d.'s, so ([3] Theorem 3) a random continuum tree can
be specified by "random f.d.d.'s", the subtrees spanned by randomly-chosen
vertices. The point is that in general there is no "canonical" way of labelling
vertices of continuum trees, so random f.d.d.'s are a natural substitute for
ordinary f.d.d.'s.

The proof in [3] that rescaled CBP(n) converges is based upon convergence
of random f.d.d.'s. Fix k, choose at random k vertices from CBP(n), consider
the subtree spanned by these k vertices and the root, rescale and let n oo.
Using classical asymptotics for sizes of critical BPs it can be shown that the
limit tree is (a scale factor a-1 times) R(k). In [3] we develop such "ex-
changeability and weak convergence" techniques as a hopefully useful way of



Aldous: The continuum random tree II 35

establishing convergence of more general models to more general limit contin-
uum random trees. In principle one could seek to prove Theorem 2 directly,
by first proving convergence of finite dimensional distributions (X', ... , X n ).
In a special model of binary trees this was recently carried out by Gutjahr and
Pflug [26], based on exact combinatorial formulas, but the general CBP(n)
model seems less tractable. Direct approaches to Corollary 3 are easier, but
not powerful enough to establish the Theorem.

We now tie this up with the special constructions of S in sections 2.2 and 2.3.
The construction in section 2.2 of a tree from a function f and points (ti),
applied to a sample path of 2W and to k uniform random points, plainly must
give a tree isometric to R(k). The connection with the global construction
in section 2.3 is more surprising. Let R(k) be the subtree obtained from the
first k branches [C3_1, C;], i < k in the global construction. Then a direct
computation ([3] section 4.3) shows that R(k) has distribution (13):

R(k) I R(k) (14)

In other words, t(k) is isometric to the subtree R(k) of S spanned by k
randomly chosen vertices of S.

It is intuitively clear that the natural "local" result associated with Corollary
3 should be true. Write H(j) for the number of vertices at height j from the
root, and define the rescaled height profile process

h; = n-1/2H([nl12s])

Conjecture 4 For CBP(n), as n -+ oo,

(h8;s > 0) - (ZlO8/2;s > 0)

where
_ d

r
1°

ds Jo 1(w<<,)dt

is the total occupation density of Brownian excursion W.

The "weak convergence" methods of [3] are too weak to be used here. In
some special cases there are exact combinatorial expressions for means and
moments of H(j), and in these special cases one could no doubt establish
Conjecture 4, but the general case seems to require delicate analytical asymp-
totics. Distributional properties are discussed in section 3.2.
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Remark: local time convention. Above I use total occupation density for
Brownian excursion, and later I use total occupation density for BES(3).
These are of course "local times as space-indexed processes", up to normaliza-
tion conventions. Occasionally I use "local time at a point" as a time-indexed
process, still using the occupation density normalization.

Technical note. Using the construction of S from Brownian excursion, we get
a random measure p on S induced from Lebesgue measure on [0, 1]: this is the
same measure y which occurs as the limit empirical distribution of vertices
(section 2.3). The same applies to (R, v), the SSCRT: in the construction
below from 2-sided BES(3), v is the measure induced from Lebesgue measure
on the line.

a b --------

figure 2
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2.5 The Self-Similar Continuum Random Tree
Sketched above is the SSCRT (1Z, v) given by the global construction in sec-
tion 2.3. (The "baseline" is drawn horizontally.)

Recall that standard BES(3) is the process distributed as the radial part of
3-dimensional standard Brownian motion started at 0. We shall be concerned
with 2-sided standard BES(3) B = (B37 -oo < s < oo). Here 2-sided means
that (Bt; t > 0) and (B-t; t > 0) are independent copies of standard BES(3).
It turns out that we can construct a realization of R from a realization of
2B, analogous to the construction of S from 2W in section 2.2. In brief,
we construct a tree labelled by it : t > 0} from (2Bt; t > 0) and separately
construct another tree labelled by {-t : t > 0} from (2B-t; t > 0); then we
join the trees by identifying (for each b > 0) the points labelled T and T,
where

Tb = max{t : 2Bt = b}, T = min{t < 0 : 2Bt = b}.

This becomes the point b on the baseline at distance b from the root. In
figure 2, we regard positive-time BES(3) as tracing out the part of the tree
above the baseline, and negative-time BES(3) tracing out the part below the
baseline.

Here is a verbal description of how R arises as a limit of rescaled CBP(n).
Rescale edges to have length 1/a(n), where throughout this section

a(n) -> oo, a(n) = o(n1/2).

Let v be the measure putting mass 1/a2(n) on each vertex. Then the rescaled
random set T of vertices of CBP(n) converges in distribution to R, and the
random measure v converges to v. From this limit procedure (or from the
BES(3) construction) we see that the SSCRT has a self-similarity property:
multiplying distances by a constant c doesn't affect the distribution of the
random set R, though it does take the measure v to c-2v.

These results could be formalized and proved in the same way as was done in
[3] for the CCRT. Here are the concrete results analogous to Theorem 2 and
Corollary 3.

Reconsider the search depth (x(i); 1 < i < 2n - 1) associated with a tree tin
section 2.2. The search starts and ends at the root: x(1) = x(2n - 1) = 0.
For present purposes we want to center at the root, so we define (x*(i); -n <
i < n) by

x*(i) = x(i),1 < i < n; x*(-i) = x(2n - i),1 < i < n
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with x*(O) = -1. For a random tree distributed as CBP(n) this becomes a
random sequence (X*(i)); we also have the height profile process (H(j)) as
in section 2.2. Rescale as

11 = a-2(n) E H(j), s > 0 (15)
j<a(n)s

and

= a-1(n)X*([2a2(n)s]), -oo < s < oo. (16)

Theorem 5 For CBP(n), as n -+ 00

(X; ; -oo < s < 00) (2v-1B87 -oo < s < oo)

where B is 2-sided standard BES(3).

Corollary 6 For CBP(n), as n -> 00

(k,,,; s > 0) - (Qo8/2; s > 0)

where
00

Q8 = f 1(B,<8)dt.

Here is the analog of Conjecture 4 for the (local) height profile process.

Conjecture 7 For CBP(n), as n -> oo,

(a-1(n)H([a(n)s]); s > 0) - (Zgo8/2; s > 0) (4q8; s > 0)

where
dQ8

8 ds
is total occupation density for 2-sided BES(3).

(17)

Kolchin [33] Theorem 2.5.4 and Kennedy [30] Theorem 1 have given the 1-
dimensional convergence results implicit in Conjecture 7, but I have not seen
the full weak convergence result published explicitly.
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It is well known that the total occupation density of one-sided BES(3) is the
diffusion with drift and variance rates

µ(x) = 2, o'2(x) = 4x,

or equivalently IB2(s)12, where Bd is standard d-dimensional Brownian mo-
tion. It follows that (q,) is IB4(s)12, or equivalently the diffusion with

µ(x) = 4, 0,2(x) = 4x.

The marginal distributions are Gamma(2, ):

2s)..fq(e)(x) =
x
x exp(

x
(18)

See Pitman and Yor [40, 41] for extensive accounts of related properties of
Bessel processes. As mentioned above, this Gamma limit distribution for gen-
eration size in conditioned Galton-Watson processes was known, but analytic
proofs give little insight into why this particular limit distribution holds. The
BES(3) representation gives one: the positive-time and negative-time occu-
pation densities are obviously i.i.d. exponentials.

2.6 Discrete limits of CBP(n)
As a final piece of background, one can take limits in CBP(n) without rescal-
ing edge-lengths. In this setting, the limit process T. (described below)
depends on the entire distribution of . This result is in Grimmett [24] and
in [2] Theorem 2, in the special case of Poisson(1) offspring; and the general
case is implicit in Kesten [31].

The discrete infinite tree T,,.
For each k = 0, 1, 2, ... create independently branching processes, whose first
generation size has distribution but whose subsequent offspring distribution
is . Regard these as trees with root ik and other vertices unlabelled. Then
connect i0, i 1, i2.... as a path, deem io the root and delete labels.

This is a convenient place to introduce the idea of random re-rooting. A
random tree T distributed as CBP(n) is normally considered as rooted at
the progenitor of the branching process. We may, however, choose another
vertex v of T and declare that to be the root. (To avoid discussing ordering
of the re-rooted tree, regard trees as unordered). If v is chosen uniformly
at random from the n vertices, call this procedure "random re-rooting". In
the combinatorial model "uniform random labelled unordered tree", i.e. the
Poisson(1) special case of CBP(n), it is immediate from the combinatorial
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description that random re-rooting does not change the distribution of the
random tree. For general CBP(n), the distribution does change. However,
the discrete limit distribution T* is almost the same as T,,O above, except
for one change:

the branching process rooted at io has first generation

offspring distribution instead of . (19)

This result, implicit in earlier work, is given explicitly in Aldous [1]. As an
aside, the idea of taking discrete limits in randomly re-rooted trees works
for almost all the larger class of "height O(log n) trees" mentioned in the
introduction, whereas for those trees looking at limits around the original
root is not interesting - this topic is the subject of [1].

2.7 Symmetries of Trees, and the Arrow of Time
We now have four ways to look at the CCRT S (Brownian excursion, the
global construction, limits of CBP(n), and the random f.d.d.'s (13)). An
audience from theoretical stochastic processes is likely to concentrate on the
first way, and think the whole subject is just a corner of Brownian excursion
theory. But I hope to show that misses the point: all four ways are useful in
doing calculations.

As an illustration, the fact that in a special case CBP(n) is exactly invariant
under random re-rooting implies immediately that

the distribution of the CCRT is invariant under random re-rooting. (20)

By considering the search depth process, we could write this as a statement
about Brownian excursion W. Fix u and define

inf Wt, 0<s<1-u
u<t<u+s

Wu + Wu+,-1 - 2 inf Wt, 1 - u < s < 1.
u+e-1<t<u

Then (20) becomes:

W I WU, where U is uniform on [0, 1]. (21)

This is much less helpful than (20). I find it conceptually helpful to think of
trees as purely spatial objects, without any notion of "time" involved. The
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point is that here are many different ways to associate "time" with a tree: the
"intrinsic" time mentioned below if different from the notions of time induced
by the Brownian excursion construction in section 2.2 and different again
from the notions of time in the global constructions in section 2.3. Further,
in section 5 we will consider trees as range spaces for random processes, in
which setting having a notion of "time" attached to the tree itself is really
confusing.

Having said this, recall that in a discrete-time branching process such as
CBP(n) we would normally think of the vertices at distance d from the root
as "the individuals alive at time d", since we are drawing the family tree
with edges of unit length. Analogously, in a continuum tree we may consider
"time" to be "distance from the root" - I call this intrinsic time. Loosely,
we may think of the CCRT as a family tree for individuals with infinitesimal
lifetimes, the vertices at distance t from the root representing the individuals
alive at time t. Thus the processes (It) and (qt) in the previous sections repre-
sent population sizes at time t in the CCRT and SSCRT. But the interesting
symmetries of our trees, such as (20), involve changes in direction of intrinsic
time, and this is why it helps to think of the trees as purely spatial objects.

As illustration, consider the interpretation of the SSCRT as an ancestor pro-
cess. In section 2.5 the SSCRT was presented as a limit of rescaled CBP(n)
as seen from the progenitor. Here the direction of time is indicated in the
top diagram in figure 3. But as at (19) and (20) we can look at CBP(n) from
the standpoint of a uniform random individual. Then rescaling as in section
2.5 gives the same limit SSCRT. Here the interpretation of the baseline is as
the ancestral line back from the random individual V towards the progenitor,
and a bush branching off the baseline at b indicates relatives of V whose last
common ancestor with V was at (rescaled) time b in the past. See the mid-
dle diagram in figure 3. (Incidently, the bottom diagram arises in a context
discussed in section 6.)

Relations between the limits. There are several relations amongst these pro-
cesses.

1. 7Z is the "large-scale" limit of T,,,, (the discrete infinite tree), and the
"small-scale" local (i..e. around the root) limit of S ([2] Theorem 11). The
latter fact is a translation of the fact that BES(3) is the rescaled limit of
Brownian excursion near 0.

2. R can be obtained by attaching to the baseline a o- finite process of (mostly
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t=1.0 -

t=o

t=0.25

t=0

t=-0.25

Figure 3
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small) rescaled copies of S ([2] section 6). In figure 2, the "bush" attached at
a arises from the excursion of 2B above a, drawn over the dashed line. This
translates to a "last-exit" decomposition of BES(3) into excursions above
levels b ending at the last exit time from b. See section 3.5 for applications.

3. The fact that Brownian excursion is "BES(3) bridge" is suggestive, but I
see no solid interpretation in terms of our trees.

2.8 Discussion
The preceding sections contain my subjective view of "the big picture". But
there is much more one could say about related matters.

1. In classical applied probability, there is a branching process description of
the total number of customers served in a busy period of a M/G/1 queue. For
a critical M/MI1 queue, this gives a correspondence between the continuous
time simple symmetric random walk (number of arrivals - number of depar-
tures) and the shifted geometric (1/2) Galton-Watson branching process, and
this is exactly the correspondence of section 2.2 translated into continuous
time.

2. There is recent theoretical literature on trees associated with Brownian-
type processes. Neveu and Pitman, whose work is summarized in [37], discuss
trees associated with upcrossings of size h in Brownian excursion conditioned
to reach height h (instead of conditioning on duration). The trees they obtain
are the family trees of continuous-time critical branching processes where
individual lifetimes have exponential(2/h) distribution and are followed either
by death (probability 1/2) or by a split into 2 new individuals (probability
1/2). Their construction resembles that in section 2.2 in that branchpoints
correspond to local minima. But fundamental to my set-up is the idea of
trees as having distances between vertices, and one really needs to draw the
trees as in figure 1 to make this work.

3. Conversely, Waymire et al. ([25],[9] p. 284) start with the continuous-
time binary branching process above and show that, conditioning on total
population size = n and letting n --+ oo, the time to extinction rescales to
the maximum of Brownian excursion.

4. For the reader interested in pursuing distributional properties of Brownian
excursion, relevant papers include Chung [12]; Knight [32]; Salminen [44];
Imhof [27]; Biane [10]; Biane and Yor [11].
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5. As a fanciful analogy, there are two ways to paint a picture on a piece of
paper. You can divide the paper into small pixels and paint each in turn; or
you can start with broad brush strokes in the middle and then fill in medium
and smaller size details. The latter is analogous to the global construction
of the CCRT in section 2.3; the former is analogous to its construction from
Brownian excursion, where the sample path of the excursion "traces the out-
line of the tree".

6. Obviously we could replace the CBP(n) model with the model of critical
Galton-Watson branching processes conditioned to have height (i.e. number
of generations before extinction) greater than h. Then a rescaled h --+ 00
limit is the variant of the CCRT obtained as in section 2.2 from Brownian
excursion conditioned to reach height 1 at least. This seems less natural from
the viewpoint of discrete random tree models. I do not know if this limit
has a global construction like those of section 2.3, or a simple description of
random subtrees like (13).

3 DISTRIBUTIONAL PROPERTIES
Obviously branching processes are very amenable to study via generating
function methods. Various questions about CBP(n) have been studied by
combinatorialists (and some probabilists) using exact formulae in special cases
and generating function asymptotics for the general case. Kolchin [33] pro-
vides a useful summary of the extensive Russian work in this area. We shall
see how well the "weak convergence, continuum trees and Brownian excur-
sion" approach does on these questions.

3.1 Height
Write G for the height of CBP(n), i.e. the number of generations before
extinction. Since G. is the maximum of the search depth process, an obvious
corollary of Theorem 2 is

Corollary 8 For CBP(n), as n --> 00

n-1/2G - 2Q-1W*

where W* = supo<t<1 Wt is the maximum of Brownian excursion.

Expressions for the mean and the distribution of W* are well known in the
stochastic processes literature, e.g. Kennedy [29] or [9] p. 85:

EW* = 5/2 (22)
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00

P(W* < x) = 1 - 2 E(4x2k2 - 1) exp(-2x2k2). (23)
k=1

It is undoubtedly true that all moments converge in Corollary 8, but I did
not keep track of moments in [3] so this does not rigorously follow from our
approach. The result for means

n-1/2EGn -+ 2ir -1 (24)

was established via generating function asymptotics by Flajolet and Odlyzko
[22], generalizing various special cases known earlier. The general limit dis-
tribution result of Corollary 8 is Theorem 2.4.3 of Kolchin [33]. Special cases
have been known for a long time: Renyi and Szekeres [42] studied the "uni-
form random unordered labelled tree" and obtained an expression for the
limit distribution which (using Corollary 8) becomes the expression

00P(W* < x) = 21/27r5/2x-3 E k2 exp(-k2rr2/2x2).
k=1

(25)

So the right sides of (25) and (23) must be equal. The special case of "uniform
random ordered trees" (where of course the result is immediate from the ideas
of section 2.2) has also been studied - see Takacs [49] for a recent treatment
and references.

Remark. Here and elsewhere, combinatorial arguments typically give local
limit theorems, which are stronger than the convergence in distribution ob-
tained by our methods.

3.2 Height Profile
Corollary 3 and Conjecture 4 provide a connection between occupation den-
sity (1,; s > 0) of Brownian excursion Wt and asymptotic height profiles of
CBP(n). In this section we look at the explicit formulas available in the
literature.

Working directly with Brownian excursion, Knight [32] Theorem 2.3 gives the
following expression for the marginal density of l,.

f - t)1
)f (t, y)dtJ fW' (

7r2 (.2s2

fte(y) = 23/2Ir5/2s-3
1

where fw* is the density of W* (i.e. the derivative of (23)), and where

(27rt)-1/2 00 1 d'-1 d2

f(t,y) = - 2s
E z!dyi-1(Y exp(-(2t-1s2(y+i)2)))
i=O
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Convergence of 1-dimensional distributions in the setting of Conjecture 4
follow from classical asymptotics for generation sizes and extinction times in
critical branching processes: see Theorem 2.5.6 of Kolchin [33] or Kennedy
[30] Theorem 3. This approach leads to the following indirect expression for
the density.

J'(1
f'. (Y) =

4
- t)-3/2 exp(-

S

8(1 - t)
)92,(y/2, t) dt

where g,(y,t) is the density whose joint characteristic function 0,(01i82) is
given by

sinh(s -2i 2) sinh(s -192/2)
1/0'(01,82) = s -22 2

- i91(
S -iB2/2

)2.

Finally, by combinatorial analysis of the uniform random ordered tree, Takacs
[47] obtains the formula

00
3fi.(y) = 2 E E k )e-(v+2aj)2/2 (

_yl)
Hk+2(y + 2s))

j=1 k=1

where Hk are the Hermite polynomials.

There are simpler formulas for moments, e.g. for means

El, = 4s exp(-2s2)

but these are best though of as facts about the distribution of heights of ran-
dom vertices of S, as in section 3.3. Instead of emphasizing exact formulas
(about which I have nothing new to say), let me emphasize some symme-
try properties. In terms of CBP(n) with height Gn, there is no offspring
distribution for which the height profile process exactly satisfies

(H(j); 0 < j < G,) I (H(Gn - j); 0 < j < (26)

So from the branching process viewpoint there is no reason to suspect that
the occupation time process (1,) has the height-reversal symmetry property

(l,; 0 < s< W*) d (lw._8; 0 < s< W*). (27)

But this is indeed true. Then Corollary 3 gives a sense in which (26) is always
asymptotically true as n -> oo. The symmetry (27) and a related identity

sup 1,
d 2W*. (28)

8
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have some relevance to interesting questions about CBP(n). Here is one
example: others are in the next section.

Odlyzko and Wilf [38] were interested in the maximal height profile

Hn = maxH(j)
7

for CBP(n). This is difficult to analyze by combinatorial methods, and re-
quired a lot of work to get a 0(n1/2 log n) upper bound for EH.*. In view of
(28), Conjecture 4 would imply

n- 1/2H. d

and suggest the result for means

n-1/2EHn -, a x/2.

Finally, one could consider the sum >J i j H(j) of heights of all n vertices of
CBP(n). Corollary 3 implies

Corollary 9

n-3/2 > jH (j) - 2Q-1I
i

f1
where I = J W,ds.

0

Darling [14] gives an expression for the Laplace transform of I. Takacs [48]
gives a combinatorial proof of a special case of Corollary 9 and gives a compli-
cated expression for the distribution of I in terms of infinite sums and special
functions.

Heuristics for (27) and (28). These results are a small part of a big picture
discussed in detail by Biane and Yor [11]. From my viewpoint they are anoma-
lous because they do not seem to follow from any symmetry property of the
continuum tree S. Here are heuristics in terms of branching process asymp-
totics. Let U be the diffusion on state space [0, oo) with drift rate µ(x) = 0
and variance rate o2(x) = x. This is the continuous limit of the generation
size process in a (unconditioned) critical Galton-Watson branching process.
More exactly, the limit where the initial population is uon1/2, the offspring
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variance is 1, the population size is divided by n1/2 and the inter-generation
time is n-1/2. Thus the limit process in Conjecture 4 (with o, = 1) ought to
be the conditioned diffusion

h(Ut;O<t<ooIJT U.ds=1,Uo=0) (29)
o

where T = inf{t > 0 : Ut = 0}. Thus we are conditioning on U having an
excursion from 0 of area 1.

With this description of l* the "height-reversal symmetry" property (27) be-
comes intuitively obvious: a 1-dimensional diffusion is reversible, and condi-
tioning on a reversible event preserves reversibility.

From Corollary 3 we have

(1g1s>0) (2l/2is>0) (30)

where 1 is the occupation density of Brownian excursion W. But there is
another way of looking at 1*. Being a drift-free diffusion, Ut is a time-change
of standard Brownian motion /3(t). With this time-change representation, a
miracle occurs: the conditioning in (29) becomes conditioning /3 to have an
excursion of duration 1, i.e. to be Brownian excursion W. Precisely, we get

(h; t > 0) d (WL_1(t); t > 0) , where L(u) =
J

u 1/W, ds. (31)
0

Putting together (31) and (30) gives a result of Jeulin (really a conditional
form of the classic Ray-Knight description of local time for Brownian motion
- see Bianne [10] Theorem 3) saying that the occupation density for Brownian
excursion is a random time change of another Brownian excursion. And this
relation gives (28).

3.3 Heights of Specified Vertices
Asking about asymptotics of heights h,,(v) of particular vertices v in CBP(n)
doesn't quite make sense: one has to specify how the vertex is chosen. Ob-
viously Theorem 2 gives one case. Fix s and let v be the [2ns]'th vertex
visited in the depth search process: then

n-1/2hn(vn) 2a-1W,.

The limit marginal density of Brownian excursion is given by the formula
(Ito-McKean [28] section 2.9 (3a))

.fw.(x) = 21/27r-1/2s-3/2(1 -
s)-3 2x2 exp(-x2/(2s(1 - s))) (32)



Aldous: The continuum random tree II 49

While the limit result (for general CBP(n)) is novel, this way of picking
vertices is not particularly interesting from the viewpoint of discrete random
trees. Instead, let us consider h(V), where V is a random vertex of S chosen
according to the "uniform" measure p, and h denotes height. So h(V)
2WU, where U is uniform on [0, 1]. As explained below, this has density

fh(v)(x) = xexp(-x2/2) (33)

and so
Eh(V) = x/2. (34)

So Theorem 2 implies the result for uniform vertices V of general CBP(n):

n-1/2hn(V) - o 1h(V)

and suggests the result for all moments, in particular for means

n-1/2Ehn(V) -+ U-1 2/7r.

(35)

(36)

These limit results (35,36) for general CBP(n) were proved by generating func-
tion methods by Meir and Moon[35] Theorems 4.5 and 4.6 (in special cases,
exact formulas are available). In fact they proved the local limit theorem
corresponding to convergence of expectations of 1-dimensional distributions
in Conjecture 4:

Eh; = Q2s exp(-o2s2/2).

Note that implicit in (34) and (22) is the fact that the mean height of S is
exactly twice the mean height of a random vertex of S:

Eh(V*) = 2Eh(V) = 27r (37)

where V* denotes a vertex at maximal height. An explanation of "exactly
twice" comes from the stronger fact

E(h(V)Ih(V*)) = Zh(V*). (38)

This follows from the height-reversal symmetry property (27) of the limit
height profile process 1*, because s -> 1* is the conditional density of h(V)
given S.

There are several ways to understand (33), of which integrating (32) over
0 < s < 1 is the least useful. The most elegant is to use the fact (14) that
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the subtree R(k) of S spanned by k uniform random vertices is distributed as
the tree produced by the first k branches in the global construction of section
2.3. So h(V1) is distributed as the first cut-point in the global construc-
tion, which obviously has density (33). Properties of the joint distribution of
(h(V1), ... , h(Vk)) can in principle by obtained from the explicit distribution
(13) of the subtree. For example when k = 2, a tree with leaves at heights
y1i Y2 has edges of lengths x, y1 - x, Y2 - x (for some x < y1 A y2), and so we
can use (13) to see that (h(V1), h(V2)) has joint density

//
f(yl,y2) = JO

yl Ay2
(yl + y2 - x)exp(-(y1 + Y2 - x)2/2) dx.

Note that f (s, s) = El,*2, for the limit height profile 1; (i.e. for Brownian
excursion occupation density, up to factors of two (30)). This provides some
alternative explanations for formulas in Chung [12] section 6.

3.4 Diameter of the Compact Continuum Tree
The diameter On of CBP(n) is the maximal distance between a pair of ver-
tices. The abstract result behind Theorem 2 (or Theorem 2 itself) implies

n-1/2/. -> Q-10 (39)

where 0 is the diameter of the CCRT S. Using the representation of S in
terms of Brownian excursion W,

0 = 2 sup (Wtl + Wt, - 2 inf Wt). (40)
o<tl <t2 <1 tl <t<t2

Szekeres [46] gave a generating function proof of the existence of a limit in
(39) for the special case "uniform random unordered labelled trees". From
his result we obtain the following expression for the density function f& (x).

3/ 2x f&(x) = (41)

00 64E { 4(4b,' x - 36b,311 x + 75bm x - 30b,,,,) +
8

(4b,3,1 x - 10bm x)} exp(-bm,x)
m=1

where b,,,,x (87rm/x)2.

From this Szekeres computes

E0=3 2ir3EG (42)

where G is the height of the CCRT S.
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As facts about Brownian excursion, (41) and (42) are novel. It is an open
problem to establish them directly from (40). Incidently, the argument for
(41) is similar to the argument giving (25) for the limit height; so it is likely
that (41) has an equivalent expression resembling (23) in format.

I want to present an informal "argument by symmetry" which explains the
simple relation (42) between mean diameter and mean height. Given the
continuum random tree S, choose a point V uniformly in the tree (according
to the measure µ) and let G* be the height of the tree rooted at V. Then
G*

d G by re-rooting symmetry (20). I shall argue informally

E(G*IA) = 3A/4 (43)

which obviously implies (42).

As a preliminary, although µ(S) = 1 by definition, we can think of "S con-
ditioned on µ(S) = c" as the limit of CBP(cn) with o = 1 under the n-1/2
rescaling.

It is clear that S has a unique "center" v, that is a point such that S can be
regarded as the union of two trees S1, S2 rooted at v and each having height
A/2. These trees have random sizes (µ(S1), µ(S2)) = (Al, A2), say, where
Al + A2 = 1. The key fact is

conditional on (A, A1), S, and S2 are independent

and distributed as S conditioned on having

height = 0/2 and size = Al (resp. A2)

One sees this informally by considering the "uniform random unordered la-
belled tree" model with even diameter, where a "center" exists. In section
3.2 we discussed the height profile process 1; for S in terms of excursions of
the diffusion U. Writing 11* for the height profile process of Si we get in the
notation of (29)

conditional on (A, A1), (1;*; 0 < s < 0/2) d

(U8; 0 < s < A/2)IT = 0/2, f 218*ds = A1).
0

But the conditioning preserves the time-reversibility of the excursions of U.
Thus, conditional on (A, A,),

O/2f sll*ds=0/4
0
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(c.f. the argument below (38)). This expression gives the conditional mean
distance from the center to a point Vl chosen uniformly in Si. Clearly the
height of S rooted at Vl is this distance plus 0/2. Applying the same result
for S2 gives (43).

3.5 Processes Associated with the SSCRT
We now turn to the SSCRT 7Z constructed globally in section 2.3, or from
2-sided BES(3) B. in section 2.5. In section 2.5 we discussed the height profile
process (q,): here I shall discuss some distributions of other processes defined
in terms of the tree R. For b > 0 it is useful to write b for the point on the
baseline at distance b from the root, and Rb for the part of R connected to
the initial segment [root, b] of the baseline.

The projection process. This is the process (Z(b); b > 0), where Z(b) = v(Rb),
the total "weight" of Rb. There are two interpretations of the process as limits
in CBP(n), using either the original root or the random re-rooting procedure
of section 2.7, and the latter is more interesting. Let V. be a uniform random
vertex of CBP(n). Let V the ba(n)'th generation
before V, and let be the total number of descendants of Then
from Theorem 5 (for re-rooted CBP(n))

Z(b).

In [2] section 7 the global construction was used to prove

Lemma 10 (Z(b), b > 0) is the positive stable (1/2) process, that is

Eexp(-9Z(b)) = exp(-b 29)

Z(b) -A b 2Z(1).

It is convenient to record an easy calculation here:

jb(b - s)Z(ds) d (4/9)b3Z(1). (44)

One can alternatively obtain Lemma 10 from the BES(3) representation. The
last exit time process (Tb ; b > 0) for (2Bt) is a positive stable (1/2) process
(see e.g. [40]) and then Z(b) d Tb +Te because v is the measure induced
by 2B from Lebesgue measure.
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Remark. One could construct BES(3) by starting with the last exit time
process (T+) and then filling in excursions above levels b. In the global
construction, each bush attached to the baseline represents such an excursion.

The depth process. Write Fb for the height of Rb, considered rooted at the
original root, and write Db for the height of Rb, considered re-rooted at b.
Think of Db as the "depth" of b. We can give Db an interpretation as a limit
in CBP(n), using as above a uniform random vertex V of CBP(n). Let
be the number of generations until extinction, for the process of descendants
of the ancestor of V in the ba(n)'th generation before V. Then

Db.

A symmetry property baseline reversibility which is obvious from the global
construction is the following: the distribution of Rb is invariant under reflec-
tion of the baseline segment [root, b] about its midpoint. In particular

Db
d

Fb for each b. (45)

But (Fb) and (Db) are different as processes, e.g. because Db - b is non-
decreasing in b whereas Fb does not have that property.

Lemma 11 For each b,

P(Fb<a)=P(Db<a)=(1-b/a)2, a > b

This can be obtained from the description of Fb in terms of BES(3):

Fb = sup 2B,.
T;<a<T,

For by the hitting probability formula for BES(3)

P( sup 2B, < a) = P(inf B, > b/2 I Bo = a/2) = 1 - b/a.
0<s<Ty a>0

Last common ancestors. Any two vertices of R have a last common ancestor,
the point at which the paths from the root to the vertices diverge. Questions
like the following are natural in terms of the interpretation of the SSCRT as
a limit of critical Galton-Watson branching processes conditioned to survive
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forever. Define C6 to be the distance from the root to the last common
ancestor of all points at distance b from the root (this last common ancestor
must be on the baseline). And define Gb to be the distance from the root to
the last common ancestor of two randomly-chosen points V1, V2 at distance
b from the root (chosen according to conditioned v, the measure with total
mass q,) - this last common ancestor need not be on the baseline. These
processes inherit the 1-self-similarity property

C6
d

bC1, Gb
d bG,

as does F6 above.

Proposition 12 (a) P(C1 > c) = (1 - c)2, 0 < c < 1.
(b) P(Gi > g) = 2g-2(1 - g)(g + (1 - g) log(1 - g)), 0 < g < 1.

To see (a), consider the point process P = {(s*, h*)} recording the heights h*
and positions s* of bushes branching off the baseline in the global construc-
tion. Then P is a Poisson point process of intensity p(s, h) = 2h-2. This fact
comes out of the argument in [2] section 6, or alternatively from the BES(3)
construction using excursions from last exit times. Plainly

P(Ci > c) = P( no points (s, h) of P with s < c and h > 1 - s)

exp(- j p(s,h)dhds)
0 1-e

giving (a). For (b), we can use the 2-sided BES(3) description to rewrite G1
as follows. Consider local time measure on Is : B, = 1}; pick at random two
times from this measure (normalized to a probability measure), and write
T(1), T(2) for the order statistics of these two times; define

G, = mine<T(1) or t>T(,) Bt if T(1) < 0 < T(2)

minT(l)<t<T(,) Bt if not.

Routine but tedious calculations with BES(3) lead to (b).

4 DIFFERENT MODELS FOR RANDOM TREES.
Notwithstanding the open questions mentioned in sections 2 and 3, I regard
the story of the invariance principle for CBP(n) as now well-understood. From
the viewpoint of asymptotics for discrete trees, there are two natural research
directions.

Similar limits for more general models. I am willing to make a bold conjec-
ture:
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In any reasonable model for random n-trees where the diameter is
O(n1/2), the rescaled trees converge to limit processes which coin-
cide with, or can be simply derived from, the limit trees discussed
here.

Here is an example of a different model, IMST(n). Start with n isolated
vertices. Repeatedly, choose a pair of vertices uniformly and join them by
an edge, provided they are not already in the same component. Ultimately a
tree is obtained.

The discrete infinite tree limit (c.f. section 2.6) for this model was obtained
in Aldous [4], This limit is different from the CBP(n) limit, but rescaling the
discrete limit tree into a continuum tree gives exactly the SSCRT. This is
strong evidence - but nowhere near a proof - that n-1/2 rescaling of IMST(n)
gives the CCRT. The "exchangeability" formalizations in [3] are designed to
help with examples like this. Loosely, all we need is an argument that

P(D" > xn1/2) -> exp(_x2/2) (46)

where D is the distance in IMST(n) between two prespecified vertices, and
then the techniques of [3] could bootstrap the argument into a proof of con-
vergence to the CCRT. Unfortunately (46) seems difficult.

Here are some rather different models where we expect the CCRT limit.

1. Uniform random unordered unlabelled trees.

2. Uniform random spanning trees of expander graphs (e.g. hypercubes)
- see Aldous [5].

3. Steele's [45] "exponential family" of random n-trees, with a parameter
determining the mean proportion of leaves.

Another interesting application is to random mappings, a well-studied topic
surveyed in Kolchin [33]. Here we choose uniformly at random one of the
n" functions f : {1,. .. , n} --+ {1,. .. , n} and consider the graph with edges
(i, f (i)). The component containing 1 consists of a cycle with attached trees:
by representing the trees as in section 2.2, one can represent the entire map-
ping as a walk of length 2n. In ongoing work with Jim Pitman it is shown
that these walks rescale to reflecting Brownian bridge.

Different limit continuum random trees. A much harder topic is the study
of asymptotics for random trees whose definition involves the geometry of
d-dimensional space. Two combinatorial examples are the uniform random
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spanning trees of Zd studied in Pemantle [39], and the Euclidean minimum
spanning trees on random points in Rd studied in Aldous and Steele [7]. And
numerous examples such as directed animals and DLA appear in the physics
literature. In many of these examples it is natural to conjecture the existence
of continuum limit trees after rescaling, but I am not aware of any rigorous
proofs.

5 BROWNIAN MOTION ON CONTINUUM TREES.
5.1 Generalities
I want to discuss distributional properties of "standard Brownian motion"
(Xt; t > 0) taking values in the CCRT (S, y) or in the SSCRT (R, v) (by
default, random processes start at the root). The discussion is necessar-
ily heuristic, because no rigorous proof of existence of Xt has been written
down. Such processes may be interesting as counterparts to the recent rigor-
ous theory of Brownian motion on regular fractals developed by Barlow and
Perkins [8], Lindstrom [34] and others. Loosely, our particular CRTs have "di-
mension 2", inherited from Brownian sample paths: in view of the rigorous
construction of continuum trees from general continuous functions in [3], one
can certainly construct continuum trees of any fractional dimension. Despite
the large physics literature, rigorous study of diffusions on non-regular fractal
sets seems difficult. But obviously a tree structure is a great simplification,
and a rigorous theory of Brownian motion on rather general continuum trees
seems a natural next step. I outline below the shape that such a theory might
take, but do not intend to pursue the topic myself.

It is important to regard S and R as spatial trees, and downplay their con-
structions from Brownian excursion and BES(3). For simple symmetric ran-
dom walk on a discrete tree there is an elementary formula for the mean first
passage time from one specified vertex to another. Using these formulas it
is easy to see that in CBP(n) (with v2 = 1 for simplicity) the mean passage
time between random vertices l2 n3/2. Results of this type go back to
Moon [36]. Thus one way to think of Brownian motion on S is as a rescaled
limit of simple random walk on CBP(n): make the edges have length n-1/2 so
as to get the limit S, and make the time between steps be n-3/2. Similarly,
we could start with simple symmetric random walk on the discrete infinite
tree of section 2.6: the same rescalings should lead to Brownian motion on
R. The latter discrete setting was studied in Kesten [31], who refers to his
unpublished work proving the existence of a limit n-3/2T,,,/2 - T for the
first passage time T,,,/2 from the root to the point at distance n1/2 along the
infinite path. I interpret T as the time taken by X on 7Z to first hit the point
on the baseline at distance 1 from the root. The ingredients of a proof of the
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existence of X via such a weak convergence construction would plainly be
similar to this unpublished work of Kesten.

In the next section I suggest an alternative "sample path" construction which
I believe will handle more general continuum trees. But my main purpose is to
exhibit concrete calculations of distributions (mostly expectations) associated
with X, and this is the subject of sections 5.3 and 5.4.

5.2 An Occupation Density Construction
In this section let us work with the precise definition of a (deterministic)
continuum tree (So, µo) given in [3] section 2.3. Essentially, So is a set which
is topologically a tree, i.e. has a unique non-self-intersecting path between
any pair of points, and po is a probability measure on So, which should be
thought of as a "uniform measure". So contains a "root" denoted by 0. (As
a technical remark, for our purposes here we also assume So = support(Fto),
though in [3] a weaker condition was used.)

We now define Brownian motion on a compact continuum tree (So, µo) (the
locally compact case needed for R is similar) to be a So-valued process
(Xt; t > 0) with the following properties.

(i) Continuous sample paths.

(ii) Strong Markov.

(iii) Reversible with respect to its invariant measure µo.

(iv) For each path [[a, b]] C So and each x E [[a, b]],

P.(T. < Tb) = d(a,
bb>

where d denotes distance.

(47)

(v) For points a, b E So let be the mean occupation measure for the
process started at a and run until it first hits b. Then

ma,b(dx) = 2d(b; c(b : a, x))po(dx), x E So (48)

where c(b: a, x) is the point at which the paths [[b, a]] and [[b, x]] diverge.

The skeleton Sao of So is the set of points x which are in the interior of some
path [[a, b]]. A consequence of the precise definition of continuum tree is that
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the skeleton has go-measure zero. Thus the process spends Lebesgue-0 time
in the skeleton.

In contrast to the setting of general fractal subsets of Rd [34], there is no
difficulty in proving uniqueness here, because of the explicit formulas (47,48)-
A sledgehammer proof could be based upon the result about general Markov
processes being determined up to random time-change by their exit place
distributions.

To outline an existence argument, let V1i . . . , Vk be picked independently from
µo and let R(k) be the subtree of So spanned by the root and the points
V1, ... , Vk. Then R(k) is a (random) tree consisting simply of a finite number
of edges with positive edge-lengths. Recall (14) that in the particular case
of the CCRT S, this R(k) is distributed as the tree produced by the first
k branches in the global construction of section 2.3. Let µk be the natural
induced Lebesgue measure on R(k). Assume the following regularity property
(local homogeneity): there exist deterministic ak -> oo such that

-ILk --> µo a.s. as k -g oo
ak

(49)

The CCRT has this property with ak = vl'2--k (this is essentially Theorem 3
(ii) of [2], but also follows easily from the Brownian excursion representation).

On each R(k) we can define ordinary Brownian motion Xk(t) started at the
root 0. One way of viewing X is as the weak limit of these ordinary Brownian
motions as we "fill out" the tree and speed up time:

Xk(akt) - X(t) as k -3 oc.

In fact we can do better and use a sample path construction. The key idea is:
if we measure time by a suitable "local time" rather than absolute time, then
we can make these Brownian motions consistent as k increases. Fix r > 0.
Run ordinary Brownian motion Xk(t) on 7Z(k) until the local time at the root
reaches T. Regard the accumulated local time as an occupation density lk:

fT

1(Xk(t)EA) dt = fA lk(T,w, x)pk(dx), A C 1(k). (50)

We can construct 1k+1 in terms of lk. For R(k+1) consists of R(k) plus a new
edge (Bk+1, Vk+1) attached at a point Bk+l E R(k). The occupation density
lk+1(T,w,x) coincides with lk(T,w,x) for x E R(k), while on the new edge its
conditional distribution given lk(T, w, Bk+l(w)) = 1 is the occupation density
for 1-dimensional Brownian motion on a line segment of length d(Bk+l, Vk+l)
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started at 0 and run until the local time at 0 reaches 1. Continuing for all k,
we get a function l,,(T, w, x), x E S,, defined on the skeleton S,,, of So which
satisfies (50) for all k. If we can show

l,, (T, w, ) extends to a bounded continuous function on So, (51)

then by (49) l,, is the k --- oo limit time-rescaled occupation density for
Brownian motion on R(k), and this can be regarded as occupation density
for some process (X(t) : 0 < t < t(r)) on So run until its density at the root
reaches T, i.e. until absolute time

t(r) =
ISO

w, x)po(dx).

In other words, we are trying to construct X by specifying its occupation
density up to times T. The argument is rigorous up to (51); and it remains
to put together different T's and show that X has the properties (i)-(v). I
conjecture that very little more than (49) is required - perhaps only some
weak "metric entropy" condition on So.

5.3 Easy Distributional Properties
We now return to the special cases of the CCRT (S, µ) and the SSCRT (7Z, v),
and assume that Brownian motion X exists as a weak limit of rescaled random
walks as in section 5.1 and also via the construction in section 5.2.

The SSCRT case is somewhat more tractable, because it inherits from R a
self-similarity property.

(X"; t > 0) d (c'/3Xt; t > 0). (52)

One explanation of the "1/3" comes from the rescaling in section 5.1 of dis-
crete random walk. Another comes from a scaling (53) of first hitting times,
which we now derive. As in section 3.5, for b > 0 write b for the point on
the baseline at distance b from the root, and write Z(b) = v(Rb) = the total
"weight" of the part 1Zb of R connected to the initial segment [root, b] of the
baseline. Appealing to (48)

E(TbIR) = fb 2(b - y)Z(dy)

where we write to mean conditioning on the realization of the random
tree (R, v). Now Lemma 10 says that Z(.) is the positive stable 1/2 process,
and appealing to (44)

E(TbIR) d 8b3Z(1). (53)
9
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Of course EZ(1) = oo and so the unconditional first hitting time T6 has
infinite expectation: this is a disadvantage of working with the SSCRT.

Turning to the CCRT (S, µ), consider first hitting times Tx on arbitrary
x E S. Immediate from (48) is

Ex(TyI S) = is 2d(y, c(y : x, z))µ(dz). (54)

Another consequence of (48) is a simple formula for mean round trip times
between leaves (here the root counts as a leaf)

EE(TyIS) + EY(TXIS) = 2d(x, y) for any leaves x, y E S. (55)

These have nothing to do with the particular structure of S, but reflect el-
ementary general identities for simple random walks on discrete trees. Now
let V and Vl be independent random points of S chosen according to µ
(which puts mass 1 on the leaves - here continuum trees are simpler than
discrete trees!). Using invariance (20) under random re-rooting, Ed(V1, V) _
Ed(root, V) and Ev1Tv = ETv(= ErootTv). It follows from (55) that

ETv = Ed(root, V)
= ,/2 by (34) (56)

which is the Brownian motion analog of the result of Moon [36] mentioned
earlier. A slight elaboration is provided by

E(TvJ h(V)) = h(V) (57)

where h(V) = d(root, V). This is based upon another symmetry property of
S. Recall from (14) that we may regard [[root, V]] as arising from the initial
line-segment [0, C1] in the global construction of S. Treating this initial line
segment as a baseline, we can define a "projection process" Z(b) analogous to
the SSCRT case (section 3.5). That is, Z(b) is they-mass ultimately attached
to the first b units of the initial segment. The global construction makes clear
the reversibility property

(2 (b); 0 < b < h(V)) (h (V) - b); 0 < b < h(V)). (58)

Rewriting (54) as

E(TvIS) = f
h(V)

2(h(V) - b)d2(b)

(58) implies (57).
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It is immediate from (55) that, given S, the v which maximizes the mean
round trip time from the root to v and back is the vertex V* at maximal
distance from the root. For future reference,

ErootTv* + Ev*Troot = 2V'. (59)

by (22). On the other hand, one can show that the v which maximizes the
one-sided hitting time Eroot(TvIS) is not V*.

One could calculate variances of hitting times in similar ways, starting from
formulas in the discrete setting. Moon's result in [36] Corollary 7.3.1 (whose
proof relies on the special structure of the uniform random unordered tree)
implies

var(Tv) =
32
32
15

In principle this variance could be decomposed as the sum of three compo-
nents - contributions from the choice of S, the choice of V given S, and the
choice of Brownian path given S and V - but the computations look messy.

5.4 Hard Distributional Properties
The distribution of baseline hitting times for Brownian motion on the SSCRT
turns out to be related to the distribution of inverse local time in the CCRT.
Here is our best shot at describing these distributions, though it doesn't
qualify as "explicit".

Consider 1-dimensional Brownian motion, started at 0 and run until its occu-
pation density at 0 reaches a. It is well known ([43] VI.52) that its occupation
density Z, at position s > 0 behaves as the Ray-Knight diffusion

Zo = a, dZ, = 2Zdf s > 0, (60)

where (,Q,) is another 1-dimensional Brownian motion.

Now consider the global construction of S via the cut-and-join points (C;, Jz).
Fix a > 0 and define (Z8 , s > 0) by

Zo = a

dZe = 2 Ze d/3, on C;_1 < s < Ci

Zc; = Za.
Clearly (Ze , 0 < s < Ck) describes the occupation density over 1Z(k) for
Brownian motion on the tree 7Z(k) constructed from the first k cuts, the



62 Aldous: The continuum random tree II

motion run until the local time at the root 0 reaches a. It is not hard to
argue (c.f. the urn model of [2] sec. 4) that the limits

1 so

La = lim - f Zeds
x0-,00 so 0

(61)

exist a.s. From the construction of Brownian motion X on S in section 5.2
we see that the process (La, a > 0) is the "inverse local time at the root"
process for X. (This construction should be regarded as "unconditional on
S"). Of course, conditionally on S the process (La) is a subordinator, and
E(LaIS) = a. Getting explicit distributional information about (La) seems
the most important potentially solvable open question in this area.

Now consider the SSCRT. As in section 2.7 (relation 2) we may regard the
SSCRT as a semi-infinite baseline with "bushes" attached, the bushes being
rescaled copies of the CCRT. More precisely, let (Se, µc) denote the CCRT
(S,,u) after scaling by multiplying lengths by c and making the total measure
= c2. Then mark the baseline [0, oo) according to a marked Poisson process,
marks in [c, c + dc] appearing at rate c 2 dc. Wherever a mark c appears
on the baseline, we attach a copy of (SC, µ0).

Now consider Brownian motion X on the SSCRT, run until the time Tl it
first travels unit distance along the baseline. This has an occupation density
(w.r.t. v) process (Z(x), 0 < x < 1) on the baseline, which is just occupation
density for 1-dimensional Brownian motion on the half-line started at 0 and
run until first hitting 1. Specifically, (Z(1 - x),0 < x < 1) is the other
Ray-Knight diffusion with drift rate u(z) = z and variance rate o, 2(Z) = 2z.

We are interested in the occupation density (over all R) for X at time Ti.
What happens on a bush depends only on the occupation density Z(x) at the
point x where the bush attaches to the baseline. A scaling argument shows
that inverse local time La for the Brownian motion on (Sc, µ0) scales as

(LQ, a > 0) d (c3La/c, a > 0).

Thus the amount of time spent in a bush with scaling factor c attached at x
is distributed as c3L2(x)/0. Adding over bushes gives

Tl A E c' L(''(xt)/0t (62)

where POIS is the Poisson process of points (x, c) E (0, 1) x (0, oo) with rate
J71c'2 and where Lj') is distributed as at (61), independent as i varies. This
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is the advertized connection between SSCRT first passage times and CCRT
inverse local time.

Changing topics, another quantity which (surprisingly) can be calculated ex-
plicitly is related to the cover time

C = inf{t : S = Uo<,<X,}

for Brownian motion on S, i.e. the first time at which the sample path has
hit every point of S. Consider the related cover-and-return time

C+ = inf{t > C : Xt = root}.

Clearly C+ is at least the time to visit the furthest leaf and return, which by
(59) has mean 2 In fact I assert

EC+ = 6 (63)

I do not know any simple symmetry argument for the factor of 3, though it
is tempting to seek some overlooked symmetry. Pedestrianly, one can study
random walk on unconditioned Galton-Watson trees and set up a recursion
for the analogous cover-and-return time. Write C, for this time, conditioned
on the size of the tree = n. In the case of Poisson offspring (i.e. the uniform
unordered random labelled tree) it is proved in [6] that

if EC+ - cn1/2 then c = W 2-7r. (64)

This is an intuitively convincing argument for (63). At the rigorous level, a
major issue is that, even granted weak convergence of rescaled random walks
on discrete trees to the limit Brownian motion on S, this does not imply
convergence of cover times.

6 SUPERPROCESSES
This section is directed at readers already familiar with the subject of su-
perprocesses. I have no technical knowledge of the subject, but am merely
aiming to set out in conversational style some remarks about what is intu-
itively obvious, given a "random tree" background.

There is an underlying nice continuous-time Markov process (Xt; t > 0) tak-
ing values in a space E. The associated superprocess takes values in the set
M(E) of non-negative measures on E, starting at time 0 with (say) the unit
mass at a point xo. It can be constructed as a weak limit of finite-population
branching Markov processes, or directly via martingale characterization. Re-
cently attention has been given to the associated "historical process" which
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gives the family tree of the limit population: see e.g. Dawson and Perkins
[15], Dynkin [18, 19], Le Gall [23]. My viewpoint is to take this as the starting
place: think about tree-indexed E-valued processes rather than time-indexed
M(E)-valued processes.

Given a rooted tree t with a finite number of edges of positive length, let
t be the point-set of all points of the tree, i.e. the points in the edges as
well as the branchpoints and endpoints. Given a starting position xo for the
underlying Markov process, there is an obvious construction of a tree-indexed
Markov process (X,; s E t), as follows. Put Xroot = xo and then define X
on one edge at a time, working away from the root. For an edge [[a, b]] for
which Xa = Xa has already been defined, we define (X s E [[a, b]]) to be
distributed as the underlying process started at xa and run for time d(a, b),
independently of the previously-defined parts of the tree-indexed process.

Now consider a general continuum tree (So, µo) (e.g. constructed from some
function f as in section 2.2). By the Kolmogorov extension theorem we can
define a tree-indexed process (X,; s E So) such that for each finite set of
points V 1 ,-- . , vk in So the process restricted to the subtree t spanned by (v;)
is distributed as specified above. Of course such constructions by extension
are unsatisfactory because different "versions" may have different sample path
properties. To get a cleaner construction, suppose the underlying process has
cadlag paths. Then we can construct (X,; S E skeleton(So)) such that every
realization is cadlag at each point in the skeleton. For leaves x E So one can
seek to define by continuity:

Xx = lim{X, : s E [[0, x]], s -> x}

In general the limit will exist outside a po-null set of leaves, on which we must
let X be undefined.

With each s E So we associate the "intrinsic time" t(s) which is just the
distance from the root to s:

t(s) = d(root, s).

We can then define a time-indexed M(E)-valued process

OtO = ISO 1(X. E-) 1(1(-):5t) /to (ds).

If sufficiently smooth in t we can differentiate to get

et(') =

(65)

(66)
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Some notation: for a positive measure 0, write 11011 for its total mass.

Now consider this construction of a tree-indexed process X in the two special
cases where the indexing tree is the CCRT (S, µ) or the SSCRT (R, v). I claim
these are the same as the usual superprocess, but with different conditionings.
In the second case (the immortal superprocess) we are conditioning on the
process being created (with infinitesimal mass) at point x0 at time 0, and on
the process surviving for ever. In the first case (the superprocess excursion)
we are conditioning on the process being created (with infinitesimal mass)
at point x0 at time 0, and on the total (i.e. integrated over time up to
extinction) population size being equal to 1. Arguably these conditionings
are more natural in many biological applications than the usual "start with
unit mass" model. To fit this usual model into our set-up, we use as index
the continuum random tree pictured on the bottom in figure 3, i.e. the part
of the SSCRT which branches off the first unit of the baseline, measuring
"time" as "distance from baseline". In all these examples, what is usually
called the superprocess is the M(E)-valued process (9t) at (66).

The assertions above are intuitively obvious from the interpretation of S
and R as limits of family trees in critical branching processes. As with the
development of historical processes, the point is to "decouple" the family tree
structure from the Markov motion in the space E. In the next section I make
some observations about superprocesses based on this "continuum random
tree" viewpoint.

6.1 Five Observations
1. Computer simulation. Suppose you want to estimate some distribution as-
sociated with some explicit superprocess by computer simulation. The naive
way would be to simulate a discrete-time critical branching process. Starting
with 50, say, individuals and running until extinction would require order
502 = 2, 500 calls to the random number generator just to simulate the "fam-
ily tree". It is much more efficient to use the global constructions in section
2.3 and simulate the first 50, say, branches of the CCRT, which requires only
2 x 50 = 100 calls to the generator (and then finally simulate the Markov
process along the edges).

2. Different models for random trees. Consider the IMST(n) model of sec-
tion 4. This is a random tree on n vertices, where we pay no attention to
the order in which edges were added in the construction. Now imagine one
vertex placed at 0 E Rd and the edges having length n-1/2 and independent
uniform random directions in Rd. Let 4 be the empirical distribution of
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the vertex positions. Granted the conjecture that this model also rescales to
S, it is intuitively obvious that converges in distribution to O, the to-
tal occupation density (65) associated with the superprocess excursion built
over d-dimensional Brownian motion. The point is that the discrete IMST(n)
model has no notion of "Markovian branching" or even of "time", but still
leads to a superprocess.

3. A connection between superprocesses and Brownian motion on continuum
trees. One quantity of interest in the latter context was L° at (61), the time
at which Brownian motion on the CCRT has accumulated local time a at the
root. It is intuitively clear that

L° d fS X8 p(ds)

where X(a) is the S-indexed process (i.e. superprocess excursion) built over
the Ray-Knight diffusion (60).

4. Symmetry properties. The symmetry properties of S and R. we have
discussed lead to symmetry properties of superprocesses. Here is one example.
Suppose the underlying Markov process is ergodic with stationary distribution
ir. Choose X0 from ir, then run the superprocess excursion starting at Xo.
Let O. be the total occupation measure (65) and pick X* according to O,,,.
If the underlying Markov process is reversible then

(Xo, X*) A (X*, 000, Xo)

In words, the distribution of O,,,, relative to a random individual in the popula-
tion is the same as its distribution relative to the progenitor: so the progenitor
is not special. This property is intuitively clear from the "random re-rooting"
property (20) of the CCRT.

5. The immortal superprocess. This has recently been studied rigorously by
Evans and Perkins [21, 20]. From our viewpoint of the superprocess as the
Markov process X indexed by the SSCRT, some elementary properties are
obvious.

(a) The "population size at time t" 10t1 has Gamma(2, 2/t) distribution, by
Corollary 6 and (18).

(b) If the underlying Markov process has absorbing states then (because the
SSCRT consists of bounded bushes attached to an infinite baseline) the su-
perprocess gets absorbed with the same probabilities as for the underlying
Markov process ([20]).
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(c) If the underlying Markov process converges from any start to a unique
stationary distribution it then

et/IBtI 4 7r. (67)

For using a standard exchangeability fact (that for exchangeable sequences,
pairwise independence implies independence) to prove (67) it suffices to prove

dist(Xv,(t),Xv2(t)) -> 7r x it (68)

where V1(t) and V2(t) are picked uniformly from the population at time t.
The individuals V1(t) and V2(t) had last common ancestor at time Gt, say,
and

P(Xvt(t) E A, X vz(t) E BIGt = 9, XG, = x) = Px(Xt_9 E A)Px(Xt_9 E B).

By the self-similarity property of the SSCRT we have Gt d tGl, and then
(68) follows easily from the convergence assumption on the underlying Markov
chain [21].

In fact, the exact distribution of Gl was calculated in Proposition 12, as was
the distribution Cl of the time of the last common ancestor of the entire
time-1 population.
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