
Supplementary materials for this article are available online. Please click the TAS link at http://pubs.amstat.org.

Teacher’s Corner

When Can One Test an Explanation? Compare and Contrast
Benford’s Law and the Fuzzy CLT

David ALDOUS and Tung PHAN

Testing a proposed explanation of a statistical phenomenon
is conceptually difficult. This class segment is intended to spot-
light the issues. This article has supplementary material online.

KEY WORDS: Benford’s law; Fuzzy CLT; Normal distribu-
tion for data; Teaching.

1. INTRODUCTION

The material in this article was developed for a future class
segment in an upper-division course (Aldous 2009a) which ex-
amines critically the real-world uses of probability theory. This
article is addressed to potential instructors of such a course.
Because such a course is unusual—perhaps unique—this in-
troduction seeks to outline carefully the style and goals of the
course. The style is to treat probability as somewhat analogous
to physics—making general predictions about the real world,
so analogous to a lab course in physics, the course is a kind
of lab course in probability, studying which general predic-
tions are actually verifiable by new data. Students formulate
and do a course project (as individuals or in small groups), each
project reflecting some different theoretical prediction and cho-
sen where possible to reflect some prior interest or knowledge
of the student, and the emphasis is on creative choice of projects
for which the student can gather new data and for which the
results are not completely predictable, rather than on techni-
cal details of statistical analysis of the data. This contrasts with
the style of applied statistics courses in which the instructor
chooses a dataset and gives it to the students to analyze, with
some “technically correct” analysis in mind.

Now a common reaction to this outline is, “OK, but what
do you actually do in class?” It is easy to write down a dozen
potential projects (see a list at Aldous 2009b), some from text-
book introductory statistics (birthday problem; regression effect
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in sports; empirical accuracy of opinion polls), and others from
more advanced probability (Do prediction market prices be-
have as martingales? Do intra-day stock prices obey the arc sine
laws? Do both halves of the text of Hamlet compress equally?).
Student projects on such topics can be used and critiqued in fu-
ture iterations of the course. Indeed an ultimate goal is to build
a portfolio of such projects so one could teach the course in
seminar style—in each class one could state a theory predic-
tion with brief mathematical background, give analysis of some
data, then give some wider-ranging discussion prompted by the-
ory and data. This style is deliberately orthogonal to textbook-
based courses that systematically develop some particular topic
in statistics or probability.

The purpose of this article is to give an example of a class
topic. The data were collected by the second (student) author
but this write-up is by the first (instructor) author, the I in
this article. In an attempt to be interesting or even provoca-
tive to instructor readers, I have chosen an example for which
the wider-ranging discussion leads to conceptual or even philo-
sophical points not usually mentioned in undergraduate statis-
tics courses. The course is a real course (taught three times,
latterly to 36 students) though the material in this article is, in
the spirit of the portfolio above, an illustration of using a recent
student project as the basis for planning a new class to be given
next time the course is taught.

The central core of the class is the analysis in Section 3.1 and
the associated conceptual discussion in Section 3.2. While the
mathematics involved is routine (to mathematical statisticians)
and will not be emphasized in class, the conceptual issue is ac-
tually quite subtle and easily misunderstood, even by instructors
if they think more in terms of mathematics than the underlying
statistical concepts.

Section 2.1 describes the way I would actually frame the
topic in class, as a kind of “philosophy of science” issue. How to
do this is a matter of taste and other instructors will almost cer-
tainly want to do it differently. But some such discussion seems
helpful to set the stage—to emphasize we are focusing on con-
cepts rather than mathematics. The style of my course is to talk
only about theory where we can get some data to accompany
the theory, thereby eliminating almost all philosophical topics.
This particular class is my current attempt to get as close as I
can to some philosophy issue with a concrete dataset. In practice
the majority of students seem neither interested in nor capable
of dealing with this type of philosophy, so I would not spend
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much time on it in class, instead inviting interested students to
chat in office hours, and this could lead to formulating some
project of interest to the individual student.

In contrast, I do view the conceptual issues in Section 3.2
as important—why did we do the analysis this way instead
of mindlessly plugging into a chi-squared test of significance?
Most undergraduate statistics courses ignore such issues; a few
with philosophical bent discuss them but with hypothetical or
trite examples. A recurrent theme of the course (done in dif-
ferent contexts in other classes) is to treat such issues seriously
within analysis of concrete data. Other classes in the course deal
with the widespread misuse of tests of significance in the scien-
tific literature, and with the justifiability of treating an observed
dataset (e.g., exam scores) as if it were iid samples from an
unknown distribution, and this class makes references to such
discussions.

In the remainder of the article I distinguish between “what I
say in class” (Sections 2.1, 3.1, and 4.1; really “what I plan to
say in class,” but maintaining a future tense is distracting), and
“notes for instructors,” the latter including this introductory sec-
tion. Note that the class ends with a suggested student project,
which is very deliberate: I try to talk only about topics which
are amenable to student projects.

2. FRAMING A QUESTION

2.1 What I Say in Class

The goal of today’s class is to compare and contrast the
“testability” of two explanations of two different phenomena.

The Fuzzy CLT

The Normal approximation for the probability distribution of
quantities that are explicitly modeled as sums or averages of
random variables is uncontroversial. The Normal approxima-
tion for observed data has always been a much more delicate
issue:

Everyone believes in the [Normal] law of errors: the mathemati-
cians, because they think it is an experimental fact; and the ex-
perimenters, because they suppose it is a theorem of mathemat-
ics. Oft-quoted remark, attributed by Poincaré to Gabriel Lipp-
mann.

Indeed there is a curious inconsistency between what many
freshman textbooks say and what they do in exercises and ex-
amples regarding this issue, as I will illustrate at the end of the
class (Section 4.1 of this article). One view is expressed in folk-
lore as

The “fuzzy” central limit theorem says that data which are influ-
enced by many small and unrelated random effects are approxi-
mately Normally distributed.

(This particular phrasing copied from Triola 1998, p. 260.)
Suppose we specify some type of data (e.g., biometric or ob-
servational errors in astronomy or product quality), examine a
large collection of datasets, and find empirically that most such
datasets do follow approximately a Normal curve. One could
imagine many possible explanations of this finding.

Question: Is it possible, in principle and/or in practice, to em-
pirically test whether the fuzzy CLT gives a correct explanation
of empirically observed approximately Normal distributions for
specific types of data?

Benford’s Law

Benford’s law is the assertion that within a large dataset of
positive numerical data which has a large spread on a log-
arithmic scale, the relative frequencies of leading digits i =
1,2, . . . ,9 will approximately follow the Benford distribution

bi = log10(i + 1) − log10 i.

Like the birthday paradox, this is memorable because it is ini-
tially counterintuitive. Also like the birthday paradox, there is a
simple and standard explanation.

(Note to instructors. At this point I relate what I regard as
the “simple and standard explanation,” indicated in Section 3.3.
This explanation is expressed very clearly and with very help-
ful graphics by Fewster (2009) and in the Wikipedia article
Wikipedia: Benford’s law (2009), and in class I show the graph-
ics from one of those sources.)

This explanation explicitly uses the large spread on a log-
arithmic scale assumption, of which a quantification will be
given later in this class (Section 3.1 of this article). As be-
fore (with the fuzzy CLT), suppose we specify some type of
data (e.g., financial or geophysical or socioeconomic), exam-
ine a large collection of datasets, and find empirically that most
such datasets do follow approximately Benford’s law. As be-
fore one can imagine other possible explanations (indeed, some
are mentioned in the article by Fewster 2009 and in Wikipedia:
Benford’s law 2009).

Question: Is it possible, in principle and/or in practice, to
empirically test whether “large spread on a logarithmic scale”
gives a correct explanation of empirically observed approxi-
mately Benford distributions for specific types of data?

Analogy With Clinical Trials

Statisticians know how to test whether a particular new drug
is more effective than a particular old drug in curing a particu-
lar disease: set up a randomized clinical trial, assessed double-
blind. Such trials answer the empirical question “Is it more ef-
fective?” After obtaining a positive answer, one might propose
several different hypotheses about the physiological process
making it more effective. Are any of these hypotheses correct?
Well, you would have to do some different experiments, tailored
to the specific hypotheses, to answer that question.

As a rough analogy, we are assuming a collection of datasets
has passed an empirical test: most are approximately Nor-
mal/Benford. Are the proposed explanations correct? To answer
that question, you need some test tailored to the specific pro-
posed explanation.

How Can We Try to Answer the Questions?

I presented the two phenomena in parallel to emphasize sim-
ilarities, but my main purpose in this class is to point out a dif-
ference. If “large spread on a logarithmic scale” were a correct
explanation of the occurrence of the Benford distribution, one
would expect datasets with larger spread to tend to have distri-
butions closer to the Benford distribution, after accounting for
finite-sample effects. So it is a “falsifiable hypothesis.” Within
any given collection of datasets, for each dataset we can just
measure “spread” via some statistic, and measure “closeness
to Benford” via some statistic. The hypothesis predicts some
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substantial association between these two statistics: if we do
not see the predicted effect, then the purported explanation is
just wrong, for this collection at least. That is the kind of a sta-
tistical analysis we shall do in a moment (Section 3.1 of this
article).

In contrast, to repeat such analysis for the fuzzy CLT one
would need a quantitative measurement of how close a given
dataset comes to satisfying the assumption “influenced by many
small and unrelated random effects.” But this is just impossi-
ble to do—at any rate, I cannot imagine any way of doing this
for the kind of datasets typically presumed to be approximately
Normal, as we will see later. But let us first study some data in
the Benford’s law setting.

2.2 Note to Instructors on Preceding Material

Obviously I am touching upon a topic in the philosophy of
science—in saying the phrase “falsifiable hypothesis” I am re-
ferring to the popularized Popperian view that to count as “sci-
entific” a proposed theory must be falsifiable. I am well aware
that most academic philosophers of science regard the popular-
ized Popperian view as naively simplistic. But my purpose is
not to summarize a debate within the philosophy of science, but
simply to choose some philosophical methodology I can work
with, and can get to a bottom line. One explanation is falsifiable
and the other is not.

The analogy with clinical trials is just a superficial analogy
to illustrate the distinction between studying “what happens”
and “why it happens.” It gets used later (Section 4.2) in the
context of a protocol; students know that clinical trials follow
some prespecified protocol, so should one analogously prespec-
ify a protocol to gather data to test some general theory predic-
tion?

3. ANALYSIS OF SOME BENFORD
DISTRIBUTION DATA

3.1 What I Say in Class

As a student project, Tung Phan studied a collection of 18
datasets (listed in online supplemental material). As just out-
lined, we will calculate two summary statistics for each dataset:

• R measures spread (on a log scale).
• D measures difference between observed distribution and

Benford distribution.

Now (note to instructors: at this point in teaching a class I at-
tempt to lower my voice in a theatrical manner and glance to-
ward the open door of the classroom) academic statisticians
with an interest in methodology may spend their careers de-
bating the optimal choice of such statistics, but the boring truth
is that if you have a lot of data and you are looking for a sub-
stantial effect which actually exists, then any sensible method
will find it. So we are just going to make choices of convenience
and simplicity. For spread let us choose log interquartile range:

R = log(Q3/Q1) where Q1 and Q3 are the lower and up-
per quartiles.

To measure the distance between a probability distribution
p = (pi,1 ≤ i ≤ 9) and the Benford distribution (bi) we use
mean squared relative error

D(p) =
9∑

i=1

bi

(
pi

bi

− 1

)2

.

Thus if the ratios pi/bi were all around 1.2 or 0.8, then D

would be around 0.22 = 0.04. We could have used D1/2 or
any other “distance” measure, but D has a mathematically nice
feature we will see below. If we follow the tradition (note
to instructor: see Section 3.2 for what I say here) of regard-
ing a dataset with n entries as n independent random sam-
ples from some unknown distribution q, and calculate D us-
ing the observed relative frequencies p, then the observed
statistic D(p) will be a biased estimator of the “true” un-
known distance D(q). A calculation of the kind you learn in
mathematical statistics courses (see Note 6 below) shows that
when q is close to the Benford distribution and n is large,
then

D(p) − 8/n is an approximately unbiased estimator
(1)

of D(q) with standard error approximately 4/n

(the simplicity of these formulas being the mathematically nice
feature of the statistic D).

So in Figure 1 we show, for each dataset, the value of R and
the notional “confidence interval” [D(p) − 12/n,D(p) − 4/n]
representing approximately ±1 standard error around the es-
timate of D. Visually, Figure 1 is consistent with the predic-
tion of the “large spread” explanation of Benford’s law, and not
much would be gained by attempting a more quantitative con-
clusion, which is hardly justifiable with haphazardly collected
datasets.

Figure 1. The relation between spread and closeness to Benford in 18
datasets. The online version of this figure is in color.
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Conclusion

On a small stage (18 datasets) we have checked a theoretical
prediction: not just the literal assertion of Benford’s law—that
in a dataset with large spread on a logarithmic scale, the rela-
tive frequencies of leading digits will approximately follow the
Benford distribution—but the rather more specific prediction
that “distance from Benford” should decrease as that spread
increases.

In one sense it is not surprising this works out. But the back-
ground point is that we do not know how to formulate and
check any analogous prediction for the Normal approximation
for data, and in that light our Benford analysis is perhaps note-
worthy.

Recalling the data were collected as an undergraduate course
project, we judge it a success. Of course a professional sta-
tistician might be expected to do rather more: to follow a
stricter protocol (Section 4.2) for choosing datasets, to get more
datasets, to investigate whether different types of data showed
better or worse fits, and to think more carefully about possible
alternative summary statistics to R and D.

3.2 Notes to Instructors

Implicit in the above are conceptual issues that are actually
quite subtle and easily misunderstood, even by instructors. I ex-
plain here for instructors, relating where relevant what I say in
class.

1. Of course, what to say in class depends on what you think
the students understand and misunderstand from previous
courses. A disheartening way to find out is to ask the ques-
tion

(*) Given one sample U1 from Uniform[0, T ] with un-
known T , write down a 50% CI for T

which few students can answer with any self-assurance, be-
cause (I guess) repeated exposure to symbolism of the type
μ̂ ± 2σ̂ /

√
n beloved by authors of mathematical statistics

textbooks has overwritten the actual concept of a CI in their
minds. The instructor needs to remind them what a CI is, and
that it depends on assumptions whose validity one needs to
consider (recall (*) arises in the Doomsday argument, dis-
cussed in another class, an extreme case of dubious validity
of assumptions!).

2. The tradition (which we invoked to calculate a confidence
interval for each dataset) of regarding a dataset with n en-
tries as n independent random samples from some unknown
distribution is, in many contexts, hard to justify. This is the
topic of another class in the course; let me summarize here
what I say in the other class.

(i) Some statisticians act (without explicitly asserting
this as a general principle) as if any dataset (e.g., exam
scores from a class of students) can be analyzed as if it were
iid from some unknown distribution, unless there is some
particular reason not to do so. Other statisticians more ex-
plicitly assert that one should not do so without positive jus-
tification.

(ii) I take an intermediate view: that without positive jus-
tification

(a) it is incorrect to suggest that calculated CIs or p-
values are “objectively true” in the conclusion of a study;

(b) but having some indication of the uncertainty at-
tached to an estimate is in practice often preferable to the
alternatives, which are to regard the estimate as exact or to
ignore it completely—just remember that the measure of un-
certainty is itself uncertain. Everyday life requires decisions
under uncertainties which are almost never mathematically
quantifiable, but we survive using more intuitive degrees of
confidence.

In this class, I remind students of that discussion, show the
titles of the 18 datasets in the study to illustrate we are in
the “no positive justification” context, so that the “notional
CIs” shown in Figure 1 should be regarded only as rough
indications of the distance between the distribution in each
dataset and the Benford distribution.

3. Another class discusses the misuse and misinterpretation of
tests of significance—it is fun to do this with reference to
the recent polemical book of Ziliak and McCloskey (2008).
Again, let me summarize here what I say in the other class
(and textbooks say, but too often forgotten by students).

(i) There is certainly a list of textbook settings where
tests of significance are appropriate (randomized controlled
experiments, etc.).

(ii) A test of significance addresses some very specific
question such as “Can we be sure beyond reasonable doubt
that the size of a certain effect is not exactly zero?”; this is
often not the relevant question. It is often more relevant to
study the size of effect.

(iii) Often the null hypothesis is conceptually not plausi-
ble, in which case a test of significance is merely an exercise
in finding out whether you can “knock down a straw man.”

(iv) A test of significance assumes some particular prob-
ability model for the data under the null hypothesis; often
the particular probability model is not plausible.

(v) With a small amount of data a big effect will not be
detected as statistically significant; with a large amount of
data a small effect will be detected as statistically significant.

In class I point out how much of this applies to the present
setting. There is no reason to believe Benford is exactly
true for any particular dataset. The entries in our datasets
are complete lists, neither random samples nor arising from
some underlying random mechanism we might plausibly
model. A list of 18 p-values, from the chi-squared test of
fit to the Benford distribution for each dataset, would be es-
sentially meaningless—the widely varying width of the CIs
in Figure 1 reflects widely varying sizes of the datasets, so
the implied statistical significance or nonsignificance of p-
values would mostly reflect size of dataset.

4. The real logical point (too hard to convey effectively in class,
I suspect) is that there is no direct connection between the
two issues

(a) given two probability distributions (either theoretical,
or empirical data without any consideration of randomness),
calculate some measure of distance between the distribu-
tions;
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(b) given an iid sample from some distribution, might
this have come from a particular specified distribution?

other than the fact it is mathematically convenient to use
“sum of squares of differences” in both contexts. We are
interested in (a)—that is part of the “explanation” we are
studying—but we also take into account notional sampling
variability, expressing distance via a notional CI rather than
a point estimate.

5. Note that our ±1 S.E. confidence intervals are not 68% con-
fidence intervals (the null distribution is not Normal). I do
not say this in class (unless it arises from a student question)
because it is a bit of a distraction—the numerical value is
hardly important. Similarly, a student might be puzzled by
the fact that three of the 18 confidence intervals include (im-
possible) negative values. If asked, I explain that this might
be embarrassing to a professional statistician, but is not an
actual error; rather, one could devise a technically better rule
for constructing the CI so this did not happen.

6. The calculation for (1) is given in online supplemental ma-
terial. I see little value in doing algebra in real time in class;
this calculation would be posted on the course web site,
which contains extensive course-related material. One could
give a shorter derivation of the variance by quoting results
about the chi-squared distribution, but this leads to possible
confusion with the chi-squared test of significance, and the
few calculations I do in class are intended to remind students
of basic mathematical probability techniques.

3.3 Note to Instructors: Background to Benford’s Law

I do not talk in class about the history of Benford’s law, and
say only three sentences (see below) about rigorous hypothesis-
conclusion formulations, but let me write a few words here be-
cause I find some current literature unsatisfactory. Feller (1966,
pp. 62–63, trivially edited) derived Benford’s formula as fol-
lows:

The first significant digit of a number taken at random from a
large body of physical or observational data may be considered
as a random variable Y > 0 with some unknown distribution.
The first significant digit of Y equals k iff 10nk ≤ Y < 10n(k +
1) for some n. For the variable X = log10 Y this means

n + log10 k ≤ X < n + log10(k + 1). (2)

If the spread of Y is very large the reduced variable “X modulo
1” will be approximately uniformly distributed on [0,1), and the
probability of (2) is then close to log10(k + 1) − log10 k = bk .

Now Feller’s particular phrase “if the spread of Y is very
large” is a poor choice of words because if Y is Uniform[0, T ]
and T is very large, then we would normally think of Y as hav-
ing large spread, whereas what the argument implies and what
Feller obviously meant is that X = log10 Y should have large
spread. The contemporary phrase “large spread on a logarith-
mic scale” is better. With this emendment, Feller’s explanation
strikes me as the same as that in the previously cited mod-
ern sources (Fewster 1966; Wikipedia: Benford’s law 2009),
though their graphics make the argument much easier for stu-
dents to understand.

Pedantically, Feller’s explanation is not really an “explana-
tion” in the logical sense: it merely reduces a nonintuitive phe-
nomenon to a more intuitive one (that when X has substantial

spread, “X modulo 1” should be approximately uniformly dis-
tributed on [0,1)) without justifying the latter. And this intuitive
assertion does not correspond directly to any rigorous theorem,
in that it is easy to write examples where the asserted conclu-
sion is wrong.

There are several ways to obtain Benford’s distribution as
a rigorous limit under precisely specified hypotheses. Feller
(1966), in text preceding that cited above, implicitly outlined
a theorem under hypotheses to the effect that the Y is a prod-
uct of an increasing number of independent random variables.
Hill (1995) gave derivations of Benford’s law based on more
structural assumptions such as scale-invariance, and further
technical work can be found in the online bibliography at
http://www.benfordonline.net/ .

A recurring theme in the course is to emphasize that a logi-
cally correct mathematical theorem is only relevant to the real
world to the extent that you can check its assumptions in the
particular real-world setting of interest. And I do not see how to
check the assumptions of the Benford theorems for a particular
kind of datasets we studied.

Anyway, what I say in class is a three-sentence summary.

Just as there are many versions of the CLT, proving a Normal
limit under specified hypotheses, so there are several theorems
in which Benford’s law appears as the distributional limit under
specified hypotheses. However, as with the fuzzy CLT, it seems
impossible to check such hypotheses for a typical dataset of in-
terest. The significance of the associated “explanation” in the
Benford case is that its assumption is readily checked.

4. BACK TO A BIGGER PICTURE

4.1 What I Say in Class

The general theme of the course is to examine critically what
parts of the standard theoretical treatment of probability and
statistics, as presented in textbooks, correspond to empirically
verifiable features of the real world. Of course textbooks are
rarely wrong in what they say explicitly; it is more a case of
emphases, implicit impressions, and omissions. Recall, for in-
stance, that in the recent best-seller The Black Swan, Taleb
(2007) argued forcefully that basic statistics textbooks place
too much emphasis on Normal curve behavior and too little on
power-law tail behavior.

On the theme of implicit impressions, let us return to an
opening comment. There is a curious inconsistency between
what many freshman textbooks say and what they do in exer-
cises and examples regarding the issue of the validity of the
Normal approximation for observed data. Table 1 shows the
contexts, in three textbooks, where in-text examples and stu-
dent exercises use the Normal distribution.

(Note to instructor: I show the table as a slide, while say-
ing that I categorized the examples as follows, even though the
author’s intention is often unclear.)

• Cited: the author appears to have some specific dataset in
mind, though typically cited in a vague way (e.g., “the Na-
tional Health Survey”) so that the actual data cannot be read-
ily located.

• Asserted: the author appears to be saying that, as a known
general fact, data of this type are approximately Normally
distributed.
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• Assumed: the author has either completely hypothetical data,
or real data with given mean and SD but no given distribu-
tion, and tells the reader to assume Normal distribution for
the purpose of doing a calculation.

It seems a reasonable presumption that, because of such
examples, students come away from introductory statistics
courses with the perception that data on these kinds of sub-
jects follow the Normal distribution. Is this perception correct?
Well, we do not really know: scientifically serious studies are
hard to find, to put it mildly.

Now I am not suggesting that you students enter a centuries-
old debate concerning the Normal. But an interesting future stu-
dent project is to collect data (analogous to those in Table 1)
on asserted instances of power-law distributions, and The Black
Swan would be one place to start. It is also interesting to think

about protocols for choosing datasets, and some guidance is
given in the next section.

4.2 Notes to Instructors

1. Some details relating to Table 1. A few examples were ex-
cluded: quantities standardized to Normal (IQ scores); clas-
sical data (Quételet); numerical data intended for student
computer-aided analysis. Much of the human data is “bro-
ken down by age and sex,” in the classic phrase.

2. What these three texts explicitly say about the general ques-
tion

For what kinds of data is it empirically true, or reasonable to
suppose, that histograms are approximately Normal?

(we are talking about observational data, not sample aver-
ages) is brief and unobjectionable. Weiss (1999) said

Table 1. Textbook (Triola 1998; Weiss 1999; Freund 2001) examples of the Normal distribution for data.

Cited Asserted Assumed Example Type
√ √

Height Human physiology√
Weight√
Cholesterol level√
Blood pressure√
Gestation time√
Body temperature√
Brain weight√
Skull breadth√
Eye-contact time√
Reduction in oxygen consumption

. . .during transcendental meditation
√

SAT (and similar exam) scores Human behavior√
Farm laborer wages√
Family food expenses√
Recreational shopping expenses (teenage)√
TV hours watched (child)√
Time in shower√
10k race times√
Baseball batting ave√
Household paper recycling quantity√
In-home furniture assembly time√
Military service point scores√
Store complaints per day

√
Horse gestation time Non-human physiology√
Rattlesnake length√
Scorpion length√
Grapefruit weight

√
TV (and similar) lifetimes Product quality√
Electrical resistance of product√
Auto tire life (miles)√
Weight in package√
Thermometer inaccuracy√
Coil springs strength√
Weight of quarters (25c)

√
Yearly major earthquakes Geophysics√
Annual rainfall Iowa√
Inter-eruption times, Old Faithful

√
Inflight radiation exposure Miscellaneous√
Mice: number of fights√
Repeated weighings
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The Normal distribution is used as a model for a variety
of physical measurements since it has been discovered that
many such measurements have distributions that are Nor-
mally distributed or at least approximately so.

Triola (1998) gave the “fuzzy CLT” quote we copied in Sec-
tion 1; and Freund (2001) said nothing.

But a reasonable supposition is that, to a student, the
memory of the one (or zero!) explicit sentence is crowded
out by many examples and exercises concerning variables of
the type in Table 1.

3. Almost any statistics course can be enlivened by discussing
quotes from The Black Swan, which I find often insight-
ful and equally often misleading; I mention it frequently in
this course. Aside from any page-by-page analysis, the main
moral I draw for statisticians from The Black Swan is that
one could not write such a book on a typical scientific topic,
only on one which has been inadequately explained by its
practitioners.

4. In class I only briefly touch upon, in the Normal context, the
broader issue of to what extent the often-asserted general fit
of particular kinds of data to particular theoretical distrib-
utions is empirically true. Let me here address the issue of
how to gather datasets to test such assertions, in order to for-
mulate a future student project on occurrence of power-law
distributions.

The data we studied for Benford’s law resulted from in-
structing a student to

go on the Internet and find authoritative datasets with
large but varying spreads
and we used every such dataset collected; call this haphaz-
ard dataset collection. In contrast, authors who choose ex-
amples which fit the theoretical distribution and reject other
examples are using selective dataset collection; this may be
fine in textbook discussion of an uncontroversial theory but
is hardly convincing as evidence for a general theory.

Now haphazard and selective data collection could be
viewed as the “stamp collecting” phase of scientific enquiry—
if Table 1 had arisen from studying actual datasets and
distinguishing the (approximately) Normal from the non-
Normal, and if we noticed that most of the “human physiol-
ogy” examples in our collection were Normal, then we could
hypothesize that most “human physiology” examples are in-
deed Normal. How to test such a hypothesis? It seems to me
that to avoid selection and classification bias one should for-
mulate and follow some protocol (just as clinical trials are
required to follow some prespecified protocol). A very strict
protocol would be

• one person states a prediction that data of type [verbal
description A] will usually fit distribution B;

• another person, given only [verbal description A] and not
the prediction, gathers a large number of datasets satisfy-
ing the description;

• a third person, given the datasets and told distribution B,
analyzes the datasets and reports how well they do fit dis-
tribution B.

This is perhaps overly elaborate in practice, certainly for
my students. But this is what it would take to convince
me of the correctness of some generalization such as “most
human physiology data is approximately Normal”—what
about you?

SUPPLEMENTAL MATERIALS

Calculation: The calculation for approximation (1). (calcula-
tion.pdf)

Data: The 18 data-sets used and their locations. (datasets.pdf)

[Received May 2009. Revised April 2010.]
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