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DYNAMIC PROGRAMMING OPTIMIZATION OVER RANDOM
DATA: THE SCALING EXPONENT FOR
NEAR-OPTIMAL SOLUTIONS*
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Abstract. A very simple example of an algorithmic problem solvable by dynamic programming
is to maximize, over A C {1,2,...,n}, the objective function [A| — %, &1(i € A,i+1 € A) for
given & > 0. This problem, with random (§;), provides a test example for studying the relationship
between optimal and near-optimal solutions of combinatorial optimization problems. We show that,
amongst solutions differing from the optimal solution in a small proportion ¢ of places, we can find
near-optimal solutions whose objective function value differs from the optimum by a factor of order
42 but not of smaller order. We conjecture this relationship holds widely in the context of dynamic
programming over random data, and Monte Carlo simulations for the Kauffman-Levin NK model are
consistent with the conjecture. This work is a technical contribution to a broad program initiated
in [D. J. Aldous and A. G. Percus, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 11211-11215] of
relating such scaling exponents to the algorithmic difficulty of optimization problems.
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1. Introduction and motivation.

1.1. Near-optimal solutions in combinatorial optimization. Consider a
combinatorial optimization problem which is “size n” in the sense that a feasible
solution x = (x;,1 < ¢ < n) consists of n elements (e.g., edges of a graph; binary
digits) subject to some constraints, and the objective function f(x) is akin to a sum
over ¢ of costs or rewards associated with each x;. In such a setting one can define
the relative distance between the structure of a feasible solution x and the optimal
solution x* by

Sn(x) = n Y {i s ay # a3},
and the relative difference in objective function is n=!|f(x) — f(x*)|. So the quantity

(1) en(8) == min{n~"|f(x) = f(x")| :n(x) >0}

measures how close we can get to the optimal value using feasible solutions which have
nonnegligibly different structure from the optimal solution. A program initiated in [3]
is to study this quantity for combinatorial optimization problems over random data.
In this setting &,,(4) becomes a random variable, but in many cases one expects that
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SCALING EXPONENT FOR NEAR-OPTIMAL SOLUTIONS 2383

as n — oo there is a deterministic limit function £(9). Motivation for this program is
a conjecture that (within some suitable class of problems)

() <xd6%asd—0

for some scaling exponent o, whose value is robust under model details, and that for
“algorithmically easy” problems we have o = 2 (which of course mimics the behavior
we expect by calculus for smooth functions f : R? — R) whereas for “algorithmically
hard” problems we have aw > 2. Here is the previous evidence in support of this
conjecture.

(i) Traveling salesman problem and minimum matching problem [3]. In the ran-
dom link (mean-field) model, a cavity method analysis (nonrigorous but generally
regarded as accurate) enables one to compute €(d) numerically and to observe scaling
exponent & = 3. In the random Euclidean model, Monte Carlo simulations suggest
the same o = 3.

(ii) Minimum spanning tree. Here we expect o = 2. This is proved in [2] for the
d > 2 dimensional random Euclidean model and also for a “disordered lattice” model.

The purpose of this paper is to consider some problems which are algorithmically
easy to solve via dynamic programming, and where we therefore expect a = 2. We
first give a trivial but instructive case (section 1.2) and then describe a prototypical
“interesting” case, the Kauffman-Levin NK model (section 1.3). Here both a heuristic
argument and simulations suggest o = 2, but we do not have a proof. Our main focus
is on giving a complete analysis of a simple nontrivial model (section 1.4), where we
are required to pick a subset A C [n] := {1,2,...,n} of items with a reward of 1
per item picked and independent and identically distributed (i.i.d.) costs &; incurred
if both items ¢ and ¢ + 1 are picked. Theorem 2 establishes o = 2 for this specific
model. In these dynamic programming examples and the minimum spanning tree
example, the key structural property is that the near-optimal solutions attaining the
minimum in (1) differ from the optimal solution via only “local changes,” each local
change affecting only a number of items which remains O(1) as § — 0. It is natural to
speculate that this structural property corresponds quite generally to the a = 2 case.

Related work. We do not know any other lines of research in theoretical computer
science which are close to the topic of this paper. A recent survey of average-case com-
plexity of NP problems is given in [7]. Interest in the average-case gap between optimal
and second-optimal solutions arises in several contexts; see, e.g., [5]. Closer in spirit is
the statistical physics of disordered systems, where for low temperatures the Gibbs dis-
tribution on configurations concentrates on near-minimal-cost configurations. In the
context of random energy models (the precise analogue of optimization over random
data), two random picks from the Gibbs distribution over the same random choice of
energy are called replicas, and study of such replicas and their overlaps is a central
theme of the replica method [15, 17]. So that topic studies the structural difference
between two typical near-optimal configurations, whereas we study the mazimal (over
all near-optimal configurations) structural difference from the optimal configuration.
Our mathematical arguments are much less sophisticated than those in statistical
physics, but there are some intriguing parallels, described briefly in section 5.2.

1.2. A trivial example. Let (X;,i¢ > 1) be i.i.d. real-valued random variables
with continuous density h(xz) and EX < oco. For each n consider the problem of
finding
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2384 D. J. ALDOUS, C. BORDENAVE, AND M. LELARGE

The maximum is obviously obtained by choosing A = {i : X; > 1} and then as n — oo
n M, — E(X; - 1T as.
Fix 0 < 0 < 1. It is also obvious that the subset A’ that minimizes

M/, = max (X:—1)
Al i

subject to |A" A A| > dn

is the subset A’ = A A D, where D is the set of indices of the [on] smallest values of
|X; —1|. Soasn — oo

1+a(9)
n Y (M, — M) —p, £(6) = / |z — 1|h(z) dx,
1—a(9)

where a(0) is defined by

1+a(9)
] z/ h(z) dx.
1—a(9)

So by continuity of h(z), and assuming 0 < h(1) < oo, as 6 | 0 we have

) a(8) ~ %(1); e(8) ~ a?(8)h(1) ~ 4}?(21)7

which is the desired “scaling exponent = 2” result.

Discussion. (i) This example illustrates a feature that arises in other examples,
that proving @ = 2 reduces to showing that the density of a certain measure at a
certain point is finite and nonzero. In nontrivial examples the measure in question
arises in the analysis of the problem rather than the statement of the problem: see
Lemma 19 below and Proposition 8 of [2].

(i) In this example we could see the form of the best near-optimal solution by
inspection, but a systematic method is to use Lagrange multipliers. In this example,
introduce a parameter # > 0 and consider for each n

Ap = arg max <Z(Xl —1)+060lAA A*|> ,

icA
where A* = {i: X; > 1} is the optimal solution. By inspection the solution is

Although now |4y A A*| is random, we can use the law of large numbers to obtain
existence of the limits

1460
5(0) := lim n~YA* A Ag| :/ h(z) dz,

n— o0 1-0
146

8(6‘) = lim n_l (Z(Xl—l)— Z(XZ_1)> :/ |{E—1|d(E
e ic A i€ Ag 1-6

By the interpretation of Lagrange multipliers, this is an implicit function representa-
tion of € as a function of § and rederives the limit (2) above.
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F1c. 1. Ezcursions of lengths | =3 and 11. Here K = 2.

1.3. The NK model. The Kauffman—Levin NK model of random fitness land-
scape has attracted extensive literature in statistical physics [10, 19] and has been
studied by probabilists [9, 11]. For our version of the model we fix K > 2. We
seek to minimize, over binary sequences x = (x1,...,2y), the objective function
HN(X) = ZZJ\;;K Wl(ZIJZ, Lid1s--- ,QTH_K), where the values (Wz(bo, bl, . ,bK) T Z
I,b € {0,1}%+!) are independent exponential(1) random variables. This is algo-
rithmically easy via dynamic programming. Write xV for the minimizing sequence.
By subadditivity there is an a.s. limit N~'Hy(x") — cg. For a general sequence
y =y write

Sn(y)=N'{1<i<N—K:(Ys,....piex) # (@, 2ol )},
en(y) = N"'(Hn(y) - Hy(x"))

and then set

3) en(6) = min{en(y) : dn(y) =6}

We expect existence of a deterministic limit

e(6) = a.s.- lim en(9d).

N—o0

A heuristic analysis. The purpose of this section is to give a heuristic argument
for £(§) < 6%. Given i and | > K + 1, consider the set of sequences y such that

(ij--'vyj+K):(xjya"'am;\;l() Vj¢[2+1,z+l],

(yj,...,yj_,_K)#(xé\[,...,mﬁK} Vieli+1,i+1].

Over this set, let D;; be the minimum of Hy(y) — Hy(x") and let y®! be the
minimizing sequence. The distribution of D;; essentially depends only on [, not on ¢
or N; write f;(0+) for its density at 0+. Let us assume

(4) > PAI(04) =A< 0.

I>K+1

It is intuitively clear how to choose a sequence y which minimizes ey (y) for a
given §. Just fix a small > 0 and create a sequence of “excursion” away from xV as
follows. For each pair (i,1) such that D;; < nl, choose y to equal y(@D on the sites
[i + K+ 1,i +1]; set y = x elsewhere. See Figure 1.

With this scheme, § will be the mean length of possible excursions starting from
a given site, that is,

S > Lnlfi(0+).

I>K+1
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TABLE 1
Monte Carlo simulations with K = 3, N = 10,000; 1000 repeats. These are exact optimizations
done by introducing a Lagrange multiplier 6 which penalizes matching (K + 1)-tuples. We find
c3 = 0.3065.

0 4 € /82 ELs
0.002 0.0397 4.85-1075 0.0308 10.9
0.004 0.0774 2.00-10"* 0.0334 11.0
0.008  0.147 7.69-10"%  0.0354 11.3
0.016  0.266 2.75-107% 0.0388 11.8

And ¢ is the mean increment of Hpy associated with possible excursions starting from
a given site, that is,

e~ Y (1/2) - nlfi(04).

I>K+1

In other words § ~ An, € ~ An?/2, giving & ~ (24) 712, which is the desired “scaling
exponent = 2” result.

Why should assumption (4) be true? Well, for large [ we expect central limit
behavior: D; a~ Normal(ul,0?l) for some g > 0 and 0 < 02 < oco. This in turn
suggests that f;(0+) should decrease at least geometrically fast in .

Note that the optimizing y~ in (3) will have (in the N — co limit) some distri-
bution L; of excursion lengths. The heuristic argument predicts that as § | 0 we have
Ls % L, where the limit distribution has P(L =1) x1fi(0+) and EL < oc.

Simulations (Table 1) with K = 3 are consistent with both the predicted scaling
exponent 2 and the prediction of existence of a § | 0 limit distribution L for excursion
lengths. Making a rigorous proof seems difficult, and so we turn to a simpler example.

1.4. Main model and results. Let (§,7 > 1) be ii.d. copies of a strictly
positive random variable &, and write G(z) = P(¢ < x). Define the benefit function

n—1

(5) h@ﬁz(&ﬂ—}jélﬁeAJ+leA0, AC{1,2,....n},

i=1

where 1(B) = 1p denotes the indicator random variable associated with an event B.
Intuitively, we choose a set A of items, getting reward 1 from each item chosen but
paying cost &; if we choose both i and i + 1; we seek to maximize benefit = reward —
cost. So we shall study

To simplify exposition we will assume

(7) G has bounded continuous density g with g(3) > 0,
which implies

(8) 0<G(3) <1,

though we suspect that Theorems 1 and 2 remain true under some much weaker
nondegeneracy assumptions. See section 5.1 for further remarks.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SCALING EXPONENT FOR NEAR-OPTIMAL SOLUTIONS 2387

We will first prove the following.
THEOREM 1. There exists % < ¢ <1 such that, a.s. and in L,

lim n~'M,, = c.

n—oo
The constant ¢ is given by the forthcoming formula (31). If € is an exponential random
variable with parameter A > 0, then

c=(1—e?M)" AL

We record the explicit value of ¢ only in the exponential case, but one could use
formula (31) to obtain explicit values for other standard distributions.

We now formalize the setup in the introduction. The optimization problem (6)
has a solution, a random subset A** C {1,2,...,n}, and Corollary 4 will show the
solution is unique with probability — 1 as n — oo. Define the random variable:

9) en(8) == min {n™ ! (fu (A7) — fu(B)) : |B & A7 > dn},

where the minimum is over all subsets B C {1,...,n} such that the symmetric dif-
ference with A" is at least én. Our main result is the following.
THEOREM 2. £(9) := lim,, Ee,, () ewists for all 0 < § < 1, and

(10) limsup 6 %£(0) < oo,
510
. —9_

(11) hr(rsll%)nfts £(6) >0.

We now outline the key ideas in the proof and the organization of this paper.

Dynamic programming over i.i.d. data is essentially just study of a related Markov
chain (section 2.2), and in our model there are simple inclusion criteria for whether
item 4 is in the optimal solution. The inclusion criterion involves two Markov chains
(one looking left, one looking right) and the cost &; (Table 2 and Lemma 5). By consid-
ering the related infinite-time stationary Markov chain and using the same inclusion
criteria, we can define a random subset A°** C Z interpretable as the solution of an
infinite optimization problem (section 2.3). The n — oo limit benefit in Theorem 1
is just the mean benefit per item using A°** in the infinite problem (section 2.4).

Study of €,(d) is an “optimization under constraint” problem, most naturally
handled via introduction of a Lagrange multiplier 6. So the B;** attaining the maxi-
mum in (9) can be studied as above by introducing a more complicated Markov chain
parametrized by € (section 4.1), finding the inclusion criteria (Table 3), formulating
the parallel optimization under constraint problem, and observing that £(¢) is repre-
sentable via functions §(6),e(#) defined in terms of the stationary distribution of the
more complicated Markov chain (Proposition 12). Without trying to write details,
it seems intuitively clear that the methodology above could be implemented in more
general dynamic programming models such as the NK model of section 1.3. However,
to complete the argument we need to analyze the § — 0 behavior of the functions
5(0),e(0). Even in our simple model, we do not have any useful explicit expression for
the needed stationary distribution, so we proceed via inequalities rather than using
the exact formulas. For the upper bound (10) we just identify a “local configuration”
which can be replaced by a different local configuration at small extra cost (section 3).
For the lower bound, we decompose the process into blocks by breaking at certain
special configurations, and then we get bounds on the chance that BgP* differs from
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o~ 1) - — -1 - d
A o — ° — 0o ... e — o — e
Ay o — o — e ... o — ° — o

Fic. 2. Included items marked o, excluded items marked o.

Ac®* on a block and bounds on the mean decrease in benefit if it does differ (sec-
tion 4.5). But these arguments rely on the particular combinatorial structure of our
special model. It is not clear how readily they can be extended to general models.

2. Analysis of optimal solutions.

2.1. Nonuniqueness. In the case n = 2, if & > 1, then both {1} and {2}
attain the maximum value 1 of the optimization problem (6): the optimizing set
is not unique. Corollary 4 shows that, provided some & + &41 < 1 is less than
1, the optimizing set A" is unique, and by assumption (8) this proviso holds with
probability — 1 as n — oco. After this section we generally ignore the possibility of
nonuniqueness.

We start with some terminology that will also be used later. For an integer
interval [g, d] with d — g + 1 even, the two complementary alternating subsets Ay, As
are as shown in Figure 2.

LEMMA 3. Letn > 2. For almost all realizations of &1, ...,&n—1, the following
are equivalent:

(a) The subset mazimizing (6) is not unique.

(b) n is even and the only optimal solutions are the two complementary alternating
subsets of [1,n].

(¢) n is even and M, =n/2.

Proof. Either of (b), (c¢) implies (a), so it is enough to show (a) implies (b) and
(¢). Suppose distinct subsets By and By attain the maximum. Then a.s. the values
of &; used in the optimal sum are identical, that is,

(12) {i: (ii+1)C By ={i: (i,i+1) C Bo}:=8, say.

First suppose S is empty. Then each of By and Bs has only isolated elements. But
amongst such sets, the maximum of (6) is attained (for n odd) uniquely by the al-
ternating subset giving M,, = (n+ 1)/2, or (for n even) only by the complementary
alternating subsets. So S empty implies (b) and (¢). For general S, take some
i € By A By, and then take the maximal interval i € [g,d] C [1,n] which is disjoint
from S. Repeating the argument above, the restrictions of By and Bs to [g,d] must
be complementary alternating subsets. If [g,d] # [1,n], then either d +1 or g — 1
is in S—say d + 1—and so d + 1 € B; N Bs. But exactly one of By, By contains d,
contradicting (12). So [g,d] = [1,n], and so S is empty. O

COROLLARY 4. If &+ &11 <1 for some 1 <i<n—2, then a.s. A2 is unique.

Proof. Fix i with & + &41 < 1 and let B be the alternating subset of [1,n]
containing ¢ and i+2. Replacing B by BU{i+1} increases the benefit by 1—& —&;11 >
0, so B cannot be optimal, and the result follows from Lemma 3. a

2.2. Dynamic programming. Finding the maximum value and the maximiz-
ing subset of (6) is algorithmically easy by dynamic programming, as follows. Define

1—1
1 L= Al - A(jecAjt+l1eA
( 3) Vn,l iEAg{I?ﬁ%ifl,i} | | ];5] (.] € ) =+ € ) )
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i—1
14 Wk = Al - 1(jeAj+1eA)]|,
( ) n,t igZAg{IR(ii.?fi—l,i} | | j;gj (.7 J + )
which differ in that the former requires i € A and the latter requires ¢ € A. The
superscripts L here and R later indicate left and right. Note that in fact V.7, WL,
above and X,f)i below do not depend on n, but the notation is useful to distinguish
from the limit process X! later.

From (13), (14) we see V,;; =1, Wl = 0, and by induction over 1 <

VnL,i+1 =1+ max(V,}; — &, W’rﬁi)?

n,g
L _ L L
Wn,i+1 - max(vn,iv Wn,i)v

the two terms in the max indicating the choice of using or not using element 7. Then
M, = max(V,},,,W[r,), and by examining which max term is used at each stage

n,n’
leading to M,, we can recover the optimizing subset Ao*.
We now describe an alternative, more useful way to obtain A"*. First, consider
the evolution rule for the process

(15) Xhi=VE-wk

as ¢ increases; the rule is
X7€71+1 =1 + nfla.X(O7 X’IFL:Z - é‘l) - maX(O, X’IFL:Z)
(16) =1+ max(—X}\, —&)1(X}E, >0).

n,i =

One can check by induction that 0 < X,ﬁl- < 1 and thus rewrite the recursion as

XY =max(1-XF 1-&).

For n fixed we define the right processes analogously:

n—1

17 VE = Al - A(jeAj+1eA

( ) n,t ieAg{Ig,liE}FX].7...7n} | | ;fﬂ (.] S yJ + S ) )
n—1

18 WhE = Al - A(jeAj+1eA

( ) 7,1 1§A§{Ill,13i-xl ..... n} | | ;fﬂ (.] € »J =+ € ) )

with V.E =1, W[ = 0. Observe that the evolution rule for the process
(19) XRo=vE-wh

as 1 decreases does not depend on n. In fact, we have

(20) X =max(1- X 1-6_1).

The point is that we can determine the optimizing random set A9** in terms of the
quantities above. Fix i, consider the quantities (X%, VL, W,k)), &, and (X[,
an?i +17Wf,i +1), and drop subscripts. We have four choices of whether to include
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TABLE 2
Inclusion criteria for i,i+ 1 in A"

—i— (i+1)— Absolute benefit Relative benefit When used
—e— —e— VL VvR _¢ XL 4 XR _¢ ¢ < min(XL, XE)
—o— —o— vl 4wk Xk if X < min(XF,¢)
—0— —e— WL+ vE xR if X < min(XF ¢)
—0— —o— wk 4wk 0 never

(marked as e in Table 2) or exclude (marked as o in Table 2) items ¢ and ¢ + 1 in
the optimal set A¢**. For each choice, the table shows the absolute benefit of that
choice and then the relative benefit (relative to the choice to exclude both items).
For each i the optimal A2** will contain, in positions (7,4 + 1), the combination with
the largest relative benefit, and the final column indicates the criteria for use of each
combination. (The case of nonuniqueness of A2, Lemma 3, is the case where X}
and X7 alternate between 0 and 1 throughout the interval [1,n], and where we have
equalities X1 = Xﬁl < &;. Outside this case, one of the three strict inequalities
holds. We ignore the nonuniqueness possibility in the summary below.)

We summarize the argument above as follows.

LEMMA 5. For each n define XL 1<i<n,and XE . 1<i<n, by

n,i? n,i?

(21) Xhi=1 X} =max(1-X11-&), 1<i<n-—1,

N,

(22) XEo=1 XF,_  =max(1- X}, 1-&1), 2<i<n

n,i’

Then A is the random subset of {1,2,...,n} specified by the following: for each
1<i<n-1,

if & <min(X),, XF 1), then i€ AY, i+1€ Ay,

n,e

if X2y <min(X),. &), then i€ Ay, i+1¢AY

n

if Xp, <min(X[F,0,6), then ig Ay, i+1€ AN

n

Let us emphasize two points:
e whether or not 7 € A" depends only on the three random variables X,f)i,
&, Xq}f,i+1§
e the only place where the value of n enters is as the boundary condition Xff’n =
1.
In the next section, we show how to define a corresponding stationary process

((XiLafiaXﬁﬂ, —00 <1< OO)

By applying the specification in Lemma 5 to this process, we will define a set A°** C Z
which will be shown (Lemma 8) to be the limit of A**. As a consequence, we will be
able to derive the limit of M, /n.

2.3. A stationary Markov chain and the infinite limit problem. The
recursion (21) specifies a Markov chain on the continuous state space [0, 1] with tran-
sitions

(23) x — max(l —x,1 —¢&),
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where ¢ has distribution function G. Write F(z) = P(X? < z) for a stationary
distribution function for this chain. Then

F(z) = P(max(1 — X¥ 1 -¢) <)
=P(min(X* &) > 1)
=Gl —2)F(1—2),

where for any distribution function F we write F(x) = 1—F(z). Iterating this identity
once gives

F(z)=G(1 —x) (1 — @(x)?(x)) ,

and solving this equation gives

G -2)G(x)
(24) PO = emea—a

The assumption (7) that G has a density implies that F' has a density, so in what
follows we do not need to distinguish carefully between weak and strict inequalities
for random variables with these distributions.

Now consider the infinite line graph, with vertices —oo < i < oo and with i.i.d.
edge-costs & on edge (¢,7 + 1) such that P(£y + & < 1) > 0, which is ensured by the
condition G(1/2) < 1.

LEMMA 6. The recursion

(25) Xh=max(1 - X}F1-¢), —oo<i<oo,

defines uniquely a joint distribution for ((&;, XF), —oo < i < 0o) in which (X1) is the
stationary Markov chain with transition kernel (23) and stationary distribution (24).
And

(26) XF=0(.. & 2,&1)

for a certain function ¢ not depending on i.

Proof. Having proved existence and uniqueness of the stationary distribution at
(24), it remains only to prove the measurability property (26). Iterating (25) once
shows

(27) 1-& < XA, <max(1-¢&, &)

So outside the event {1 —&; < &_1} the value of XZ-LJrl depends only on (£;_1,¢&;) and
not on the value of X*. So inductively on ) > 1 there exists a measurable function
@@ such that

X{ = ¢q(€-20-1,6-20,-..,&) outside NI__, {1 — &g < E24-1}-
Now (26) follows because P (ﬂngQ{l — &g <&q-1})) = P&+ & > ))ert o

0. a0
If we define an “i decreasing” process by

(28) XF=0(... &2, 841,8),
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then (X/?) satisfies the analogous recursion
(29) X =max(1- X2, 1-¢), —oo<i< oo,

and is distributed as the same stationary Markov chain. Hence we have a rigorous
definition of a unique (in distribution) stationary process (X}, &, X2 ,), —00 <i <
oo) satisfying (25), (29) which we will call the triple process. Note that from (26),
(28)

(30)  for each i the three random variables X}, &, X | are independent.

LEMMA 7. Let (XiL,fi,Xﬁl), —00 < i < 00, be the stationary triple process.
Then there is a random subset A of Z specified by the following: for each —oo <
1 < 00,

if & <min(X5, X[2), then i€ A", i+1e A",
if X, <min(XF,&), then i€ A", i+1¢gA™,
if XF <min(X[,,&), then ig A", i+1€ A"

Proof. We need only check that the definition of A°** is consistent, in that the
criterion for item 7 to be excluded should be the same whether we look at the pair
(i,7+ 1) or the pair (i — 1,7). (Of course this is intuitively clear from the consistency
in the finite setting of Lemma 5, but let us give an algebraic verification anyway.) We
need to check

{x} <min(Xfy,6)) = (X[ < min(X{,600).
Using the recursions (29), (25) for X/* and X, we need to check
{max(1-XL | 1-& 1) < min(X7 &)} = {max(1-XF |, 1-&) < min(X2 |, & 1)}

But these are equal by applying the transformation u — 1 — u to the right-hand
side. O

Because the rule defining A°** is translation-invariant, the augmented triple pro-
cess

((XingiaXi]?klv 1(7‘ S AOPt))a —00 <1 < OO)

is also stationary. The next lemma shows this process is the limit of the correspond-
ing finite-n process. The mode of convergence can be viewed as a very elementary
case of local weak convergence [4] of random graphical structures. In other words,
it asserts that relative to a random time-origin the finite processes approximate the
limit process.

LEMMA 8. Let Uy, be uniform on {1,...,n}. Asn — oo

((XiUnHannHaXf;UnJrz‘Ha LU, +i€ A7), —00<i<00)

Lo(xE &, XE 1€ A7), —o00 < i < 0),

where the left-hand side is defined arbitrarily for U,+1i & {1,...,n} and where conver-
gence in distribution is with respect to the usual product topology on infinite sequence
space.
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Proof. Because the X’s are bounded and the &’s are i.i.d., the sequence of processes
is tight in the product topology. Write

(XE &, XE |, 1(i € A*Y)), —00 < i < o0)

for a subsequential weak limit. Clearly (éz) 4 (&;). Because for each n the process

(X[, &) satisfies recursion (21), the limit (XF,&;) satisfies this recursion, and so by

the “uniqueness of joint distribution” assertion of Lemma 6, (XF,&;) < (XE &).

Applying the same argument to X we deduce
: d :
((XgnJri?gUnJri’X;z%,UnJriJrl)? —00 < i< 00) — ((XiLagiaXi}«%kl)v —00 < i < 00).

For fixed ig the event ig € A°** is a function of the limit process, the function implied
by Lemma 7, and by a standard fact [6, Theorem 5.2] it is enough to check that this
function is a.s. continuous with respect to the limit process. But this just requires
that the probability of an equality between some two of Xi% o ij 1 should be zero,
which follows from their independence (30) and existence of densities (7), (24). O

2.4. Proof of Theorem 1. Because
n n—1
M, =) 1(i€ AP) = > &l € AP i+ 1€ Ay,
i=1 i=1
we can write
n'EM, = P(U, € A%) — E&y, 1(U,, € AP, U, + 1 € AP)1(U,, # n)
and then by Lemma 8
nIEM, — c:=P(0 € A™") —E&1L(0 € A, 1 € A°P),

Note that clearly ¢ < 1; the other inequality ¢ > 1/2 holds because the subset
{1,3,5,...} is a feasible choice.
We now exploit the method of bounded differences [12] in a very routine way. We

observe that M,, = m,(&1,...,&,) for a certain function m,, with the property

changing any one argument of my,(z1,...,2,) changes the value of

my () by at most 1
This property holds because A:** will never contain a pair (i,4 + 1) for which & > 1.
And this property implies the well-known Azuma-Hoeffding inequality of the form
(see, e.g., [16])

P(|M,, — median(M,,)| > t) < 4exp(—%).

It is now routine to use this large deviation inequality to establish the a.s. and L!
convergence of n~ 1M, to c.

To evaluate c, abbreviate (XF, &, X{) to (XE, ¢ XT) and use the Lemma 7
definition of A°P* to write

P(O c AOPC) =1- P(XL < min(XR,ﬁ))

1—3(1 = P(¢ < min(X ", X)) by symmetry

=1+ 1P(¢ < min(X*, X7))
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and then

(31) c= 1+ 1P(¢ < min(X*, X%)) - E€1(¢ < min(XE, X7)).

Recall that X%, ¢ and X% are independent and that X% and X have common
distribution F' given in terms of G by (24). So (31) constitutes a formula for ¢ in

terms of the underlying distribution function G of &.
We now evaluate ¢ in the special case where € has the exponential(A) distribution:

Gz)=e ™, 0<z<oo,
so that, from formula (24), we have

e—)\(l—r)(l _ e—)\z) eM _ 1
Foy=———>— =1

We deduce

1
P(¢ < min(X*, X)) = / e MPYHXT > w) du
0

1
— 7@)\ i O /o e (eA — eA“)z du

= # <e2)‘ /1 e My — 2N + /1 exudu)
(EA —1)? 0 0

e2X —2)er — 1
-1

1
EE1(¢ < min(XE, X)) = / ure M PA(XT > w) du
0

A R 2
:m/()ue)‘ (eA—eA) du

= # <e2)‘ /1 ue Mdu — e + /1 uexudu>
(er—1)2 0 0
e — (A2 +2)et +1).

Combining,

1 N %(e”‘ —2Xe* — 1) — (2} — (N2 +2)er +1)
c=—

2 Aler —1)2
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3. The upper bound in Theorem 2. Local weak convergence (Lemma 8 above
and Lemma 11 below) provides one sense in which the n — oo limit of the solution
Agrt of the size-n optimization problem is A°"*. A logically different sense is provided
by coupling, as follows. Part of the stationary triple process is the doubly infinite
ii.d. sequence (...,&_1,&,&1,&2,...). For each n use these same random variables
&1,...,&y to construct A9**. Because of boundary effects it is not always true that
A°r*N[1,n] = A*. But we expect the sets to coincide “away from the boundary,” and
Lemma 9(b) below provides one expression of this equality. We call this technique
localization.

3.1. Optimality properties of A°?*. Lemma 7 gave a concise definition of A°**
but did not explicitly identify its optimality properties. Lemma 9 below will relate
A°P* to certain finite optima and thereby allow us to deduce some explicit properties.

The benefit function f,(A) and its maximum value M,, defined at (5), (6) refer
to subsets of [1,n], and it is convenient to make the corresponding definitions for an
arbitrary interval [£, m]:

m—1

(32)  fem(A) =14l =Y GlicAit+1€Ad), AC{{l+1,... ,m},

i={

(33) Mgy = fie.m) (A),

max
AC{E,0+1,...,m}

and denote by Af;tm] the corresponding optimizing set.
LEMMA 9. (a) If gi—l + fl <1, then i € A",

(b)Y If ¢t <m and &—1+& <1 and &1 + & < 1, then Afg_’m} is unique and

(34) AN [,m] = Af L.
If, furthermore, [£,m] C [1,n], then A2'N[¢,m] = Ajj',y (interpreting §o =0 if £ =1).

(c) If both i,i+1 € A, then & < 1.

(d) If & + €41 > 1, then i,i+ 1 and @ + 2 together cannot belong to A°*.

(e) Let k > 2. If [g,9 + 2k — 1] is an interval such that & > €441 > -+ >
Egt2k—1 > Egyor and

§+&rm>1, g<j<g+2k-2

then A" N [g, g + 2k — 1] must be one of the two complementary alternating sequences
in [g,9+ 2k —1].

Proof. (a) If &1 +& < 1, then X} > 1—¢,_1 > &, and hence from the Lemma 7
definition we see that for any possible value of Xﬂl, we have ¢ € A°P*.

(b) First note that both ¢ and m are in Af;;n]; otherwise adding each element
would increase fig (A‘[’Z;l]) by at least 1 — & and 1 — &,,_1, respectively. Next
note that by rewriting Lemma 5 (which concerns the special case [¢,m] = [1,n]) for

general [¢,m], we have a construction of Af;tm] in terms of processes X[% ), and
X[lzm]ﬂ. for £ < i < m defined by the recursions analogous to (21), (22). By (a)
both ¢ and m are in A°**. We have now shown X[ﬁ_m] = 1=& 1 = X} and
X [?m]ﬂnfl =1-&,-1 = XE_,; because the restricted and unrestricted processes have

the same boundary conditions and satisfy the same recursions over [I,m] they must

agree throughout the interval. Finally, because both endpoints ¢ and m are in Aflf“m]
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it cannot fit the “complementary alternating sequences” criteria for nonuniqueness
(Lemma 3). The same argument works for ASPt.

One could prove (c), (d), (e) algebraically from the definition of A°®*, but it is
more intuitive to exploit the finite optimality criterion as follows. From assumption (8)
there are infinitely many ¢ with £,_1+&; < 1, and so for any given ¢ there is a (random)
long interval [¢, m] containing ¢ for which by (b) A°**N[¢,m] = Afztm]. In other words,
the restriction of A°** to [¢,m] is the solution of the finite optimization problem (32),
and we can derive its properties by considering the effect of local changes. Now (c)
and (d) follow from the following observations:

(for (c)): if 4,7+ 1 are in A°™*, then removing i + 1 will give a relative benefit of
at least & — 1.

(for (d)): if 4,44+ 1,7+ 2 are all in A°®*, then removing ¢ + 1 will give a relative
benefit of & + &41 — 1.

For (e), consider j € [g,g + 2k]. By (d) we cannot have {j,j + 1,j + 2} C A°.
If j and j 4 1 but not j 4+ 2 are in A°®*, then deleting j + 1 while adding j + 2 would
increase the benefit by at least & — &;42 > 0, which is impossible. It follows that
we cannot have {j,j + 1} C A°**. Thus A°** N [g, g + 2k — 1] contains only isolated
elements. It is now easy to check that one can change A°** N [g,g + 2k — 1] into one
of the alternating sequences on [g, g + 2k — 1] in such a way that the cardinality does
not decrease, and the end items g, g + 2k — 1 change (if at all) only from included to
excluded. Thus the change can only increase the benefit; appealing to the uniqueness
property (b) in a larger interval establishes (e). O

3.2. Proof of upper bound. In this section we prove the bound

(35) lim sup 62 lim sup Ee,,(§) < oo
610 n

via a simple construction of near-optimal sets. We first describe a particular configu-
ration. Let g,d € Z such that d — g = 2k for some k > 2, and consider the sets A and
B below:

g — (g+1) - (g+2k—-1) — g+2k
A e — o — e — o0 ... ® — o — °
B e — ° — o — e ... o — ° — °

where |A A B| = 2k — 1 and the difference between the benefits of A and B is

fig.9+21(A) = flg.g+o)(B) = (b +1) = ((k +2) — & — §g42r-1)
(36) =&y +&g+2k—1 — L.
Now fix k£ > 2 and « > 0 such that ok < 1/2. Consider the event Q, defined by
€9 > g1 > Egro > - > Egran—2 > groan—1 > 5 > Egtak;
Eg—1 T8 <1y Egrop—1+E&gran <1

By assumption (7) this event has nonzero probability. If this event occurs, Lemma
9(a) shows that A°®* contains g and g + 2k, and then Lemma 9(e) implies that A°®* N
l[g,9 + 2k] is the set A above. By applying Lemma 9(b) to [¢,m] = [g,g + 2k] we
have the analogue in the finite n setting: if Q4 occurs for [g,g + 2k] C [1,n], then
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A N [g,g9 + 2k] is the set A above. So if we change A™* by replacing pattern
A by pattern B on such an interval, then from (36) the decrease in benefit equals
&g + Eg+26—1 — 1 > 0. Now define

Q) = Qg N {1 < &+ Egon—1 < 1+ 2ka},
q(a) =P(Q),
'I"(O[) = E(fg + £g+2k—l — 1)]1(an))

so that r(a) is the unconditional mean increase in benefit from the possible change,
now performed only if event QE,O‘) happens. Using assumption (7) we see that (£, +

&g+2k—1) restricted to Qf,a) has a continuous density which is nonzero at 1, which
easily implies that for fixed k

(37) qla) ~ ga, r(a)~7Fa®asal0

for constants g, 7 € (0, 00).
Given n and the optimal set A", construct a near-optimal set B,(Za) as follows.
Let g1 =1 and let

[glvgl+2k]7 [92792+2k]7 [g3ag3+2k]av[gjnvgjn+2k]

be the adjacent disjoint intervals in [1,n] containing 2k + 1 integers. For each such

g = gj, if event Qf,a) occurs, then on [g, g + 2k| replace pattern A by pattern B.
Letting n — oo and using the weak law of large numbers, we get

LIB{™ A Aort| — 2kg(a)/(2k + 1) in probability,
L(fa(A) = £o(B)) = r(a)/(2k + 1) in probability.

If %|B,(1a) A AP| < kq(a)/(2k + 1), then redefine BY to be the empty set. Then
(taking k = 3 for concreteness)

TIBL DA > 3q(a)/T,
lim - (Ef, (A7) = Efu(B{Y)) = r(a)/7.
The upper bound (35) now follows from the o — 0 asymptotics (37).

4. Proof of Theorem 2: The lower bound.

4.1. Analysis of near-optimal solutions: The quintuple process. Through-
out section 4 we fix a constant 7 > 0 such that

(38) G(i-71)>0.

Such a constant exists by assumption (7). To study near-optimal solutions, fix a
Lagrange multiplier # such that

(39) 0<6<r.

We will derive the existence of, and derive an exact expression for, the function
£(9) = lim,, Ee,,(d) when § is sufficiently small. The expression is an implicit function
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representation £(§(0)) = £(0) via two functions £(6),(0) defined (49), (50) in terms
of the stationary distribution of a certain quintuple process.

We study the modified optimization problem in which we get an extra reward 6
for choosing an item which is not in A" or for not choosing an item which is in A"

(40) max <|A| =Y GlieAi+1leA)+0AA A;;pt|> .

AC[n] P

To study this we modify (13), (14) to

(41)
_ 1—1
Vi = Al — A, j+1e A+ 0|(AAN AP)YN{1,2,....4
n,% iEAgr?ﬁl)Zi,...7i} | | ;5.7 (jﬂj—i— € )+ |( n) {7 ) 7Z}| )

(42)

1—1
Wk, = Al — A, j+1€A AN APYNL1,2,. .
Wyl M&lgwi} | A ;& (J,j+1€A)+0( wn{1,2,... i}

We also define M,, = max(f/,f,n, WnLn) and write ByP* for the corresponding optimizing

set. Note that these quantities depend on . Analogous to the definition (15) of Xﬁﬂ-
we define

VARRS VnLi - erz
Then as the analogue of (16) we can obtain the recursion
Zﬁ,i+1 =1- min(Z,f)i,&)]l(Zﬁ)i >0) + 0Jniv1,
where
ZE =140Jn1,
Ini =10 ¢ A®") — 1(i € AP").

Recall from section 2.3 the stationary triple process ((XF, &, X5 ), —0o < i < 00)
and define

Ji=1(i ¢ A7) — 1(i € A,

Just as the stationary triple process is interpretable (Lemma 8) as an n — oo limit

of the process (Xéi7 &, X,If)iﬂ), we want to define a process which will be the limit
of (Z),, X[ & XF,1). So define a quadruple process (Z}, X}, &, X[ ) to be a
process such that

(i) (XF,&, X} ) evolves as the triple process,

(ii) ZF satisfies the recursion

(43) ZE, =1-min(Z}, &)1(Z > 0) + 0Ji41.

Recall 0 < 0 < 7.
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LEmMA 10. The quadruple process ((ZiL,XiL,fi,Xﬂl),—oo < i < 00) has a
unique stationary distribution, for which

(44) ZF=( & G, & X )

for a certain function ¥ not depending on i. On the event {£;_1 +& < 1— 7}, we
have

(45) X =1-&42Z, =1-& +0Ji41.

Proof. Recursion (43) implies Z, > 1 — & + 0J;41. Thus iterating once (43)
and using this last inequality, we obtain

1—&+0Ji1 < Zh <1—min(l — &1+ 0J;,&)0(1 — &1+ 0J; > 0) + 0J41.

Thus, on the event {§_1 + & < 1 — 6} we have Zlﬁ_1 =1-¢& + 6J;41 and also,
by (27), we have X}, = 1 — &, establishing (45). Assumption (7) implies that
the event {§;_1 + & < 1 — 7} occurs for infinitely many ¢ < 0, so in particular
K :=max{i <0:§_1+& <1— 7} is finite. By the recursion (43) we can write Z&
in the form

Z§ = (ki1 €xro o 61 ZR s Irvos T, - - Jo)

for some function ¢'. Then by (45) with Z} = Zf | we can rewrite as

Z§ = PP (€, €ty Ext2y - €1 Tioi1s Ti42, JK 43, -+ o)

By the definition of A", each J; is a function of X}, &, X/, and then from the
recursions for X and X7

28 = (€, Ekv1, Eka2y - €05 X1 XD

By (45) with X} = X}, this is of the form

ZOL = w( .. ,5—275—17505X1R)'

Now (44) defines a stationary version of the quadruple process. O
Just as Xf)i was the “looking right” analogue of the “looking left” process X,f)i,
we can define a “looking right” process fo;i analogous to Zﬁ,i as follows. Define

(46)
n—1
TR M s opt .
Vn’i_ieAg{Iir,lﬁi-Xl,...,n} |A|—;§J]1(j,]+16A)+9|(AAA n{i,i+1,...,n}],
(47)
n—1
""R‘: . ) .o opt ..
Witi= emax 1A ;£J1(3,3+16A)+9|(AAA Nfivi+1,...,n}]

Then the difference ZJ, = ‘775'1- - Wfﬂ- satisfies the recursion

Zy =1—min(Z, 1, &)WZE 0 > 0)+ 00 ZF, =14 0J0n.
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TABLE 3
Inclusion criteria for i,i+ 1 in B,

—i—(i+1)—  Absolute benefit Relative benefit ~ When used
—e— —e— VL4 VR _¢ ZL 4+ ZR —¢ & < min(ZL —0J;
+0(Liga0mt + 111z 00t) —0(Ji + Jit1) ZR —0Ji41)
—e— —o— VL L WR zL —9J; (ZR —0Ji 1 1)*F
+0(1L;z a0pt + 11 1¢ A0pt) < min(ZL —0J;,¢)
—o— —e— WL 4 VR ZR 07,41 (ZL —0J;)*
+0(1 ;¢ gopt + 141 a0pt) <min(ZF —0J,11,¢)
—0— —o0— WL+ WR 0 otherwise

+0(L;c g0pt + 14 1¢ g0pt)

Recall that B;P* attains maxacqq, ...} (JA] = E;:ll &Gl(ie Aji+1e A)+0)|AN AX)).
As in section 2.2, we can write down the benefits of each of the four possible choices
for including or excluding items ¢ and ¢ + 1, and thereby obtain criteria for which
combination is used in Bg*. See Table 3, in which (Z},, &, Z[; ) is abbreviated to
(Z', ¢, Z%) and the n subscript is dropped. It should now be clear that the stationary
quadruple process can be extended to a stationary quintuple process

L yL R R .
(Z1 7Xi 7€iaXi+17Zi+1), —00 < 1 < 00,
in which Z* satisfies the recursion

3

zZE=1-min(Z}, &)1(ZE, > 0)+ 07, —oco<i<oo,

satisfied by Z[,. By “reflection symmetry” between Z® and Z*, the functional
relationship (44) holds for Z in reflected form with the same function :

(48) ZE =9 . 641,86, &1, X2 ).

We can now use the stationary quintuple process to define a random subset B°** C Z
by specifying that, for each pair (¢,7+ 1), we use the one of the four choices which has
the largest relative benefit in Table 3. Analogously to Lemma 7 one can check that
this definition is consistent. The local weak convergence property (Lemma 8) extends
to the present setting as follows.

LEMMA 11. Let U, be uniform on {1,...,n}. Asn — oo

((Zre,Un+i7Xr€,Un+i7§Un+iﬂXfll%,Un+i+17 ZrIiUn+z‘+1a
LU, +ie€ A7), 1(Un +1i € By")))—co<i<oo

_d> ((ZzLa XiLafiinIil’ Zﬁ-lv Il(l S Aom)v Il(l S Bom)))—oo<i<oo-

Proof. The proof repeats the proof of Lemma 8, using (44), (48) to incorpo-
rate the (ZL, Z%) terms. In order to incorporate the B°P* component, we need to
check that the function 1(0 € B°**) is a.s. continuous with respect to the station-
ary distribution of (ZF, X, &, X, ZE). From Table 3, we get that {0 € Bt} =
{ZF — 0Jy > min(&y, max(ZF — 6.J1,0)}. Hence, it requires that the probability of
an equality between some of two ZEF — 0.Jy, &, Z8 — 0.J; is zero. We check only
that P(ZF — 0Jy = &) = 0. The recursion satisfied by Z{ reads Z} — 0.J, =
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1 —min(ZL,, ¢ 1)1(Z%, > 0). Thus, arguing as in the proof of Lemma 10, ZF — 6.J,
is a function of (Z;L<+1,€K+1, oo, Iy, Jrg2, oo, Jo1) with K = max{i < 0 :
&—1+& <1—r7}. Since ZIL(_|r1 =1—¢x+0Jk4+1 and J; € {—1,1}, we deduce by re-
cursion that there exists a pair of integers (ig,n) with K <ip < —land —K <n < K
such that ZF € {1 — &, +n#, &, +nd}. The independence of &; and &, for i < 0 and

assumption (7) imply that P(Zf — 0Jy = &) = 0. 0
Now define
(49) 5(6) = P({0 € A} A {0 € B™'Y),
(50) g() =P(0 € A™) —E&HL(0 € A1 € A°PY) — P(0 € B™)

+E&1(0 € B, 1 € B™).

So 6(0) is the proportion of items at which A°** and B°** differ, and ¢(¢) is the
difference in mean benefit per item between A°** and B°"*. By Lemma 11,

%E|A§;‘”t A Bt = EL(U, € A) — 1(U,, € ByPY)|
(51) —P{0e A} A{0e B*}) =4(0),
and similarly the mean benefits satisfy
(52) n”HEf (A7) = Efa(B;)) — ().

PROPOSITION 12. Let /]\Zn = fn(B;7") be the benefit associated with B*; then a.s.
and in L'

(53) lim n~' B A A7 = §(6),
(54) lim n~' (M, — M,) = =(6).

Moreover for any choice Bl satisfying (53) in L', the associated benefit M|, = f,,(BY,)
satisfies

liminfn~'E(M,, — M) > £(6).

Proof. The convergence assertions (53), (54) follow from (51), (52) and the same
concentration argument used in the proof of Theorem 1; we will not repeat the details.
By construction, for any B!, the associated reward M/, satisfies

M}, + 0| B, A A < M, + 6| B A A
Then because both (Bg*) and (B),) satisfy (53), we see that

EM! <EM, +o(n). O
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Discussion. For 0 < 6 < 7 and for § = §(), Proposition 12 implies that the limit
€(9) = lim,, Ee,,(9) exists and that

£(6(0)) = <(0).
So to prove Theorem 2 it should be enough to prove
(55) 5(0) ~af, () ~p36%ash—0

for positive constants o, 3. Now the definitions (49), (50) enable us to rewrite (using
Table 3) §(6) and £(6) in terms of the stationary distribution (ZF, XF, &, XE ZEF) of
the quintuple process, as

(56) 6(0) = P ({X§ > min(X{¥, &)} A {Z5 — 0Jo > min((Z{* — 0J1) 1, &)})
e(f) = P(XF > min(XE, &) — P(ZE — 00y > min((ZF — 01)T,&))
— E& (1(& < min(XE, X{Y) — 1(& < min(Z§ — 0.0, Z{ — 0.11))) .

So if we had an explicit formula for the stationary distribution (Z&, X&', &, X, ZE),
then we could derive an explicit formula for 6(¢) and €(f) and seek to prove (55)
by calculus. But we do not have such an explicit formula—mnote the independence
property (30) of the triple process does not hold for the quintuple process—and we
have not completely succeeded in that program. We could prove the §(6) ~ af part
of (55), though we use only the weaker upper bound, proved by a simpler argument
in section 4.2. To handle £(f) we show how to rewrite §(#) and () in a different way
(Proposition 18) that allows us to derive inequalities, which will establish the stated
form of Theorem 2.

4.2. Existence of the limit function £(d). There is a minor technical point
we deal with first. We expect intuitively that the function §(6) should be continuous
monotone, but neither property is obvious. If there were small values of § which were
not of the form ¢ = §(0) for some 0, then we cannot use Proposition 12 to establish
existence of a limit £(0). Instead we outline an argument (reusing previous methods)
to prove more abstractly (Lemma 13) that the limit £(d) always exists. We could have
started the proof of Theorem 2 this way, but we wanted to emphasize the Lagrange
multiplier approach as more useful for calculation.

LEMMA 13. (9) := lim,, Ee,, () ewists for each 0 < 6 < 1.

Note that €,,(d) is a priori nondecreasing in 0, and hence £(-) is nondecreasing.

Outline proof. Fix 0 < 0 < 1. Let BY attain the minimum in the definition (9) of
en(0). Set £,(4) = liminf,, Ee,(d). There exists a subsequence (of the subsequence of
n attaining the liminf) in which the local weak convergence (Lemma 8) of A" to A°F*
extends to joint convergence of B,(f) to some limit random set B(®). The analogues of
(49), (50) with B in place of B°* equal § and &,(§). For arbitrary n, start with the
restriction (B, say) of B to [1,n] and then show that by modifying B} near the
endpoints we can construct B:* satisfying |B:* A A%*| > dn and E[n=1(f,(A%*) —
FBY) — e (8). 0

The following lemma (to be proved in section 4.4) allows us to complete the proof
of Theorem 2.

LEMMA 14. There exist positive constants C1,Cy such that, for all0 < 6 < T,

(57) 6(0) < 10,
(58) () > Co6°.
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We now finish the proof of Theorem 2. Recall that Proposition 12 showed
€(6(0)) = e(0), and that (Lemma 13) &(-) is a nondecreasing function. Using (57)

E(C10) > &(6(0)) = £(h) > 262,

and setting § = C10 gives () > C262/C?. This establishes the lower bound (11) and
completes the proof of Theorem 2.

4.3. A cycle formula representation.

LEMMA 15. If&_1+& <1 —7, theni € A and i € B*.

Proof. Suppose &_1 + & < 1 — 7. Lemma 9(a) showed i € A°**. Recall that
Bt maximizes (40). If ¢ € A, then the increase in the benefit at (40) obtained
by including ¢ is at least 1 — & — &1 — 6, so by our standing assumption (39) the
increase is positive, and so ¢ € By**. Letting n — oo and using Lemma 11 gives the
same conclusion for B°r. d

We next need a lemma (analogous to Lemma 9(b)) giving conditions under which
we can “localize” A°** and B°** by forcing them to coincide with the optimal sets Ao
and Bt for the optimization problem on [1,n] for suitable n, which we now write as
t—1.

LEMMA 16. Lett > 2. Suppose §_1 + & < 1 — 1 for each of i = 0,1,¢t —1,t.
Then the following hold:

(a) A" and B contain {0,1,t —1,t}.

(b) The restrictions of A and B to [1,t — 1] coincide with A", and B;™,.

(¢c) For any B C {1,2,...,t— 1}, either B = Ay, or fi_1(B) < fi—1(4",).

(d) In particular, either A" = B{™, or fi_1(A®™,) > fim1(By™y).

Proof. (a) follows from Lemma 15. Observe that Ay*"; and B;™, contain 1 and
t—1, because & < 1—7 and &_o < 1 — 7. If we consider the solutions Af;fm], sztm]
for some interval [¢, m] strictly containing [0,¢], then they contain 1 and ¢t — 1 by the
argument for Lemma 15. Thus by optimality the restrictions of Af;fm] and B[}p’;n] to
[1,¢t — 1] must coincide with Ay*; and B;™,. So (b) follows from weak convergence,
Lemma 11. And (c) follows from the uniqueness result, Lemma 3. |

We start by quoting a standard form (cf. [8, Exercise 6.3.4]) of Kac’s identity for
stationary processes.

LEMMA 17. Let (5;,—00 < i < o0) be a stationary ergodic sequence on some
state space, let P(Z1 € D) > 0, and let h(Z1) be real-valued and integrable. For any
to > 1, define T = tomin{i > 2:Z;, € D). Then

T-1
Eh(Z,) =E ln(al €D)> h(Ei)] .

We apply this to Z; = (ZiL,XiL,fi,&,l,&,g,Xﬁl, Zﬁl), to = 3, and
(59) Di={{1+&<1-7 &+& <1-7}={E €D}
for suitable D, making the 7 in Lemma 17 be

(60) T=3min{t >2:&3 2+&-1<1—7, -1 +&: <1—7}
Now definition (49) says 6(0) = Eh(Z,) for

h(Zp) = 1({0 € A°®*} A {0 € B°™*}).
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So Zz:ll h(Z;) equals the cardinality of A°** A B°** restricted to [1,7 — 1]. On the
event D, Lemma 16 identifies this restriction as A" | A B |, so Kac’s identity gives
(61) below. Similarly, definition (50) says €(6) = Eh(Zo) for

h(Zp) = 1(0 € A°P") — &L(0 € AP, 1 € A) —1(0 € B*™*') + & 1(0 € B, 1 € B*"),

and on the event D the sum Z?:jl h(Z;) equals the difference fr_i(AF" ) — fr—1
(B#" ) between the benefits. This establishes (62), and the final assertion (63) follows
from Lemma 16(d). To summarize:

PROPOSITION 18. Let D be the event (59) and let T be the random time (60).
Then

(61) 6(0) =E[lp x |[ATL; A B[],
(62) () =E[lp x (fr—1(A7L,) — fr—1(BFL)))],
(63) on D, either A" | = B7" | or fr—1(A7" ) — fr—1(BF",) > 0.

4.4. An integration lemma. Let us rewrite the difference in (62) as
W) = fr—1(AF",) — fr—1(B7",)

to emphasize its dependence on 6#; and note D does not depend on 6. The key
ingredient in the proof of the lower bound is the following lemma, to be proved in
section 4.5.

LEMMA 19. There exists C3 > 0 such that for all 0 < 0 < 7, for all k > 0, and
x>0,

PT >k 0<1pW(0) <z) < Cszx(k+1)P(T > k).
Taking k£ = 0 in this lemma we get
(64) P(0<1pW(h) < x) < Csz.

Recall a simple integration lemma (for a more general result see [2, Lemma 6(a)]).
LEMMA 20. Let V > 0 be a real-valued random variable such that

PO<V<z)<Cz, 0<z<o0.

Then

[P(V >0)?

>
BV 2 2C

By (64) and Lemma 20, we get

e(0) = E(LpW(9)) by (62)

[P(W(0)1p > 0)]?

>
(65) - 2C5

To finish the proof of (58), we need the following lemma.
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LEMMA 21. There exists a positive constant Cy such that, for all0 < 0 < T,
(66) P(W(0)1p > 0) > C46.
Proof. By assumption (7) we may assume that the constant 7 at (38) is such that

(67) x) >0,

inf

1/2727}I<1w<1/27'g
where g is the density function for ;. Consider the following event:

00)={¢_1€(0,1/2), & € (0,1/2—7), & € (1/2—1,1/2),

e(l-&—-0,1-&), &€ (0,1/2—27)}.
Using (67) there exists Cy > 0 such that
P(Q(0)) > Cu.
Assume this event Q(6) happens. Then §_1+& < 1—7, {+&6 < 1-7,1-0 < §+& <
1,and &+ &3 < 1—7. So D happens and, using Lemma 9(a), we have {1,2,3} € A°r*,
and by Lemma 16(b) the same holds true for A" . Still assuming Q(¢) occurs, we
see that for B = A% | \{2}, we have fr_1(A%" ) — fr—1(B) =1—-& —& € (0,0)
and therefore fr_(B)+0|AF" | A B| > fr_1(AF" ), implying 0 < W(#) by (63). In
particular
P(W(0)1p > 0) > P(Q(0)) > Cu0,

and we have proved assertion (66). a
From (65) and (66), we directly get the second assertion (58) of Lemma 14. We

now show how to obtain the first assertion of Lemma 14. Recall that, by definition,
we have

fol(B?Fpil) + 9|A0Tpil A B%pi1| > fol(AoTpil);

hence we get 6T > 0|AF" | A B, | > W(6). In particular, by Proposition 18, we
have DN {W(#) >0} C DN {6T > W () > 0}. Also, by Lemma 19, we have

5(0) < E[T1p1(W(6) > 0)] by (61)
<Y JP(T >5,05 > W(0) > 0)

<Cs0d 52+ P(T > j)

< C30E[(T + 1)1,

and T'/3 has a geometric distribution so that assertion (57) of Lemma 14 follows.
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4.5. Proof of Lemma 19. Write W = W (#). Consider the random collection
B(T-1):={BC{1,2,....,T—1}: B#A} 1€ B,T—1¢c B}.
By Proposition 18

: — > : opt _ .
(68)  on D, either W =0o0r W > Begl(l:p,l)(fT_l(AT—l) fr—1(B)) >0

Our first goal is to derive a lower bound (Lemma 24) for the right-hand side of (68)
in terms of the &’s. Until the end of the proof of Lemma 24, we are working on the
event D.

Let C = argmingegr—1)(fr—1(A7.,) — fr—1(B)) be the optimal perturbation
of A°** on [1,T — 1]. For any subinterval Z = [¢,m] C [1,T — 1] write Z, = [max({ —
1,1),min(m + 1,7 — 1)]. Decompose A°** A C' as U;Z;, where the Z;’s are disjoint
maximal intervals of A°** A C. Then

fT,1<A°Pt>—fT,1<C>=Z(f<z>(A“* (Zi)e) — fiz.).(C N (Ti)e))

- Z (fr—1(A$ ) — fr-1(Cy)),

where C; = (A% 1 NZ;°)U(CN(Z;)e). This implies that A°** AC is a single subinterval
Tof [1,T—1].

We now look at the possible perturbations of A°® on the interval [0,7]. Re-
call that we are working on the event D, and that A°®* contains 0,1,7 — 1,T. Let
Lo, L1, ..., Lk be the maximal subintervals [a, b] C A°** N[0, T] for which b > a, that
is, with at least two elements. So we can partition [0,7] as LoUSyUL1US1U...ULg,
where the Si’s are the complementary intervals. We call the Ly’s lakes and the Si’s
switches.

LEMMA 22. Let L = [a,b] be a lake. For any set B € B(T — 1) such that
BN L= A"NL° and hence BN L # AN L, we have

<i<b—1

(69) fr—i(A”) — fr—1(B) > min {1 —&a, 1 — §b—17a min 1—§&_1— &'} > 0.

Proof. First suppose B is obtained by removing from A°** a single item. If this
item is a, we have fr_i(A°™) — fr_1(B) = 1 — &; if it is b, we have fr_;(A°"") —
fr—1(B) =1 —&—1, and if it is ¢ € (a,b), then we have fr_;(A°®) — fr_1(B) =
1 —&—1 —&. So by optimality of A", the first inequality in (69) holds for these B,
and Lemma 16 implies the last inequality in (69). Now recall that Lemma 9(c) shows
ming<ij<p—1 1 — & > 0. So construct a general B by removing items from A°** one by
one, and for items after the first the benefit can only decrease. So the first inequality
holds generally. |

LEMMA 23. Let S = [a,b] be a switch and S, = [a —1,b+1]. For any set B such
that BNSS = A" NSS and BNS # A" NS, we have

fs.(A™) = fs.(B) = min{ min & +& —1, min fz, min & — a2,

a—1<i<5<b a— a<i<b

mln & b1, 1 —Ean — §b+1} .

a<i<
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A o ... ¢ — 0o — e ... e — o — e

B o ... ¢ — e — o ... 0O — e — e ... ©

Fic. 3. Case [o...0], where a < u < v <b. Benefit change = &y—1 + & — 1.

A o ... ¢ — 0o — e ... e — o — e —

C o ... ¢ — e — o ... 0o — e — o —

FI1G. 4. Case [o...e], where a <u < v <b— 1. Benefit change = &,—1.

A® o ... o — e — o — e ... e — o —

D o ... o — o — e — o ... 0o — e —
FiG. 5. Case [o...0], where a+ 1 < u < v < b. Benefit change = &y.

TABLE 4

[U,U} [a_lvo} [a_L'] [Ovb+1} ['7b+1] [a_lvb""l}
benefit change &y —&a—2 1—6a—2 &u—&41 1—-&41 1—6a—2—E&q

Proof. By construction a switch starts and ends with items not in A°** and the
two items before and after the switch are in A°**. Moreover, Table 2 shows that two
adjacent items cannot both be not in A°"*; so the items in a switch [a, b] must strictly
alternate between in and not in A°**; as illustrated in Figure 3.

We first consider a set B obtained from A°** by flipping all items in some subin-
terval [u,v] of [a,b]. There are four cases, corresponding to whether the endpoints
u,v are in or not in A°®*. We exhibit three cases in Figures 3, 4, and 5, labeled as,
e.g., [o...0], together with the value of the benefit change fg_(A°™*) — fs. (B). In the
fourth case [eo...e], the benefit change equals 1.

We also need to consider cases where the flipped subinterval [u,v] has u = a — 1
or v = b+ 1 or both. There are five cases, indicated in Table 4.

Now consider any subset B satisfying the hypothesis of Lemma 23. Decompose
A°P* A B into disjoint maximal intervals Z;. It is easy to check that the benefit change
between A°** and B is just the sum of the separate benefit changes between A°** and
APt with interval Z; flipped. Thus the minimum over B is attained by one of the
cases we have considered, establishing the lemma. |

LEMMA 24. Set w = min1§i<j§T_1{|§i + fj — 1|;€i; |1 — §1|, |€z — §J|} On the
event D, either W =0 or W > w.

Proof. We need only consider the case W > 0. Recall that C' = arg mingepr—1)
(fr—1(AF" ) — fr—1(B)) is such that A°** A C' is a single subinterval Z of [1,T — 1].
It is enough to show that C' satisfies the assumptions of Lemmas 22 (for some lake) or
the assumptions of Lemma 23 (for some switch), for then the lower bound w follows
from the lower bounds in those lemmas.

We argue by contradiction: if false, then 7 intersects some lake and some adjacent
switch, say Ly and Sy (the case of Ly and Si_; is similar). So there exists a < b < ¢
such that b = sup Ly, and Z = [a, ¢]. Now check the following;:
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If ¢ € A°*, then f(B) — f(C) =1, for B:=CU{b,b+2,b+4,...,c}\{b+1,b+
3,...,c— 1}

If ¢ ¢ A°** then f(B) — f(C) =&, for B:=CU{bb+2,0+4,...,c—1}\{b+
1,b+3,...,c}.

Either case contradicts the optimality of C. d

We may now complete the proof of Lemma 19. The key point is that the bound
w in Lemma 24 does not depend on #. From Lemma 24,

P(T >3k, 0<W(0)1p < x)

<P(T >3k, D;0<w<z)<PT >3k w<x)

§P<T23k, min |§i—|—§j—1|<a:>—|—P(TZ3k, min §Z<x)
1<i<j<T—1 1<i<T—1

> i .- > i =& .
+P (T > 3k, | Join & — 1| < x) +P <T > 3k, |, i & — &5 < x)

<i<j<T-1

The four terms on the right-hand side are treated similarly: we will just study the
final term and will prove that there exists C' > 0 independent of k such that

(70) P ( min |€z — €j| <z

1<i<j<T—1

T> 3/€> < C(k+ 1)z

The effect of conditioning on the event {T" > 3k} is that each nonoverlapping triple
(fgm, E3m+1, €3m+2) is conditioned to satisfy either {fgm +&3me1 > 1— 7'} U {fgm_;_l +

Eamrz > 1 —7For {&m + &mr1 <1 =7, Emt1 +&maz <1 -7} (form =T). Tt
follows that, for any i < j,

(71) P((&,&) €T > j) <a”*P((&, &) € ),
where
a=min(P{&+& >1-1JU{E6+&>1-71)),
P+&<l-16+&<1—-1)).

From assumption (7) the density of £; — &; is bounded by some constant b, and so

P< min |§ - & <z

1<i<j<T—1

T>3k>

<Y P& — &l <@, T > |T > 3k)

i<j

=Y P(l& — &1 < @[T > max(j + 1,3k))P(T > j + 1|T > 3k)

i<j

<baz Y (j-DP(T >j+1|T > 3k)
j>3k—1

<baz) 3(j+ 1)P(T > 34|T > 3k)

izk
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= ba_za:gk 3(j + 1)P(T > 3(j — k))

< ba"22(KE[T] + E[T(T + 1)),

where we used the fact that T/3 has a geometric distribution. This concludes the
proof of Lemma 19.

5. Final remarks.

5.1. Technical assumptions on G. We stated a single assumption (7) on G.
What we actually used was three consequences of this assumption:

e P(£ < 1/2) > 0, which implies P(§; + &4+1 < 1) > 0, was used in Lemma, 15
and thereby throughout section 4 (because it implies i € A°**) to implement
“localization” arguments.

e P(¢ < 1/2) < 1 was used in section 3.2 to show P(Q4) > 0. Note that if
P(¢ < 1/2) = 1, then the optimization problem is degenerate in that the
optimal A2** = {1,2,... n}.

e & + & has density bounded below in some interval (1,14 7), which was used
in section 3.2 to obtain (37).

The latter two are used only in a convenient way to exhibit one near-optimal set. The
“localization” arguments essentially just require one to find some event of positive
probability involving (§_g, . . ., &) which forces items 0 and 1 to be in (or not in) A°P*.
Lemma 15 is just a simple way to exhibit such an event. So we expect Theorem 2 to
remain true under much weaker assumptions on G.

5.2. Parallels with the cavity method. The arguments in this paper in the
context of i.i.d.-DP (dynamic programming) may be compared with the more sophis-
ticated arguments from the statistical physics cavity method [14], as reformulated in
more probabilistic language in [1, 4], whose prototype example we take to be the anal-
ysis of the traveling salesman problem (TSP) in the “mean-field” model of geometry
where there are n points and each of the (g) interpoint links has random length. Of
course algorithmically DP and TSP are quite different, but there are striking parallels
between the analysis of optimal solutions of i.i.d.-DP and mean-field-TSP, as follows:

e There are n — oo limits for the random data; in DP this is just the obvious
infinite i.i.d. sequence, while for mean-field-TSP it is a certain random infinite
tree.

e The “inclusion criterion” for i.i.d.-DP involves XZ-L,XZ-I_{'/|r1 and the edge-cost
&;. Finite-n TSP has of course no simple inclusion criteria, but in the n — oo
limit of mean-field-TSP there is an analogous criterion for inclusion of an
edge (4,7) in terms of quantities ZF, ZJR and the edge-length &;;. Each Z is
interpreted (cf. (19) for DP) as the difference between costs of two optimal
solutions (subject to different local constraints) on one side of the tree.

e The distribution we use for X in i.i.d.-DP, the stationary distribution of a

Markov chain, is the solution of an equation with abstract structure X 4
h(¢,X1Y). The distribution we use for Z in mean-field-TSP, by a recur-

sion on the limit tree, is the solution of an equation with abstract structure

z 4 h(& 2, 72,73, ...), where the Z7’s are i.i.d. copies of the unknown

distribution Z.
These parallels provide a glimpse of how the analogue of Theorem 1, a formula for the
asymptotic expected cost in mean-field-T'SP, may be derived (the original nonrigorous
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argument was in [13]; a rigorous proof was given only recently via more combinato-
rial methods [18]). The analogue of Theorem 2 for mean-field-TSP, using Lagrange
multipliers as in this paper, and leading to a nonrigorous argument that the scaling
exponent equals 3, was given in [3].
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model and Guilhem Semerjian for explaining to us an alternative proof of the 6(6) ~
af part of (55).
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