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OPTIMAL FLOW THROUGH THE DISORDERED LATTICE1

BY DAVID ALDOUS

University of California at Berkeley

Consider routing traffic on the N × N torus, simultaneously between all
source-destination pairs, to minimize the cost

∑
e c(e)f 2(e), where f (e) is

the volume of flow across edge e and the c(e) form an i.i.d. random environ-
ment. We prove existence of a rescaled N → ∞ limit constant for minimum
cost, by comparison with an appropriate analogous problem about minimum-
cost flows across a M × M subsquare of the lattice.

1. Introduction. In highly abstracted models of transportation or commu-
nication (e.g., roads, Internet) one is required (simultaneously for all source-
destination pairs) to route a certain “volume of flow” from source to destination,
and one seeks to minimize some notion of cost subject to some constraints (e.g.,
edge-capacities). In contrast to queueing theory, we shall regard flows as determin-
istic, but networks as random. A survey of such problems under various different
models of random networks will be given elsewhere. In this paper we focus on
the particular setting of disordered Z

2 and, after initial general discussion, study a
specific model of costs.

The mathematical structure of the lattice Z
2 with an i.i.d. random environ-

ment (c(e) : e an edge of Z
2) arises in many settings, such as first passage per-

colation [10, 14], disordered Ising models [4] and random walk in random en-
vironment [20]. Conceptually, the point of such disordered lattice models is to
represent local spatial inhomogeneity. To study flow problems, consider a N × N

square within Z
2. To see how quantities scale suppose, for each pair (v1, v2) of

vertices within the square, we send a flow of volume aN from v1 to v2 by spread-
ing it evenly amongst minimal-length paths. Then the total volume of flow along a
typical edge will be of order

aN × N4 × N/N2 = N3aN,

where number of source-destination pairs = N4; path length is of order N ; number
of edges is of order N2. We therefore scale by writing aN = ρN−3, and we inter-
pret ρ as normalized traffic intensity. This normalization convention means that, in
the optimal flow problems, we shall consider, flow volume along individual edges
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should be of order 1. To formulate one problem, suppose we impose capacity con-
straints: the total flow f (e) along each edge e cannot exceed cap(e), where the
(cap(e) : e an edge of Z

2) are i.i.d. with support bounded away from 0 and infinity.
It seems intuitively very plausible that there should be a critical value ρ0 such that

P(feasible flow exists) → 1 as N → ∞, ρ < ρ0

P(feasible flow exists) → 0 as N → ∞, ρ > ρ0.

Moreover, it seems plausible that, if we also have i.i.d. costs (cost(e) : e an edge
of Z

2) representing cost per unit volume of flow across edge e, and if (when a
feasible flow exists) we consider the cost CN of a minimum-cost feasible flow,
then we should have a limit function

lim
N

N−2
ECN = g(ρ), ρ < ρ0.

These are the kinds of results we would like to prove, but in fact (to avoid a spe-
cific technical issue discussed in Section 4.1) we replace “hard constraints” cap(e)

on the flow through an edge by “soft constraints” as follows. There is an i.i.d. en-
vironment (c(e) : e an edge of Z

2) whose interpretation is now the cost of a total
volume f (e) of flow across edge e equals c(e)f 2(e).

So the total cost of a flow is defined as∑
e

c(e)f 2(e)(1)

summed over the edges e of the N × N square. Take normalized traffic intensity
ρ = 1, and consider the cost CN of a minimum-cost flow (CN is a random variable,
the randomness arising only from the random environment). Because flow volume
across a typical edge should be of order 1, we expect a limit constant

lim
N

N−2
ECN = γ,

depending only on the distribution of c(e). This is essentially what our main result
(Theorem 1) establishes, with two further provisos. To exploit global stationar-
ity, we work on the N × N torus instead of the square; and for technical reasons
(Section 4.1) we impose a constant bound B on volume of flow across edges.

Conceptually speaking, we are modeling congestion in the following sense. In a
road network, the cost to users is the time taken to traverse a route. In the absence
of congestion the cost per user does not depend on the flow volume, so the total
cost (all users combined) associated with an edge e is linear in f (e). If congestion
causes speeds to decrease, it increases costs to all users of an edge, so the total
cost is superlinear in f (e). The choice of f 2(e) in (1) is just an arbitrary but
mathematically convenient choice of superlinear function.

Merely proving existence of a limit, as this paper does, is of course a rather
modest achievement, so let us attempt several justifications:
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(i) Experience with other “disordered lattice” problems such as first passage
percolation suggests it is very difficult to obtain explicit formulas for limit con-
stants.

(ii) A natural way to describe network behavior is via functions gN(ρ) describ-
ing how some quantity varies with traffic intensity ρ. In the context of probabil-
ity models for N -vertex networks, one would like to ensure existence of suitably
renormalized N → ∞ limit functions g(ρ), and this paper is part of a project ex-
ploring methodology for such results.

(iii) The standard technique for proving existence of limits in “spatial optimiza-
tion” problems is subadditivity, which is readily applicable to, for example, trav-
eling salesman type problems [18, 19], but which does not apply easily to our
“flow” problems, because there is no simple way to relate the optimal flow on a
2N × 2N square to the optimal flows on the four N × N subsquares. Instead we
use the local weak convergence methodology explained in Section 2.1. Our interest
in this methodology arose from its use in optimization problems over locally tree-
like random networks, where it becomes a reformulation of (special settings of)
the cavity method [16] of statistical physics and allows explicit albeit nonrigorous
calculation of limit constants.

Plan of paper. Section 2 sets out notation, states the results carefully, and out-
lines the proof. The proofs themselves comprise Sections 3 and 4. We conclude in
Section 5 with a wide-ranging discussion—about optimal flows in general, about
local weak convergence methodology, about details of our particular model and
about related work.

2. Results and notation. Section 2.1 gives a rough verbal overview of
methodology. We set up general notation in Section 2.2, enabling us to state our
convergence result (Theorem 1) in Section 2.3. In Section 2.4 we set up notation
specifically for dealing with flows across squares in the lattice, which permits us
to state Theorem 2 encapsulating the methodological idea of relating flows within
the N × N torus to flows across the M × M square. Section 2.5 then provides a
more detailed outline of the proofs to follow.

2.1. Methodology. For M < N , it is obvious that an i.i.d. environment in a
M × M subsquare of the N × N torus is distributed as an i.i.d. environment in a
M ×M subsquare of the lattice Z

2. Our methodology rests on the less obvious idea
that the N → ∞ limit of the global cost CN on the torus (which involves route-
lengths of order N ), suitably normalized, can be identified with the M → ∞ limit
of a certain quantity cM,B defined in terms of flows across the M × M square.
We say across (from boundary to boundary) because as N → ∞ the volume of
flow originating at a vertex becomes negligible compared to the volume passing
through the vertex. The argument has three parts. For a flow across a square, we
call the joint distribution of entrance and exit points the transportation measure.
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Part 1. We consider N → ∞ limits of the empirical distribution, over all M ×M

subsquares, of the transportation measure for the optimal flow, jointly with the
environment.

Part 2. We use a concentration of measure argument to show that, given the em-
pirical distribution of the transportation measure over a M × M square, for most
realizations of the (c(e)) within the square the cost of optimal flow across the
square is close to the mean cost. This allows us to take expectation over environ-
ments. Then convexity of the cost function (1) allows us to replace the empirical
transportation measure by its mean measure.

Part 3. The argument above leads to a definition (10) of cM,B which provides
lower bounds on the N → ∞ limit optimal cost. To get the corresponding up-
per bound, we need to construct flows on the N × N torus. Partition the torus
into M × M squares. The definition of cM,B involves some particular transporta-
tion measure Q0 across M × M squares. We construct flows by first constructing
a “skeleton” as a Markov chain which steps from one boundary (between two
squares) point to another boundary point; this skeleton does not depend on the re-
alization of the environment. Within each square, use a minimum cost flow (which
does depend on realization of environment) consistent with the transportation mea-
sure.

2.2. General notation. Consider a graph G = (V,E), which for our purposes
will usually be either the discrete N × N torus [0,N − 1]2 (which we call T 2

N )
or the extended M × M square described in Section 2.4. A finite oriented path
σ = (v0, v1, . . . , vk) has a source or entrance ent(σ ) = v0 and a destination or
exit exi(σ ) = vk . For an edge e of G, write n(σ, e) for the number of times that
e occurs (in either direction) in σ . Almost always we implicitly deal with self-
avoiding paths, for which n(σ, e) = 0 or 1. A path-flow is a measure (by which we
always mean a nonnegative finite measure) µ on the space � of finite paths. The
map

σ → (
ent(σ ), exi(σ )

)
from � to V × V pushes µ forward to a measure on V × V which we call the
transportation measure tra(µ) by analogy with the classical mass transportation
problem [17]. Call the edge-indexed collection

f = (
f (e), e ∈ E

) =
(∫

n(π, e)µ(dπ), e ∈ E

)

the flow-volume flo(µ) associated with µ. Thus, if tra(µ) concentrated on a single
element (v, v′), then flo(µ) would be a flow from source v to destination v′ in the
elementary sense of the max-flow min-cut theorem. But we use “flow” in the sense
of multicommodity flow, and in informal discussion we do not distinguish carefully
between path-flows and their associated flow-volumes.
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Consider a collection c = (c(e) : e an edge of E) of nonnegative real numbers.
Call c(e) a cost-factor and call c an environment. Given a flow-volume f and an
environment c, define the cost of that flow in that environment to be

cost(f, c) = ∑
e∈E

c(e)f 2(e).(2)

To make our probability model, let the environment c be chosen i.i.d. from some
distribution κ with bounded support: for some 0 < c∗ < ∞,

κ[0, c∗] = 1; (c(e) : e an edge of E) are i.i.d. (κ).(3)

In what follows, E and P denote expectation and probability with respect to the
random environment.

Call a measure θ on a finite set B constant if θ(b) is constant for all b ∈ B; we
reserve uniform for the case of a probability measure.

Write M|N for “N is a multiple of M .”

2.3. The main theorem. Now take the graph to be the discrete torus T 2
N =

[0,N − 1]2, and where helpful append a subscript ·(N) to the notation above, so
that, for instance, �(N) is the set of finite paths in T 2

N . As explained informally
in the Introduction, we want to consider flows with volume N−3 between every
source-destination pair. In the terminology above, define a standardized global
flow f to be the flow-volume of some path-flow µ for which tra(µ) is the constant
measure

tra(µ)(v,w) = N−3, (v,w) ∈ T 2
N × T 2

N .

Fix B > 1
4 for the rest of the paper. Then (Lemma 6) there exist standardized global

flows satisfying the capacity constraint

max
e

f (e) ≤ B.(4)

For a fixed environment c, consider the minimum cost subject also to this capacity
constraint:

cost(N)(c,B) := inf{cost(f, c) : f a standardized global flow satisfying (4)}.
Now make the environment random as at (3).

THEOREM 1. There exists a constant γ (κ,B) such that

lim
N→∞N−2

E cost(N)(c,B) = γ (κ,B).

The corresponding SLLN then holds by a concentration inequality; see Sec-
tion 5.
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2.4. Flows across subsquares: notation. We now develop notation for use in
the proofs.

Figure 1 (middle right) shows the M × M square [0,M − 1]2 (regarded as a
subgraph of the lattice Z

2) together with half of each edge from this square to its
complement. Create artificial boundary points b at ends of these half-edges; each
such b is of the form (−1

2 , j) or (M − 1
2 , j) or (i,−1

2) or (i,M − 1
2). Write Bo

M

for the set of all M2 internal vertices. Write BouM for the set of 4M boundary
points, and write BM = Bo

M ∪ BouM . Write EM for the edge-set (internal edges
and boundary half-edges). Call (BM,EM) the extended M × M square. We use
the general notation of Section 2.2 for the graph (BM,EM), writing a subscript ·M
where helpful. So �M denotes the set of finite paths in this graph, and a path-flow
µ has a transportation measure tra(µ) on BM ×BM and a flow-volume f = flo(µ)

on the space FM ⊂ [0,∞)EM of possible flow-volumes. Write c = (c(e), e ∈ EM)

for an environment of cost-factors on the edges of the extended M × M square;
write CM for the set of all such environments c. For a flow-volume f and an envi-
ronment c, we write

costM(f, c) = ∑
e∈EM

c(e)f 2(e).(5)

The preceding just copied general notation; we now come to new definitions
specific to the extended M × M square. Partition the boundary points BouM into
four subsets

BouM = Boutop
M ∪Boubottom

M ∪Bouleft
M ∪Bouright

M

in the way implied by the notation (Figure 1, bottom right). For b ∈ BouM , let
breflect ∈ BouM be the boundary point obtained by reflecting b top-to-bottom or
left-to-right; in particular, breflect = b mod (M,M) (Figure 1, bottom right).

Given a transportation measure Q on BouM × BouM , write Qent and Qexi for
its marginals on BouM (later we use the same notation for transportation measures
on other grids). Define QM to be the set of transportation measures Q such that

the push-forward of Qexi under b → breflect equals Qent.(6)

For Q ∈ QM , define

drift(Q) = 1

M2

∑
b1

∑
b2

(b2 − b1)Q(b1, b2).(7)

So drift(Q) is a point in R
2. Taking this point modulo (1,1) gives a point in the

continuous torus T 2 = [0,1)2:

drift1(Q) := drift(Q)mod(1,1).

Finally, define Q0 to be isotropic if it has a representation as a mixture

Q0 =
∫
QM

Qψ(dQ),(8)
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FIG. 1. Top left: the N ×N torus (here N = 20), in which the edges wrap from left side to right side
and from top to bottom. Middle left: the natural partition of the N ×N torus into M ×M subsquares.
Here M = 5. Bottom left: the boundary points BouN,M for the partition. Top right: the “ordinary”
M × M square [0,M − 1]2. Middle right: the M × M square with its boundary points. This is what
we call “the extended M × M square” in the text. Bottom right: The set BouM of boundary points of
the extended M × M square, and the map b → breflect.
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where ψ is a probability distribution on QM whose push-forward under the map
Q → drift1(Q) is the uniform probability distribution on [0,1)2. Write Qiso

M for the
set of isotropic transportation measures. Because property (6) is preserved under
mixtures, Qiso

M ⊂ QM .
Given a transportation measure Q on BouM × BouM , and an environment c,

define

costM,B(Q, c) = inf
µ

{
costM

(
flo(µ), c

)
: tra(µ) = Q,max

e
flo(µ)(e) ≤ B

}
.(9)

We now arrive at the central definition:

cM,B := inf{E costM,B(Q, c) :Q ∈ Qiso
M }.(10)

Here E is expectation w.r.t. the random environment, with the following conven-
tion. Cost-factors c(e) are i.i.d. (κ) as e runs over internal edges and over edges to
boundary points on the bottom and left sides; c(e) = 0 on other edges to boundary
points. Obviously, this convention is designed so that when the N × N torus is
partitioned into M × M squares (Figure 1, middle left), each edge of the torus is
assigned to a unique square. In bounding costs we may take the number of edges
|EM | as 2M2.

Here is the promised elaboration of Theorem 1.

THEOREM 2. For B > 1/4, there is a limit constant

γ (κ,B) = lim
M→∞M−2cM,B.

And

lim
N→∞N−2

E cost(N)(c,B) = γ (κ,B).

2.5. Outline of proof. Here we expand the rough description of methodology
(Section 2.1) into a more detailed outline of the proof. This outline will ignore
the constraint f (e) ≤ B , which enters only at a technical level, sometimes as a
convenience and sometimes as an inconvenience.

Getting an upper bound on the limit limN→∞ N−2
E cost(N)(c,B) requires a

construction of a standardized global flow. The definition (10) of cM,B involves
some particular transportation measure Q ∈ Qiso

M attaining the infimum. This Q is
a positive matrix on the boundary vertices of a standard extended M × M square,
but can be used in a natural way to define a Markov chain on the boundary points
BouN,M of the partition of the N ×N torus into M ×M squares: see Figure 2. Con-
dition (6) is the essential “compatibility” condition making this construction work.
Running the chain for a suitable number of steps with a suitable starting distribu-
tion on BouN,M gives a joint distribution of starting and ending points which is ap-
proximately uniform on BouN,M ×BouN,M . The definition (8) of isotropic is what
gives this “approximately uniform” property (Proposition 4). Making the walk into
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FIG. 2. Left side: 4 steps (Y0, Y1, Y2, Y3, Y4) of a walk on the skeleton graph. Right side: the pro-
jection walk (proN,M(Y0),proN,M(Y1),proN,M(Y2),proN,M(Y3),proN,M(Y4)) on the boundary
of the extended M ×M square. The state of the projection walk is the relative position of entry to the
next square for the skeleton walk.

a standardized global flow requires appending length o(N) path-segments at the
ends to make the transportation measure become exactly uniform, and expand-
ing a step between two points on the boundary of an M × M square into a path
across the square. But the construction makes the transportation measure across a
square be the original Q, so to “expand a step” we simply use the routing attaining
the minimum in the definition (9) of costM,B(Q, c); see Proposition 5. This com-
pletes the construction of a standardized global flow. The cost associated with the
end o(N)-length segments is negligible, and the cost associated with flow across
a typical M × M square in the torus is cM,B , leading to the desired upper bound
(Proposition 17).

The lower bound uses more abstract methods. Consider the optimal flow within
the N × N torus, then consider this flow within a randomly-positioned M × M

square, and then consider subsequential N → ∞ weak limits for fixed M . What
can we say about such a limit distribution? At first sight we cannot say anything
explicit, because we do not know anything explicit about the optimal flow on the
N × N torus. But we can collect some properties, as follows:

(i) The environment c = (c(e)) within the M × M square follows the original
i.i.d. model (3).

(ii) Because the volume of flow within the torus originating or ending at a
given vertex is N−1, in the present N → ∞ limit all the flow is across the M × M

square from boundary to boundary.
(iii) There is some random transportation measure Q giving the joint distribu-

tion of entrance and exit points of flow. Note Q will be dependent on c.
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(iv) Because a global optimum is a local optimum, given the environment c
and the transportation measure Q, the flow-volumes f = (f (e)) within the M × M

square minimize the local cost

costM(f, c) = ∑
e∈EM

c(e)f 2(e)

subject to the given transportation measure.
(v) The fact that the optimal flow on the torus was some standardized global

flow constrains the induced flows across a typical M × M square, and what it
implies is (roughly, and in part) that EQ ∈ Qiso

M .
(vi) The mean cost on the torus relates to the mean cost associated with our

typical M × M square.

Lemma 20 formalizes these assertions in the finite N context. Letting N → ∞
gives a lower bound for limN→∞ N−2

E cost(N)(c,B) involving

E inf{costM(f, c); f has transportation measure Q}.(11)

Lemma 21 states this bound precisely. Of course, we do not know explicitly
what is the distribution of Q, so we need to lower bound the quantity (11) by
appealing to constraints Q must satisfy. To do so, the key ingredients are the
two very easy facts referenced below. Consider a nonrandom Q. Then by an
easy concentration inequality (28), the random variable costM,B(Q, c) is close
to its expected value E costM,B(Q, c). So if Q were random but took values
in a small set (Qj ) of possible values, then the expectation in (11) would be
approximately the appropriate weighted average of E costM,B(Qj , c). Because
(Lemma 18) Q → E costM,B(Q, c) is convex, we could then lower bound the
quantity (11) by E costM,B(Q̄, c) for Q̄ = EQ ∈ Qiso

M , which by definition is lower
bounded by cM,B , giving the desired lower bound in Theorem 2.

So the remaining issue is to show that the quantity (11) is not much changed
by replacing Q by a “quantized” version taking values in some large finite set of
“smoothed” transportation measures, which we define as follows. Set M = KL

and partition the boundary of the M × M square into blocks of length K . Re-
quire a smoothed transportation measure Q′ to have the property that Q′(b1, b2)

depends only on the blocks containing b1 and b2, and that Q′(b1, b2) be an integer
multiple of some small constant. Then it is enough to show that, in an arbitrary
environment c, the cost of the cheapest flow f with transportation measure Q is
not much less than the cost of the cheapest flow f′ with smoothed transportation
measure Q′. This scheme turns out to be technically complicated to implement
(see Section 4.3), but a variant is carried though in Lemma 19.

3. Constructing global flows from local flows. In this section we show how
to use flows across the extended M × M square to construct standardized global
flows on the N × N torus. This leads to the upper bound of Proposition 17. The
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first stage of the argument leads to a “clean” construction of a global flow (Propo-
sition 5) for which the source-destination distribution is approximately constant.
We then need to “patch” to make the source-destination distribution be exactly
constant; this is done using some of the elementary constructions collected in Sec-
tion 3.2.

3.1. The basic construction. Fix M|N . Partition the N ×N torus into M ×M

squares in the natural way (Figure 1, middle left). Insert boundary points mid-
way along edges linking different squares. This creates a set BouN,M of 2N2/M

boundary points. Define the skeleton graph (BouN,M,EN,M) to have an edge be-
tween each pair of boundary points which are boundary points of some common
square S. Consider a measure ν on paths (xi) in the skeleton graph. For any square
S with boundary Bou(S), and for each (b1, b2) ∈ Bou(S) × Bou(S), write

ν(S)(b1, b2) = ∑
i

ν{(x0, x1, x2, . . .) : (xi, xi+1) = (b1, b2)}(12)

for the mean number of times the path steps from b1 to b2. We often discuss a
typical M × M square as if it were the standard M × M square by saying “up to
translation.”

We define some properties for a measure θ on BouN,M × BouN,M with mar-
ginals θent and θexi.

PROPERTIES 3. (i) θ has total mass N .
(i) θ is invariant under translation of the torus by (M,0) or (0,M).

(ii) θent = θexi.

Recall that QM is a set of transportation measures on the boundary of the ex-
tended M × M square.

PROPOSITION 4. Given Q ∈ QM satisfying an irreducibility property (14),
there is a measure θN,M on BouN,M × BouN,M satisfying Properties 3 and the
following two properties:

(i) There is a measure ν on paths in the skeleton graph whose transportation
measure tra(ν) = θN,M and such that, for each square S, the measure ν(S) at (12)
equals Q (up to translation).

(ii) Let θ̃N,M be the push-forward of θN,M under the map (z1, z2) →
( 1
N

z1, 1
N

z2) from BouN,M × BouN,M to T 2 × T 2 (where T 2 is the continuous
torus [0,1)2). Then as N → ∞, there is weak convergence of N−1θ̃N,M to the
distribution of (U,U + drift1(Q)), where U has uniform probability distribution
on T 2.
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PROOF. Use Q to define a transition matrix Q̄ on BouM via

Q̄(b, b′) = Q(b,b′)/Qent(b).

This is a (Markov) transition matrix because Qent(b) = ∑
b′ Q(b,b′). The set

BouN,M of inter-square boundary points b can be expanded to a set Bou+
N,M with

elements

(b,→) and (b,←); or (b,↑) and (b,↓)

indicating a direction along an inter-square edge. Use the transition matrix Q̄ to
define a transition matrix Q1(·, ·) on Bou+

N,M as follows. For a state, say, (b0,→),
the arrow points into some square S0 = [x0, x0 +M −1]×[y0, y0 +M −1], and b0
is of the form b0 = (x0, y0)+b∗

0 for some b∗
0 ∈ BouM . Any b∗

1 ∈ BouM determines
a point b1 = (x0, y0) + b∗

1 ∈ BouN,M . Define

Q1(
(b0,→), (b1, 
)

) = Q̄(b∗
0, b

∗
1),

where 
 is the direction of arrow pointing out of S0 at b1.
Using the defining property (6) for Q ∈ QM , one can check that a stationary

distribution π on Bou+
N,M for Q1 is

π
(
(x0, y0) + b∗

1, 

) = Qent(b

∗
1)/q,(13)

where as above 
 is the direction of arrow pointing out of S0 at b1, and where the
normalization constant is q = ( N

M
)2Q(BouM × BouM). Define

t = q

N
= NQ(BouM × BouM)

M2

and suppose first that t is an integer. Define a probability measure ν̄ on paths in the
skeleton graph by:

• picking an initial state in Bou+
N,M from distribution π ,

• running the Q1-chain for t steps,
• deleting arrow-labels.

Consider a typical element (b0,→) of Bou+
N,M with b0 = (x0, y0) + b∗

0 for some
b∗

0 ∈ BouM . Recalling definition (12) and using stationarity in the first line below,

ν̄(S)(b0, b1) = t ν̄{ paths with first step b0 → b1}
= tπ(b0,→)Q1(

(b0,→), (b1, 
)
)

= t
Qent(b

∗
0)

q

Q(b∗
0, b

∗
1)

Qent(b
∗
0)

= t

q
Q(b∗

0, b
∗
1)



FLOW THROUGH DISORDERED LATTICE 409

and the same identity holds for general (b0, b1). Now define the normalized mea-
sure ν(·) := Nν̄(·). Then

ν(S)(b0, b1) = tN

q
Q(b∗

0, b
∗
1) = Q(b∗

0, b
∗
1)

by definition of t . Define θN,M = tra(ν). Properties 3 follow from the constancy
properties of the stationary distribution π at (13), and assertion (i) of Proposition 4
is immediate from the construction.

Now note that if t is not an integer, then we can apply this construction to �t
and to �t�, and mix over these two cases.

It remains to prove assertion (ii). Note that the stationary π at (13), projected
down to BouN,M , is asymptotically uniform as N → ∞, in the sense that its push-
forward under the map z → N−1z converges weakly to the uniform distribution
on the continuous torus T 2.

Note that Q̄ defines a Markov transition matrix Q∗ on BouM via

Q∗(b0, b1) = Q̄(b0, b
reflect
1 ),

where b1 → breflect
1 is the “reflect top boundary with bottom boundary, reflect left

boundary with right boundary” procedure above (6).
Define a projection map proN,M : Bou+

N,M → BouM as “take modulo (M,M),
choosing the boundary point so that the arrow points into the standard M × M

square.” So, for instance,

proN,M

((
3M + i,2M − 1

2

)
,↑) = (

i,−1
2

)
proN,M

((
3M + i,2M − 1

2

)
,↓) = (

i,M − 1
2

)
.

Here is the key idea in the construction, illustrated in Figure 2. Let (Ys, s =
0,1,2, . . .) be the Q1-chain, or, more precisely, the chain defined in the same way
over the lattice Z

2, so that its values modulo (N,N) are the Q1-chain. Then it is
straightforward to verify(

Xs := proN,M(Ys), s = 0,1,2, . . .
)

is the Q∗-chain.

So the displacement YT − Y0 of the Q1-chain over T steps can be written as

YT − Y0 =
T∑

s=1

g(Xs−1,Xs); g(b0, b1) = breflect
1 − b0.

Note the right-hand side does not involve N . Suppose first

the Q∗-chain is irreducible.(14)

Then by the strong law of large numbers for additive functionals of a finite Markov
chain,

T −1
T∑

s=1

g(Xs−1,Xs) → ḡ := ∑
b,b′∈BouM

π∗(b)Q∗(b, b′)g(b, b′),
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where π∗ is the stationary distribution of Q∗. In terms of t = NQ(BouM×BouM)

M2 steps

of the Q1-chain (Ys), this says that as N → ∞,

N−1(Yt − Y0) → ḡQ(BouM × BouM)

M2 in probability.

To calculate ḡ, note that π∗(·) is proportional to Qent(·). So

ḡ = ∑
b,b′

Qent(b)

Q(BouM × BouM)
Q̄(b, b′)(b′ − b)

=
∑

b,b′(b′ − b) Q(b, b′)
Q(BouM × BouM)

= M2 drift(Q)

Q(BouM × BouM)

and so

N−1(Yt − Y0) → drift(Q) in probability.(15)

Looking at assertion (ii) of Proposition 4, we noted earlier that the first marginal of
N−1θ̃N,M converges weakly to dist(U), and (15) now shows that the conditional
distribution converges to the unit mass at drift1(Q), completing the proof. �

Recall the definition (10) of cM,B . By compactness, the inf is attained, so we
have

cM,B = E costM,B(Q0, c),

where

Q0 =
∫
QM

Qψ(dQ)(16)

for a certain probability measure ψ on QM .

PROPOSITION 5. Given an environment c on the N × N torus, we can define
path-flows µN,M(·|c) with associated flow-volumes f(·|c) on the torus such that:

(i) maxe f (e|c) ≤ B .
(ii) E cost(N)(f(·|c), c) = ( N

M
)2cM,B .

(iii) tra(µN,M(·|c)) is a measure ρN,M on BouN,M × BouN,M which does not
depend on c, and which satisfies Properties 3.

(iv) Let ρ̃N,M be the push-forward of ρN,M under the map (z1, z2) →
( 1
N

z1, 1
N

z2). Then as N → ∞ with M fixed, N−1ρ̃N,M converges weakly to the
uniform probability distribution on T 2 × T 2.
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PROOF. Deferring the issue of irreducibility in its hypothesis, Proposition 4
associates with each Q ∈ QM a measure νQ on skeleton-paths. Define the mixture

ν :=
∫
QM

νQ ψ(dQ)

corresponding to (16). Then ρN,M := tra(ν) satisfies Properties 3 by Proposition 4
and the fact that these properties are preserved under mixtures. Result (iv) follows
from Proposition 4(ii) and the definition of isotropic [under ψ , the distribution of
drift1(Q) is uniform on the continuous torus T 2]. The result that

ν(S) = Q0(17)

follows from Proposition 4(i) and the mixture construction.
Now consider the extended M × M square. By definition of cM,B , there exist

path-flows µ0(·|c) across the square (depending on the environment c), with flow-
volumes f0(·|c), such that

max
e

f 0(e|c) ≤ B ∀c,(18)

tra(µ0(·|c)) = Q0 ∀c,(19)

E costM
(
f0(·|c), c

) = cM,B.(20)

For b, b′ ∈ BouM , write µ0
b,b′(·|c) for the flow µ0(·|c) restricted to paths with en-

trance b and exit b′, and normalized to have mass 1.
Recalling the construction of νQ in Proposition 4, we see that ν can be con-

structed in 5 steps:

• pick Q from distribution ψ ,
• pick an initial state x0 in Bou+

N,M from the stationary distribution of Q,
• run the Q1-chain for t steps,
• delete arrow-labels to get a path (x0, x1, . . . , xt ) in the skeleton graph,
• take the probability distribution of the skeleton-paths thus defined, and multiply

the measure by N .

This gives measure ν. But we can augment the construction in the natural way.
Let c be an environment on the N × N torus. In each step of the skeleton
walk, the successive points (xi−1, xi) are in the boundary of some subsquare Si .
Write c(i) for the restriction of c to Si . Expand each step (xi−1, xi) into a path
(xi−1 = y0, y1, . . . , ym = xi) chosen from distribution µ0

xi−1,xi
(·|c(i)) (up to trans-

lation). Augmenting the construction in this manner gives a measure µN,M(·|c) on
paths in the N × N torus. It is easy to check [the key point being that the same
transportation measure Q0 appears in (17) and in (19)] that the restriction of these
path-flows to a subsquare Si gives path-flows on Si agreeing (up to translation)
with the path-flows µ0(·|c) across the standard M × M square. So assertions (i)
and (ii) follow from (18) and (20).
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Finally we outline the technical issue of handling the irreducibility condition
in Proposition 4. In the mixture representation (16) let ϒ be the push-forward of
ψ under the map Q → drift(Q). It is not hard to show [cf. Lemma 20(vi)] that∫
R2 ‖u‖1 ϒ(du) < ∞. Make some particular choice of irreducible transportation

measures Q(u) ∈ QM with drift(Q(u)) = u and construct the mixture

Q∗
0 =

∫
QM

Q(drift(Q)) ψ(dQ).

Then εQ∗
0 will be a feasible transportation measure, for sufficiently small ε. So we

can repeat the proof above with the mixture (16) replaced by

(1 − ε)Q0 + εQ∗
0 =

∫
QM

(
(1 − ε)Q + εQ(drift(Q)))ψ(dQ)

because now each (1 − ε)Q + εQ(drift(Q)) is irreducible. This gives the same con-
clusion except that in (ii) cM,B is replaced by cM,B(ε) := E costM,B((1 − ε)Q0 +
εQ∗

0, c). Because cM,B(ε) → cM,B as ε ↓ 0, this conclusion suffices for our later
needs. �

3.2. Patching and smoothing flows. Here we collect an assortment of simple
lemmas, mostly involving flows whose construction does not depend on the envi-
ronment. Some are used in the next section in proving the upper bound, the others
in Section 4.6 in proving the lower bound.

Write funi for the flow-volume on the N ×N torus associated with the standard-
ized global flow which puts equal weight on all minimum-length paths between
entrance and exit.

LEMMA 6. f uni(e) = �N2/2/(2N2) ≤ 1
4 for each edge e.

PROOF. Write ‖v − w‖1 for the graph-distance (i.e., shortest path length) be-
tween vertices v and w on the torus. By symmetry, f uni(e) does not depend on e,
so

2N2f uni(e) = ∑
e

f uni(e)

= N−3
∑
v

∑
w

‖v − w‖1

= N−1
∑
v

‖v − (0,0)‖1

= 2
N−1∑
i=1

min(i,N − i)

= �N2/2. �

The next lemma has a similar proof, which we omit.
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LEMMA 7. Let U be a uniform random vertex in the N ×N torus, and let U(L)

be a uniform random point in the L × L square centered at U , where 1 ≤ L ≤ N

is odd. Then there exists a path-flow µ such that

tra(µ) is the distribution of
(
U,U(L)

)

max
e

flo(µ)(e) ≤ L

4N2 .

LEMMA 8. Let ρ be a measure on the boundary BouM of the extended M ×M

square, and let ρ̄ be the uniform probability distribution on the internal vertices
Bouo

M . There exists a measure µ on path-space �M such that

tra(µ) = ρ × ρ̄,

max
e

flo(µ)(e) ≤ 2 max
b

ρ(b).

PROOF. Use the path from a boundary vertex b to an internal vertex a which
makes at most one turn. Check that, for any e, the number of pairs (b, a) for which
the path traverses e is at most 2M2. So

f (e) ≤ 2M2 · max
b

ρ(b) · 1

M2 . �

LEMMA 9. Let Q be a measure on BouM × BouM . There exists a measure µ

on path-space �M such that

tra(µ) = Q,

max
e

flo(µ)(e) ≤ 2
(

max
b

Qexi(b) + max
b

Qent(b)

)
.

PROOF. For each pair (b, b′) ∈ BouM × BouM , route flow via a uniform inter-
nal vertex, and use Lemma 8. �

LEMMA 10. Let θ be a measure on the bottom boundary points Boubottom
K of

the extended K × K square, and let θ̄ be the uniform probability measure on the
top boundary points Boutop

K . Then there exists a path-flow µ such that:

(i) tra(µ) = θ × θ̄ ;
(ii) maxe flo(µ)(e) ≤ maxb θ(b).

REMARK. We use K instead of M here for consistency with its application
later.
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PROOF OF LEMMA 10. By scaling, we may suppose maxb θ(b) = 1. Then it
is enough to consider the special case θ(b) = 1∀b ∈ Boubottom

K and delete surplus
flow. In this special case, we route flow from (x,−1

2) ∈ Boubottom
K to (y,K − 1

2) ∈
Boutop

K as follows. If x = y, we route straight upward. Otherwise set d = |y−x|−1
and route from (x,−1

2), up to (x, d), across to (y, d), up to (y,K − 1
2).

It is clear that the flow on each vertical edge equals 1. For the horizontal edge
(i − 1, d) − (i, d), the flow equals

2

K
|{(x, y) : 0 ≤ x ≤ i − 1, i ≤ y ≤ K − 1, y = x + d + 1}|

≤ 2

K
max(i,K − i) ≤ 1. �

The next three lemmas compare the costs of different flows. Note that the same
device [the factorization in (21)] is used each time.

LEMMA 11. For 1
4 < B1 < B2,

E cost(N)(c,B2) ≤ E cost(N)(c,B1)

≤ E cost(N)(c,B2) + c∗N2 B2(B2 − B1)

B2 − 1/4
.

PROOF. The left inequality is immediate. Fix c with maxe c(e) ≤ c∗. Let f(2)

be a flow volume for which maxe f (2)(e) ≤ B2 and cost(f(2), c) = cost(N)(c,B2)

and let funi be the uniform flow from Lemma 6. Define f(1) = λfuni + (1 − λ)f(2),
where λ = B2−B1

B2−1/4 is the solution of

B1 = 1
4λ + B2(1 − λ).

Then f(1) is a standardized global flow with maxe f (1)(e) ≤ B1, and

cost
(
f(1), c

) − cost
(
f(2), c

)
= ∑

e

c(e)
(
f (1)(e) − f (2)(e)

)(
f (1)(e) + f (2)(e)

)
(21)

≤ c∗(2B2)
∑
e

(
λ1

4

)
= c∗B2N

2λ,

establishing the lemma. �

The next lemma relates almost-isotropic transportation measures to isotropic
ones. Let µ→ be the path-flow across the extended M × M square which assigns
weight 1 to each left-to-right horizontal path; let Q→ be its transportation measure.
Define similarly µ←, µ↑, µ↓.
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LEMMA 12. Suppose Q ∈ QM and

Q + ε1Q
→ + ε2Q

← + ε3Q
↑ + ε4Q

↓ ∈ Qiso
M .

Write ε = ε1 + ε2 + ε3 + ε4. Then for B ′ ≥ B + ε,

E costM,B(Q, c) ≥ cM,B ′ − 4c∗B ′εM2.

PROOF. Given c, let µ(·|c) be a path-flow attaining the inf in the definition
(9) of costM,B(Q, c). Consider

µ′(·|c) := µ(·|c) + ε1µ
→ + ε2µ

← + ε3µ
↑ + ε4µ

↓

whose transportation measure is

Q′ := Q + ε1Q
→ + ε2Q

← + ε3Q
↑ + ε4Q

↓ ∈ Qiso
M .

Write f and f′ for flo(µ(·|c)) and flo(µ′(·|c)). Note maxe f (e) ≤ B + ε ≤ B ′ and

costM(f′, c) − costM(f, c) = ∑
e

c(e)
(
f ′(e) + f (e)

)(
f ′(e) − f (e)

)
≤ max

e
c(e) × |EM |(2B ′)ε.

So

cM,B ′ ≤ E costM,B(Q′, c)

≤ E costM
(
flo(µ′(·|c)), c

)
≤ E costM

(
flo(µ(·|c)), c

) + 2c∗B ′|EM |ε
= E costM,B(Q, c) + 4c∗B ′M2ε,

where we have used |EM | = 2M2. �

The next lemma relates the cost of an almost-standardized global flow to the
cost of a standardized global flow.

LEMMA 13. Let f = f1 + f2 be the flow-volume in a standardized global flow
on the N × N torus. Let 0 < δ < B0 − 1

4 . Suppose

max
e

f1(e) ≤ B0,

max
e

f2(e) ≤ δ.

Then there exists a standardized global flow whose flow-volume f̃ satisfies

max
e

f̃ (e) ≤ B0 − δ,

cost(f̃, c) ≤ cost(f1, c) + 8δN2B2
0

B0 − 1/4
max

e
c(e)

for every environment c.
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PROOF. Let funi be the “minimum-length” flow-volume from Lemma 6, so
maxe f uni(e) ≤ 1/4. For 0 < λ < 1, consider the mixture fλ = (1 − λ)(f1 +
f2) + λfuni arising from the corresponding mixture of path-flows. Choosing λ =

2δ
δ+B0−1/4 which is the solution of

B0 − δ = (1 − λ)(B0 + δ) + 1
4λ

ensures that maxe fλ(e) ≤ B0 − δ. For any e,

f 2
λ (e) − f 2

1 (e) = (
fλ(e) + f1(e)

)(
fλ(e) − f1(e)

)
≤ max

(
0,2B0

(
fλ(e) − f1(e)

))
≤ 2B0

(
δ + λf uni(e)

)
≤ 2B0

(
δ + 2δ

4B0 − 1

)

≤ 4δB2
0

B0 − 1/4
.

Summing over the 2N2 edges e gives the stated bound for cost(f̃, c). �

LEMMA 14. Identify the edges of the N ×N torus with a subset of the edges of
the (N +1)× (N +1) torus in the natural way, identifying edge (0, i)− (N −1, i)

with edge (0, i)− (N, i). Let c′ be an environment on the (N + 1)× (N + 1) torus
with maxe c′(e) ≤ c∗, and let c be the environment on the N × N torus induced by
the identification. Let f be a standardized global flow on the N ×N torus such that
maxe f (e) ≤ B . Then there exists a standardized global flow f′ on the (N + 1) ×
(N + 1) torus such that maxe f ′(e) ≤ B and

cost(f′, c′) ≤ cost(f, c) + (N + 1)G(c∗,B),

where G(c∗,B) depends only on c∗ and B .

PROOF. We construct a flow in three pieces. A path in the N ×N torus induces
a path in the (N +1)×(N +1) torus in a natural way, where necessarily identifying
an edge such as (0, i)−(N −1, i) in the former with the two edges (0, i)−(N, i)−
(N − 1, i) in the latter. So the flow f induces a flow f1 with associated path-flow
µ1 on the (N + 1) × (N + 1) torus such that, after renormalizing to ensure

tra(µ1)(v1, v2) = 1

(N + 1)3 , v1, v2 ∈ [0,N − 1]2,

we have

max
e

f1(e) ≤ B

(
N

N + 1

)3

,(22)

∑
e∈EN

c(e)f 2
1 (e) =

(
N

N + 1

)6

cost(f, c),(23)
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where EN denotes the subset of the edges of the (N +1)× (N +1) torus identified
with the edges of the N × N torus.

For the second piece, consider the vertex set

A := {(i,N) : 0 ≤ i ≤ N − 1} ∪ {(N, i) : 0 ≤ i ≤ N − 1}.
We shall define a path-flow µ2 such that

tra(µ2)(v1, v2) = (N + 1)−3, (v1, v2) ∈ A × [0,N − 1]2.(24)

We can do this using Lemma 8 with M = N , because the boundary points of the
extended N × N square can be mapped via a two-to-one map to A. Lemma 8 with
ρ uniform, under this mapping, gives a path-flow µ̂2 such that

tra(µ̂2)(v1, v2) = 2 × 1

4N
× 1

N2 , (v1, v2) ∈ A × [0,N − 1]2,

max
e

flo(µ̂2)(e) ≤ 4 × 1

4N
.(25)

Renormalization gives µ2 satisfying (24) and

max
e

flo(µ2)(e) ≤ 2N2

(N + 1)3 .

For the third piece we want a path-flow µ3 such that

tra(µ3)(v1, v2) = 1

(N + 1)3 ,

(v1, v2) ∈ A × A ∪ A × {(N,N)} ∪ {(N,N)} × A.

We can construct such a flow using only the edges of E(N+1) \ E(N) which are
parallel to the boundary of the N ×N square, that is, of the form (N, i)−(N, i+1)

and (i,N) − (i + 1,N). It is easy to construct such a flow with

max
e

flo(µ3)(e) ≤ 1

N + 1
.

These edges were not used by the previous flows.
Now superimpose the path-flow µ2 with its reversal (whose transportation

measure is supported on [0,N − 1]2 × A) and with µ3, and write f2 for the
resulting flow-volume. So we have constructed flow-volumes f1 and f2 on the
(N + 1) × (N + 1) torus such that

f1 + f2 is a standardized global flow

max
e

f1(e) ≤ B by (22),

max
e

f2(e) ≤ 5

N + 1
by (25),

cost(f1, c′) ≤ cost(f, c) + 2Nc∗B2,
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the latter by (23) and the crude bound for the doubled edges. Applying Lemma 13
to N + 1 and with δ = 5

N+1 establishes the result. �

Finally we state a result, somewhat analogous to the previous lemma, relating
cM+1,B to cM,B . Because this will be used (see end of Section 4.6) more for aes-
thetic than essential reasons, we take the opportunity to omit the proof.

LEMMA 15. cM+1,B ≤ cM,B + (M + 1)G′(c∗,B), where G′(c∗,B) depends
only on c∗ and B .

3.3. The upper bound. Proposition 17 below gives the upper bound in Theo-
rem 2. If the flows in Proposition 5 were exactly standardized global flows, then
Proposition 17 would follow immediately. Instead, we will use the following easy
smoothing lemma, together with the patching lemmas of Section 3.2.

LEMMA 16. Let ZN take values in the N ×N torus. Let UL be uniform on the
L×L square centered at the origin (L odd), independent of ZN . Suppose N−1ZN

converges in distribution to the uniform probability distribution on [0,1)2. Then,
provided LN/N → 0 sufficiently slowly,

min
v∈T 2

N

P (ZN + ULN
= v)/N−2 → 1.

PROPOSITION 17. There exist standardized global flows f(·|c) on the N × N

torus such that maxe f (e|c) ≤ B and such that, for each fixed M ,

lim sup
N

N−2
E costN

(
f(·|c), c

) ≤ M−2cM,B.

PROOF. Fix M|N and an environment c on the N × N torus. We construct
a flow in 4 steps, where only step 2 depends on c. Consider the transportation
measure ρN,M from Proposition 5. The restriction of its entrance marginal to the
boundary Bou(S) of an extended M × M square S in the natural partition is (up to
translation) a measure θ on BouM , which (by Properties 3) does not depend on S

and is the same for the exit marginal.
Step 1. Each vertex v of the N × N torus is in some M × M square S in the

natural partition. Construct a path-flow (with some flow-volume f1) from each v to
a random position (b0, say) on the boundary Bou(S) with distribution proportional
to θ , with total volume N−1 starting from each v.

Step 2. Use the path-flow µN,M(·|c) in Proposition 5 [with flow-volume f2 =
f2(·|c)] to send flow from a typical position b0 ∈ BouN,M to another position b1 ∈
BouN,M .

Step 3. Reverse step 1, sending flow from b1 to a uniform position (v′, say)
inside an adjacent M × M square. Write f3 for the flow-volume.
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Step 4. Send flow from v′ to a uniform random position in the LN × LN square
centered at v′. Write f4 for the flow-volume.

Let f = f1 + f2 + f3 + f4 be the flow-volume and � the transportation measure
for the concatenated flow. Combining Proposition 5(iv) and Lemma 16, provided
LN/N → 0 slowly, we have

min
y0,y1∈T 2

N

�(y0, y1) = N−3wN,(26)

where wN → 1 as N → ∞. In step 1, in each square S we are in the setting of
Lemma 8, seeking a path-flow whose transportation measure is of the form ρ̄ × ρ,
where ρ has total mass N−1M2. By Lemma 8, we can choose such a flow to satisfy

max
e

f1(e) ≤ 2 max
b

ρ(b) ≤ 2N−1M2.

The same bound holds for f3 in step 3. In step 4, using Lemma 7 and scaling, we
can take

max
e

f4(e) ≤ N · LN

4N2 = LN

4N
.

So we have

max
e

(
f1(e) + f3(e) + f4(e)

) ≤ 4M2 + (1/4)LN

N
,

while, by Proposition 5,

max
e

f2(e) ≤ B.

We want to use Lemma 13. Fix δ < B − 1
4 . Recall (26): by deleting flow, we may

assume

�(y0, y1) = N−3wN ∀(y0, y1).

So w−1
N f is a standardized global flow. Apply Lemma 13 to w−1

N f = w−1
N f2 +

w−1
N (f1 + f3 + f4) with B0 = w−1

N B . For sufficiently large N , we have

4M2 + (1/4)LN

NwN

< δ; δ <
B

wN

− 1

4
; B

wN

− δ < B

and so Lemma 13 gives a standardized global flow f̃(·|c) such that maxe f̃ (e|c) ≤ B

and

cost(N)

(
f̃(·|c), c

) ≤ w−2
N cost(N)

(
f2(·|c), c

) + 8δN2B2w−2
N

B/wN − 1/4
c∗.

So using Proposition 5(ii),

N−2
E cost(N)

(
f̃(·|c), c

) ≤ cM,B

M2w2
N

+ 8δB2w−2
N c∗

B/wN − 1/4
.
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Since wN → 1 and δ > 0 is arbitrary, we see

lim sup
N

N−2
E costN

(
f̃(·|c), c

) ≤ M−2cM,B

as N runs through multiples of M . Using Lemma 14 to interpolate other values
of N , we have established Proposition 17. �

4. The lower bound. In outline, we will use a concentration inequality (28)
and a convexity property (Lemma 18) to derive a rather technical lower bound
(Lemma 19) on the cost of any flow across a M ×M square in terms of a smoothed
transportation measure across a slightly larger square. We then consider proper-
ties of the induced flow across subsquares arising from a standardized global flow
(Section 4.4). These ingredients are then combined to prove the lower bound of
Proposition 22.

4.1. A concentration inequality. Return to the setting (Section 2.4) of the ex-
tended M × M square. Consider environments c satisfying

0 ≤ c(e) ≤ c∗ ∀e.(27)

Given a transportation measure Q on BouM × BouM , and an environment c, we
defined

costM,B(Q, c) = inf
µ

{
costM

(
flo(µ), c

)
: tra(µ) = Q,max

e
flo(µ)(e) ≤ B

}
.

By compactness, the inf is attained. Now consider the effect of changing c to c̃ by
changing the cost-factor on only a single edge e0. If µ attains the inf above, then

costM
(
flo(µ), c̃

) ≤ costM
(
flo(µ), c

) + c∗B2

and it follows that

| costM,B(Q, c̃) − costM,B(Q, c)| ≤ c∗B2.

So in our model (3) of i.i.d. random environment we can apply the most basic form
of the method of bounded differences (Azuma–Hoeffding inequality: see, e.g., [18],
Section 1.3 or [5], Section 7.2) to conclude that, for λ > 0,

P
(
costM,B(Q, c) ≤ −λ + E costM,B(Q, c)

) ≤ exp
(
− λ2

2|EM |(c∗B2)2

)
.(28)

Note that |EM | = 2M2 [recall convention below definition (10)]. Note also that we
only need a one-sided bound.

Discussion. The expectation in (28) is order M2, and the inequality says that
fluctuations are only of order M . If we use the same approach to the kind of “max-
imal flow subject to i.i.d. edge-capacities” problem mentioned in the Introduction,
then we would study a r.v. measuring maximal flow across a M × M square. As
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with (28), this r.v. would have fluctuations of order M , but now the expectation is
also of order M , so we do not have an easy concentration result.

Inequality (28) is also the reason we impose the bound B on edge-flows. This
bound causes complications in Section 4.3, where to “smooth” transportation mea-
sures on the M × M square we are forced (to preserve the bound B) to extend to a
larger square.

4.2. A convexity lemma. For fixed c the function (5) f → costM(f, c), is con-
vex, so we have the following:

LEMMA 18. For fixed c, the map Q → costM,B(Q, c) is convex, as a function
of feasible transportation measures Q on BouM × BouM .

4.3. Smoothing the transportation measure. Inequality (28) refers to a fixed
transportation measure Q. We need to use it when Q depends on c. We do this by
defining a certain finite set [Sδ(M + 2K,K,B) below] of transportation measures
and then comparing a general Q to a nearby element of that set.

Fix K|M . Consider the extended square [0,M − 1]2 centered inside the larger
extended square [−K,M +K −1]2. Let µ be a path-flow across [0,M −1]2 which
is feasible in the sense

max
e

flo(µ)(e) ≤ B

so that Q := tra(µ) is a measure on BouM × BouM . We will first use Lemma 10
to construct an extension to a path-flow µext on [−K,M + K − 1]2 whose trans-
portation measure Qext := tra(µext) has a smoothness property.

REMARK. As indicated in Section 2.5, it would be more natural and elegant
to do the construction of this section by rerouting flow within the M × M square.
But we are unable to do so. The use of the larger square [−K,M + K − 1]2 is
purely a technical device, allowing us to create flows with a smooth transportation
measure on the larger square without rerouting flow in the inner square.

The construction is illustrated in Figure 3. Partition the 4M boundary points
into (4M)/K adjacent blocks of size K , writing block(b) for an index of the block
containing b. Consider a K × K square R which extends from a block in the
boundary of the M × M square to the parallel block in the boundary of the (M +
2K) × (M + 2K) square (see Figure 3). Write Rinner and Router for the inner and
outer boundaries of R. Write θ1 and θ2 for the restrictions of Qent and of Qexi
to Rinner. By feasibility, θ1(b) + θ2(b) ≤ B for b ∈ Rinner. Lemma 10 shows that
we can create a feasible flow through R whose transportation measure is θ2 ×
θ̄2 + θ̄1 × θ1, where θ̄i is the constant measure on Router whose total mass equals
θi(Rinner). Doing this for each square R constructs a feasible flow µsmooth across
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FIG. 3. Boundary points of an extended M × M square within matching boundary points of an
extended (M + 2K) × (M + 2K) square. Here M = 10,K = 2. A typical K × K square is shown
at the top. The lines on the right side indicate part of the partition of those boundary vertices into
blocks of size K .

[−K,M + K − 1]2. Because each square R has 2K2 edges, and there are 4M/K

squares, and each edge cost is at most c∗B2, we have

costM+2K

(
flo(µsmooth), c

) ≤ costM
(
flo(µ), c

) + 8c∗B2MK.

We emphasize this holds for any path-flow µ and any environment c satisfy-
ing (27); so the flow may depend on the environment. Note that Qsmooth :=
tra(µsmooth) depends only on Q := tra(µ). Recalling the definition (9) of
costM,B(Q, c), we can minimize over path-flows with prescribed transportation
measures to get

costM+2K,B(Qsmooth, c) ≤ costM,B(Q, c) + 8c∗B2MK.(29)

Recall block(b) denotes the block containing b. Define the set S(M + 2K,K,B)

to consist of transportation measures Q on BouM+2K × BouM+2K with the prop-
erties:

(i) Q(b,b′) depends only on block(b) and block(b′).
(ii) Q is a feasible transportation measure for some path-flow µ across

[−K,M + K − 1]2 with maxe flo(µ)(e) ≤ B .
(iii) Q(b,b′) = 0 if either b or b′ is not one of the 4M boundary points which

are parallel to the 4M boundary points of the M × M square.
By construction, Qsmooth := tra(µsmooth) is an element of S(M + 2K,K,B).

We want to relate drift(Qsmooth) to drift(Q). Write R for a typical K × K square,
Bou|R for its boundary and Q|R for the transportation measure across R, in the
construction above. Then∑

b,b′∈BouM+2K

(b′ − b)Qsmooth(b, b′) = ∑
b,b′∈BouM

(b′ − b)Q(b, b′)

(30)
+ ∑

R

∑
b,b′∈Bou|R

(b′ − b)Q|R(b, b′).
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For fixed R, writing q1 and q2 for the total Qexi-measure and the Qent-measure
of the inner boundary of R (the co-boundary with the M × M square), we have
(using the product form of Q|R)∥∥∥∥∥

∑
b,b′∈Bou|R

(b′ − b)Q|R(b, b′)
∥∥∥∥∥

1

≤ |q1 − q2|K + (q1 + q2)(K/2)

≤ 3
2K(q1 + q2).

Summing over the squares R, the L1 size of the second term on the right in (30) is
at most 3Kq̄ , where q̄ := Q(BouM × BouM). So

‖(M + 2K)2 drift(Qsmooth) − M2 drift(Q)‖1 ≤ 3Kq̄.

Noting that ‖drift(Q)‖1 ≤ 2q̄
M

and that 1 − M2

(M+2K)2 ≤ 4K/M , we find

‖drift(Qsmooth) − drift(Q)‖1 ≤ 4K

M

2q̄

M
+ 3Kq̄

(M + 2K)2 ≤ 11Kq̄

M2 .

Note that, by feasibility,

q̄ ≤ 2MB.

Now let δ > 0 and define Sδ(M + 2K,K,B) to be the subset of S(M +
2K,K,B) consisting of those Q which satisfy also

(iv) Q(b,b′) is a multiple of δ/K .

We first show that the cardinality of Sδ(M +2K,K,B) is bounded by a number
depending only on M/K and B/δ:

|Sδ(M + 2K,K,B)| ≤ �(M/K,B/δ) :=
(

1 + B

δ

)(4M/K)2

.(31)

To see this, remove constraint (ii) from the definition of S(M + 2K,K,B). Then
a Q satisfying (i), (iii), (iv) is determined by an array (m(β1, β2)) of nonnegative
integers, where β1 and β2 run through the 4M/K blocks and

Q(b1, b2) = m(β1, β2)δ/K, bi ∈ βi.

The latter implies that the volume of flow from b1 to β2 is m(β1, β2)δ, and be-
cause of the bound B on edge-flows, we must have m(β1, β2) ≤ B/δ. This estab-
lishes (31).

Define a “trimmed” transportation measure Qtrim ≤ Qsmooth by

Qtrim(b, b′) is the largest multiple of δ smaller than Qsmooth(b, b′).

So Qtrim is an element of Sδ(M + 2K,K,B).
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Now consider a path-flow ν with

tra(ν) = Qtrim; max
e

flo(ν)(e) ≤ B.

Note that Q̃ := Qsmooth − Qtrim has Q̃(b1, b2) ≤ δ/K and so its marginals satisfy
max(Q̃ent(b), Q̃exi(b)) ≤ 4Mδ/K . Using Lemma 9, we can construct a path-flow
ν′ such that

tra(ν′) = Q̃; max
e

flo(ν′)(e) ≤ 16Mδ/K

and so

tra(ν + ν′) = Qsmooth; flo(ν + ν′)(e) ≤ flo(ν)(e) + 16Mδ/K ≤ B ′,

where we set B ′ := B + 16Mδ/K . Because increasing the flow-volume across an
edge by η (subject to the bound B ′) can increase the cost associated with that edge
by at most 2c∗B ′η, it follows that

costM+2K

(
flo(ν + ν′), c

) ≤ costM+2K

(
flo(ν), c

) + 2B ′c∗(16Mδ/K)|EM+2K |.
Minimizing over path-flows with prescribed transportation measures, we see

costM+2K,B ′(Qsmooth, c)
(32)

≤ costM+2K,B(Qtrim, c) + 64B ′c∗δM(M + 2K)2/K.

We now bring into play the probability measure on environments. Write

mB(Q) := E costM+2K,B(Q, c).(33)

Consider, for each c, some feasible path-flow µ(·|c) across the extended M × M

square (this notation emphasizes we allow dependence on c); write Qsmooth(·|c)
and Qtrim(·|c) for its smoothed and trimmed transportation measures. From the
concentration inequality (28) applied to M + 2K , and the finiteness of Sδ(M +
2K,K,B),

P
(
costM+2K,B

(
Qtrim(·|c), c

) ≤ −λ + mB(Qtrim(·|c)))
≤ �(M/K,B/δ) exp

(
− λ2

(2(M + 2K)c∗B2)2

)
.

This remains true if we replace the first occurrence of Qtrim by the larger Qsmooth.
Combining with (29) and rescaling λ,

P
(
costM,B

(
Q(·|c), c

) ≤ −(8 + λ)c∗B2MK + mB(Qtrim(·|c)))
≤ �(M/K,B/δ) exp

(
− λ2M2K2

2(M + 2K)2

)
.
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We tidy slightly by setting K = M/L for some L ≥ 4 and setting λ = 4 to get

P
(
costM,B

(
Q(·|c), c

) ≤ −12c∗B2M2/L + mB(Qtrim(·|c)))
≤ �(L,B/δ) exp(−M2/L2).

Note that for any feasible Q there is an upper bound on mB(Q) implied by fea-
sibility, which works out as mB(Qtrim(·|c)) ≤ B2c∗2(M + 2K)2. Applying the
elementary fact, for nonnegative r.v.’s X,Y ,

if P(X ≤ Y − a) ≤ b and Y ≤ y0, then EX ≥ EY − a − by0

shows

E costM,B

(
Q(·|c), c

) ≥ EmB(Qtrim(·|c)) − 12c∗B2M2/L

− B2c∗2(M + 2K)2�(L,B/δ) exp(−M2/L2).

Now (32) says

mB

(
Qtrim(·|c), c

) ≥ mB ′
(
Qsmooth(·|c), c

) − 64B ′c∗δM(M + 2K)2/K.

Convexity (Lemma 18) and Jensen’s inequality imply

EmB ′(Qsmooth(·|c)) ≥ mB ′(EQsmooth(·|c)).
Combining the last three inequalities and using the fact M + 2K ≤ 3

2M (because
L ≥ 4),

E costM,B

(
Q(·|c), c

) ≥ mB ′(EQsmooth(·|c)) − 12c∗B2 M2

L

− 144B ′c∗δM2L − 5c∗B2M2�(L,B/δ) exp(−M2/L2).

We can summarize the results of this section as the next lemma:

LEMMA 19. Let M = KL, where L ≥ 4. For each environment c with
maxe c(e) ≤ c∗, let µ(·|c) be a path-flow across the extended M × M square with
maxe flo(µ(·|c))(e) ≤ B . Let Q(·|c) be its transportation measure and Qsmooth(·|c)
the smoothed transportation measure across the extended (M + 2K) × (M + 2K)

square. Then

‖drift(Qsmooth(·|c)) − drift(Q(·|c))‖1 ≤ 22KB

M
(34)

and for any δ > 0,

M−2
E costM

(
flo(µ(·|c)), c

)
≥ M−2mB ′(EQsmooth(·|c)) − 12c∗B2/L(35)

− 144B ′c∗δL − 5c∗B2�(L,B/δ) exp(−M2/L2),

where B ′ = B + 16δL.



426 D. ALDOUS

4.4. Local flows induced by a global flow. This section derives identities
(Lemma 20) which restate certain quantities for flows on the N ×N torus in terms
of induced empirical distributions across M × M squares. Of course, this is “just
bookkeeping”; the point is to obtain quantities defined on spaces depending on
M not on N , so that it makes sense later to let N → ∞. Until further notice, fix
2 ≤ M < N , a global environment ĉ on the N × N torus and a standardized global
flow µ. We start with some observations.

OBSERVATION 1. A path π in the N × N torus from z1 to z2 induces (by
using the same increments) a path in the lattice Z

2 from z1 to a point z∗ of the form
z∗ = z2 + (iN, jN), where the integer pair (i, j) indicates net winding around the
torus. Define

ωN(π) = (z∗ − z1)/N ∈ R
2(36)

so that ωN(π) indicates both the normalized relative positions of origin and desti-
nation of the path within the torus, and also the number of windings.

OBSERVATION 2. Write M(S) for the space of measures on a space S. If ψ is
a probability distribution on M(S), then (under the natural integrability condition)
it has a mean measure ψ̄ ∈ M(S):

ψ̄(·) =
∫
M(S)

ν(·)ψ(dν).

OBSERVATION 3. Given a measure ν ∈ M(S × S′) with first marginal ν1 ∈
M(S), there is for s ∈ S a conditional (probability) distribution ν(·|s) ∈ M(S′)
satisfying

ν(A × B) =
∫
A

ν(B|s)ν1(ds).

Recall that �M and CM denote the sets of paths σ and of environments c on
the extended M × M square. Given (x, y) ∈ [0,N − 1]2, consider [x, x + M −
1] × [y, y + M − 1] as a subsquare of the N × N torus. The global environment
ĉ induces a local environment on the subsquare which, by translation, becomes an
element cx,y = (cx,y(e)) of CM :

cx,y(e) = ĉ
(
e + (x, y)

)
, e ∈ EM,(37)

where e + (x, y) denotes the edge e translated by (x, y).
Consider a path π in the N × N torus. Then π intersects the subsquare [x, x +

M −1]× [y, y +M −1] via some number (maybe zero) of segments σ , which (by
translation) can be regarded as elements of �M . Call these segments σi(π;x, y),
say. So the standardized global flow µ induces a measure µx,y on �M via

µx,y(·) = ∑
i

µ{π :σi(π;x, y) ∈ ·}.
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We need to record also the value of ωN(π) from (36), which leads us to define the
measure µ+

x,y on �M × R
2:

µ+
x,y(· × ·) = ∑

i

µ{π :σi(π;x, y) ∈ ·,ωN(π) ∈ ·}.

Note

(cx,y,µ
+
x,y) is an element of CM × M(�M × R

2).

Now take (x, y) as a uniform random vertex of the N ×N torus, so that the random
element (cx,y,µ

+
x,y) has some probability distribution, which we call �. So

� is a probability measure on CM × M(�M × R
2).(38)

In words, � describes the empirical distribution of local (i.e., across M ×
M squares) flows, jointly with the local environment and the relative source-
destination vector of flow-paths. As indicated initially, � contains quite a lot of
information about the global flow and environment, µ and ĉ, as we next describe.

The identity for costs. Write ν+ → ν for the “take first marginal” map M(�M ×
R

2) → M(�M). Then

(c, ν+) → costM
(
flo(ν), c

)
is a functional defined on CM × M(�M × R

2). We assert

M−2
∫
CM×M(�M×R2)

costM
(
flo(ν), c

)
�(dc, dν+) = N−2 cost

(
flo(µ), ĉ

)
.(39)

This holds because the integral equals

N−2
∑
(x,y)

costM
(
flo(µx,y), cx,y

)

and the sum here equals M2 cost(flo(µ), ĉ) because for each edge e ∈ E(N), the
cost ĉ(e)f 2(e) is counted in exactly M2 subsquares.

The identity for drift. As in Observation 1, consider a path π in the discrete
torus [0,N − 1]2 from z1 to z2 and the induced path in the lattice Z

2 from z1 to a
point z∗. Consider the natural partition �0 of [0,N − 1]2 into N2/M2 subsquares
Sx,y = [x, x + M − 1] × [y, y + M − 1]. Then

z∗ − z1 = ∑
Sx,y∈�0

∑
σ

(
exi(σ ) − ent(σ )

)

where the second sum is over the path fragments σ = σi(π;x, y), where π inter-
sects Sx,y . Averaging over shifts of the partition gives

z∗ − z1 = M−2
∑

(x,y)∈[0,N−1]2

∑
σ

(
exi(σ ) − ent(σ )

)
.(40)
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Now let �2 be the second marginal of �. So �2 is a probability distribution on
M(�M × R

2). Let �̄2 be its mean measure (Observation 2). Concretely, �̄2 =
N−2 ∑

x,y µ+
x,y . For z ∈ Z

2,

�̄2

(
· ×

{
z

N

})
= N−2

∑
x,y

µ+
x,y

(
· ×

{
z

N

})
.

Using linearity of the map ν → drift(tra(ν)),

drift
(

tra
(
�̄2

(
· × z

N

)))

= M−2N−2
∑
x,y

∫ ∑
i

(
exi

(
σi(π;x, y)

)
(41)

− ent
(
σi(π;x, y)

))
1(ωN (π)=z/N)µ(dπ)

= N−2zµ

{
π :ωN(π) = z

N

}
,

the last equality by (40). Write

ϒN(·) = N−1µ{π :ωN(π) ∈ ·}.
From the definition of standardized global flow,

the push-forward of ϒN under the map u → u mod (1,1)
(42)

is the uniform probability distribution on {N−1z : z ∈ [0,N − 1]2}.
Note that (41) can be rewritten as

drift
(
tra

(
�̄2(· × {u}))) = uϒN(u), u ∈ R

2.(43)

Identity for marginals of transportation measure. When a segment σi(π;x, y)

exits the square [x, x + M − 1] × [y, y + M − 1] via some boundary vertex, it
must enter an adjacent square. This fact easily implies the following identity. Given
u = z/N ∈ R

2, write Q = tra(�2(· × {u})). Then

the push-forward of Qexi (restricted to BouM )

under the map b → breflect(44)

equals Qent (restricted to BouM ).

Identity for terminal vertices. For a path σ ∈ �M , let inteM(σ) ∈ {0,1,2} be
the number of endpoints [ent(σ ) and exi(σ )] which are in the interior Bo

M rather
than the boundary BouM . Here inte is a mnemonic for interior. Because each path
in �(N) has exactly two endpoints, and an endpoint appears in exactly M2 sub-
squares, ∑

x,y

∫
�M

inteM(σ)µx,y(dσ ) = 2M2µ
(
�(N)

) = 2M2N.
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Writing �̄21(·) = N−2 ∑
x,y µx,y(·), so that �̄21 is the marginal of �̄2 above, we

find ∫
�M

inteM(σ) �̄21(dσ ) = 2M2/N.(45)

Bound for windings. For a path π in the N × N torus,∑
e∈E(N)

n(π, e) ≥ N‖ωN(π)‖1

and so for a standardized global flow µ with flow-volume f,∑
e∈E(N)

f (e) ≥ N

∫
‖ωN(π)‖1 µ(dπ).

If the capacity constraint maxe f (e) ≤ B is satisfied, then the left-hand side is at
most 2N2B and so ∫

‖ωN(π)‖1 µ(dπ) ≤ 2NB.(46)

Identity for total mass. From the definitions we can write the total mass of �̄2
as

�̄2(�M × R
2) = N−2

∑
x,y

∫
Hx,y(π)µ(dπ),

where Hx,y(π) is the number of segments of π which intersect the square [x, x +
M − 1] × [y, y + M − 1]. Because each step enters exactly M such squares, and
ent(π) is in exactly M2 such squares,

�̄2(�M × R
2) = N−2

(
M2N + M

∫
len(π)µ(dπ)

)
,(47)

where len(π) is the length of the path π and where the factor N is the total mass
of µ.

So far we have worked with a fixed standardized global flow µ and a fixed
global environment ĉ, so rewrite the � at (38) as �µ,ĉ to indicate this explicitly.
Now suppose the environment ĉ is random according to our probability model (3),
let µ(·|ĉ) be a standardized global flow depending on the realization of ĉ, and write

�(·) = E�µ(·|ĉ),ĉ(·)(48)

for the mixed probability distribution on CM × M(�M × R
2). Note that the mar-

ginal (�1, say) on CM is clearly just the i.i.d. distribution (3). Note also that (39)
implies

M−2
∫
CM×M(�M×R2)

costM
(
flo(ν), c

)
�(dc, dν+)

(49)
= N−2

E cost
(
flo(µ(·|ĉ)), ĉ

)
.
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We now want to replace the probability measure � by a (nonprobability) measure
�̄ on CM × �M × R

2 defined (loosely speaking) by replacing the conditional dis-
tribution (given environment) on path-flows by its conditional mean. Precisely, for
c ∈ CM , the probability distribution � has an associated conditional distribution �c
on M(�m × R

2). Define �̄c ∈ M(�m × R
2) as the mean measure (Observation 2)

of �c, and then define

�̄(dc, ·, ·) = �1(dc)�̄c(·, ·).(50)

Lemma 20 gives identities and inequalities relating �̄ to the underlying global
flows in the random environment. Identities (43)–(45) and bound (46), which do
not involve interaction between flows and environment, extend to the random en-
vironment setting in obvious ways, recorded as (iii)–(vi) below. We handle (49) as
follows. The map

ν+ → ν → flo(ν) from M(�M × R
2) → M(�M) → FM(51)

takes �̄c to some element of FM , say, fc. Applying Jensen’s inequality to the con-
vex function ν+ → costM(flo(ν), c) and the probability measure �c gives

costM(fc, c) ≤
∫
M(�M×R2)

costM
(
flo(ν), c

)
�c(dν+).

Integrating both sides against �1(dc) and using (49) gives the inequality stated in
(ii) below.

LEMMA 20. For arbitrary standardized global flows µ(·|ĉ) on the N × N

torus, define the measure �̄ on CM × �M × R
2 by (48), (50):

(i) �̄(dc, ·, ·) = �1(dc) �̄c(·, ·), where �1 is the i.i.d. probability distribu-
tion (3) on CM and where �̄c ∈ M(�M × R

2) for each c ∈ Cm.
(ii) For fc defined below (51),

M−2
E costM(fc, c) ≤ N−2

E cost
(
flo(µ(·|ĉ)), ĉ

)
.

(iii) Write �̄2(·, ·) = �̄(CM × · × ·) for the marginal measure on �M × R
2.

For D ⊂ R
2, write Q[D] = tra(�̄2(· × D)). Then

drift
(
Q[D]) =

∫
D

uϒN(du),

where

ϒN(·) = N−1
Eµ{π :ωN(π) ∈ ·|ĉ}.

(iv) For D ⊂ R
2,

the push-forward of Q
[D]
exi (restricted to BouM )

under the map b → breflect

equals Q[D]
ent (restricted to BouM ).
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(v) For �̄21(·) = �̄1(· × R
2),∫

�M

inteM(σ) �̄21(dσ ) = 2M2/N.

For the remaining parts assume maxe∈E(N)
flo(µ(·|ĉ))(e) ≤ B ∀ĉ.

(vi)
∫
R2 ‖u‖1 ϒN(du) ≤ 2B .

(vii) maxe∈EM
fc(e) ≤ B ∀c.

(viii) �̄(CM × �M × R
2) ≤ M2N−1 + 2MB .

PROOF. Part (i) holds by definition and parts (ii)–(vi) were discussed above.
Part (vii) is straightforward. For part (viii), by (47),

�̄(CM × �M × R
2) = M2N−1 + N−2ME

∫
len(π) µ(dπ |ĉ).

Now the integral equals ∑
e∈E(N)

flo(µ(·|ĉ))(e) ≤ B|E(N)|,

giving (viii). �

4.5. Properties of weak limits. Lemma 20 dealt with arbitrary standardized
global flows µ(·|ĉ). So we can apply it to flows attaining the inf in the definition

cost(N)(c,B) := inf{cost(f, c) : f a standardized global flow satisfying (4)}
and then see what happens in the N → ∞ limit.

Define

γ∗(κ,B) := lim inf
N

N−2
E cost(N)(c,B).(52)

Let �+
M ⊂ �M be the subset of paths σ which go across the M × M square in the

sense that both ent(σ ) and exi(σ ) are in the boundary BouM .

LEMMA 21. Fix M ≥ 2. There exist measures �c(·, ·), c ∈ CM on �+
M × R

2

with the following properties. Let fc be the flow-volume for the path-flow �c(· ×
R

2):

max
e

fc(e) ≤ B ∀c,(53)

M−2
E costM(fc, c) ≤ γ∗(κ,B).(54)

For bounded D ⊂ R
2, write Q[D] = tra(E�c(· × D)). Then

Q[D] ∈ QM,(55)

drift
(
Q[D]) =

∫
D

uϒ(du),(56)
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where ϒ is a probability measure on R
2 whose push-forward under the map u →

u mod (1,1) is the uniform probability distribution on T 2.

Note that the final sentence implies (via a Radon–Nikodym argument) that Q :=
tra(E�c(· × R

2)) has a “density representation”

Q =
∫

R2
Q[u] ϒ(du),

where

Q[u] ∈ QM ; drift
(
Q[u]) = u,

which implies Q ∈ Qiso
M . This result is the fundamental motivation for consider-

ing Qiso
M .

PROOF OF LEMMA 21. Recall the vague topology on M(CM × �M × R
2),

that is, convergence of integrals of continuous functions with compact support.
Recall that in this topology the condition for relative compactness of (�N) is

sup
N

�N(K) < ∞ ∀K compact.

Recall also the Fatou-like result:

if �N → � vaguely, then
∫

hd� ≤ lim inf
N

∫
hd�N

for continuous h ≥ 0.

For each N , we consider the standardized global flows attaining the inf in the
definition of cost(N)(c,B) and then define �̄N to be the measure �̄ associated with
these flows as in Lemma 20. The relative compactness condition holds by (viii)
of Lemma 20, so we can first take a subsequence of N where the lim inf in (52)
obtains, and then a subsequence such that �̄N → � weakly, for some measure �

on CM × �M × R
2. By (v) of Lemma 20,∫

inteM(σ)�(dc, dσ, du) = 0,

which says that � is supported on CM ×�+
M × R

2, that is, we may replace �M by
�+

M . For each N , the marginal of �N on CM is the i.i.d. law �1, so the marginal
of � is the same law �1, and so there is a representation

�(dc, ·, ·) = �1(dc)�c(·, ·)
which serves to define �c(·, ·). Properties (53)–(56) now follow as N → ∞ limits
of the corresponding properties (ii), (iii), (iv), (vii) of Lemma 20, once we have
shown that the probability measure ϒN on R

2 converges weakly to some limit ϒ .
But (vi) of Lemma 20 implies tightness, so by passing to a further subsequence
in N , we may assume ϒN → some ϒ . �
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4.6. Completing the lower bound. Now we will combine previous ingredients
to show the following:

PROPOSITION 22. For any B ′′ > B ,

lim sup
M

M−2cM,B ′′ ≤ γ∗(κ,B) := lim inf
N

N−2
E cost(N)(c,B).

Lemma 11 shows

B → γ∗(κ,B) is continuous nonincreasing on 1
4 < B < ∞.

Now Propositions 17 and 22 combine to prove Theorem 2 and, hence, Theorem 1.

PROOF OF PROPOSITION 22. The proof mostly consists of combining Lem-
mas 19 and 21. Fix

M = KL; δ > 0; B > 1
4

and define

ε = 22B/L; B ′ = B + 16δL

and let B ′′ ≥ B ′ + ε. First fix D ⊂ R
2 and consider

Q[D](·|c) := tra
(
�c(· × D)

)
,

where �c(·, ·) is given in Lemma 21. Applying the linear map Q → Qsmooth to
Q[D](·|c) gives transportation measures Q

[D]
smooth(·|c) across the extended (M +

2K) × (M + 2K) square such that

drift
(
Q

[D]
smooth(·|c)

) − drift
(
Q[D](·|c)) = (xc,D, yc,D),

where, by (34), |xc,D| + |yc,D| ≤ ε. If (say) xc,D > 0 and yc,D < 0, then in the
notation of Lemma 12 (applied to M + 2K) the “adjusted” transportation measure

Q
[D]
adj (·|c) := Q

[D]
smooth(·|c) + xc,DQ← + yc,DQ↑

has

drift
(
Q

[D]
adj (·|c)) = drift

(
Q[D](·|c)).(57)

The effect of the general Q → Qsmooth map on marginals is simply to average over
blocks, and so the fact (55)

Q[D] := EQ[D](·|c) ∈ QM

implies

Q
[D]
smooth := EQ

[D]
smooth(·|c) ∈ QM+2K.
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So now

Q
[D]
adj := EQ

[D]
adj (·|c)

is of the form

Q
[D]
adj = Q

[D]
smooth + ε1,DQ→ + ε2,DQ← + ε3,DQ↑ + ε4,DQ↓,

where
∑

i εi,D ≤ ε. So clearly Q
[D]
adj ∈ QM+2K . And

drift
(
Q

[D]
adj

) = E drift
(
Q

[D]
adj (·|c))

= E drift
(
Q[D](·|c)) by (57)

= drift
(
Q[D])

=
∫
D

uϒ(du) by (56).

Writing Qadj for the D = R
2 case of Q

[D]
adj , this density representation (cf. note be-

low Lemma 21) shows Qadj ∈ Qiso
M+2K . Apply Lemma 12 with (Qadj,Qsmooth :=

Q
[R2]
smooth,B

′′,B ′,M + 2K) in place of (Q′,Q,B ′,B,M):

E costM+2K,B ′(Qsmooth, c) ≥ cM+2K,B ′′ − 4c∗B ′′ε(M + 2K)2.(58)

Recalling the definition (33) of mB(Q),

mB ′(EQsmooth(·|c)) = E costM+2K,B ′
(
Qsmooth(·|c), c

)
= E costM+2K,B ′(Qsmooth, c).

Now we apply Lemma 19 to the measures �c(· × ·) given by Lemma 21, with fc
the associated flow-volume; conclusion (35) becomes

M−2
E costM(fc, c) ≥ M−2

E costM+2K,B ′(Qsmooth, c) − 12c∗B2/L

− 144B ′c∗δL − 5c∗B2�(L,B/δ) exp(−M2/L2).

The left-hand side is upper bounded by γ∗(κ,B) by (54). So combining this in-
equality with (58) gives

γ∗(κ,B) ≥ M−2cM+2K,B ′′ − 4c∗B ′′ε
(

1 + 4

L

)2

− 20c∗B2/L − 256B ′c∗δL − 8c∗B2�(L,B/δ) exp(−M2/L2).

Now take δ = L−2 and then take L = LM → ∞ slowly with M . We get the con-
clusion of Proposition 22, except with the lim supM taken through a subsequence
Mj with Mj+1/Mj → 1. But then Lemma 15 identifies the lim sup through that
subsequence with the actual lim sup. �

REMARK. Without using Lemma 15, the argument gives the analog of Propo-
sition 22 with lim infM in place of lim supM , which in turn gives the (less aesthetic)
analog of Theorem 2 with lim infM in place of limM .
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5. Discussion. We start with comments tied closely to the statement and proof
of Theorem 1 and then venture further afield.

1. We can apply the “method of bounded differences” argument (28) directly
to the random cost cost(N)(c,B) in Theorem 1, and conclude

P
(∣∣cost(N)(c,B) − E cost(N)(c,B)

∣∣ > λ
) ≤ 2 exp

(
− λ2

4N2(c∗B2)2

)
.

This of course implies the SLLN corresponding to Theorem 1. Various other “op-
timization over random data” problems have this character—that it is easy to show
concentration about the mean, but not easy to show existence of a limit constant
for the mean. Perhaps best known is random 3-SAT [8].

2. Our setup for Theorem 1 did not exclude the possibility P(c(e) = 0) > 0.
Recall [6, 12] that the critical value for bond percolation in Z

2 equals 1/2. It seems
intuitively clear that

if P
(
c(e) = 0

)
> 1

2 , then γ (κ,B) = 0;

if P
(
c(e) = 0

)
< 1

2 , then γ (κ,B) > 0,

but we have not checked carefully.
3. The limit γ (κ,B) is a priori nonincreasing in B . By considering random

minimum-length paths (Lemma 6) and the bound c∗ on the support of κ , we find
an upper bound

γ (κ,B) ≤ c∗/8.

It is not hard to formalize the intuitive idea that as B ↓ 1/4 the only feasible flows
have f (e) ≈ 1/4 for almost all e, and so

lim
B↓1/4

γ (κ,B) = 1
8Ec(e).

4. Relaxing the requirement of bounded support, for what κ do we still expect
a finite limit γ (κ,B)? This question seems rather subtle. It is not obvious that
the condition Ec(e) < ∞ is necessary, because we might be able to route flow to
avoid edges e with large c(e). On the other hand, the condition Ec1/4(e) < ∞ is
necessary, otherwise [by considering the minimum of c(e) over the four edges at a
vertex] we have E cost(N)(c,B) = ∞ for finite N .

5. Return to the case where κ has bounded support. Define cost(N)(c,∞) as
the “B = ∞” case where there is no bound on edge capacity. By monotonicity (of
limit constants in B), the limit constant

γ (κ,∞) := lim
B→∞γ (κ,B)

exists. From Theorem 1 we get a bound

lim sup
N

N−2
E cost(N)(c,∞) ≤ γ (κ,∞).
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CONJECTURE 23. limN N−2
E cost(N)(c,∞) = γ (κ,∞) = limM→∞ M−2 ×

cM,∞.

It seems plausible that one could just modify the arguments in this paper to
directly study the B = ∞ case. Loosely speaking, in the B = ∞ case we expect
that the optimal flow f (e) across a typical edge e has exponential tail

P
(
f (e) > x

) ≤ A1 exp(−x/A2), 0 < x < ∞,(59)

so that imposing a large bound B has little effect.
6. It is tempting to speculate that the Q ∈ Qiso

M which attains the inf in the
definition (10) should be some “geometrically natural” measure not depending on
κ or B . One possibility: take the intersection of Euclidean-isotropic lines with the
continuous square [0,M]2 to get a transportation measure on the boundary of this
square; then discretize to get some isotropic transportation measure Q̃M on the
boundary of the discrete M × M square.

7. The construction in Section 3 gives flows of asymptotically optimal cost.
From the use of the law of large numbers in the proof of Proposition 4, one can
see that the routes of this flow (after scaling the N × N torus to the continuous
torus [0,1)2) converge to straight line segments in the continuous torus. But we
have not proved these are the minimum-length straight line segments; we have not
excluded the possibility that some non-vanishing proportion of flow takes a long
route around the torus instead of taking the shortest route. This possibility in taken
into account in Lemma 21 (and the definition of Qiso

M ), where we use a general ϒ

rather than just the uniform distribution on [−1/2,1/2]2.
8. Given an environment c on the N × N torus, there is a calculus-type con-

dition for a standardized global flow f to be a local minimum of the function
f → cost(N)(f, c). This condition (Waldrop equilibrium [11]) is: for each source-
destination pair (x, y), the flow from x to y can only use minimum-weight paths,
where here the weight of an edge e is c(e)f (e). But we do not know how to exploit
this condition in studying the optimal flow.

9. If instead of the quadratic costs (1) we used linear costs
∑

e c(e)f (e), then
the optimal flow simply chooses the minimum-cost path [where cost of a path
equals sum of edge-costs c(e)] between each source and each destination; taking
B = ∞, there is no interaction between flows. This case is just first passage perco-
lation, and mean costs in our “flow” setting are easily related to the time constant
in first passage percolation. Questions concerning flow volume across edges have
apparently not been studied rigorously, but one expects power-law tail behavior
instead of (59).

10. There is a huge literature on algorithms for flows in networks, illustrated
by the monograph [1]. But the kind of multicommodity flow problems that we
study are typically NP-hard as algorithmic problems. There is a large body of the-
oretical work going back to Leighton–Rao [15] relating multicommodity flow to
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other network problems, but this typically gives upper and lower bounds differing
by log(number of vertices) factors. We should emphasize that the basic max-flow
min-cut theorem does not apply in our multicommodity flow setting.

11. The kind of feasible flow problems mentioned in the introduction have
been studied in the unidirectional case where one seeks to maximize volume of
flow from somewhere on the bottom side of a square to somewhere on the top side.
See [7, 9, 13, 21] for results and connections with percolation and first-passage
percolation. In this setting one can apply the max-flow min-cut theorem. Otherwise
there seems no literature very closely related to Theorem 1, though of course the
general idea “consider large blocks” is pervasive throughout the study of spatial
stochastic processes.

12. A more abstract view of our argument goes as follows. Subsequential weak
limits as N → ∞ of optimal flows across a typical M × M square define flows
across M × M squares in the lattice Z

2. These are consistent as M increases and
so define a flow on Z

2 “from the infinite boundary to the infinite boundary.” The
constant γ (κ,B) defined in Theorem 2 as a M → ∞ limit could more abstractly be
defined in terms of optimal costs in an appropriate problem involving such infinite-
distance flows on Z

2. See [3] for the details of such an approach in a different R
2

setting (traveling salesman problem through some specified proportion of random
points).

13. The abstract view above does not seem to help in the d-dimensional setting,
but if instead the random network is “locally tree-like” (as with many models of
random graph), it can be related to the cavity method [16] of statistical physics.
That is, the n → ∞ limit problem is an optimization problem on an infinite tree
which can be tackled by setting up recursive equations exploiting the tree structure.
Making such arguments rigorous is a major challenge; see [2] for nonrigorous
methodology applied to optimal flow problems and leading to explicit numerical
results.

14. What kind of flow problems can be handled by the methodology of this pa-
per, as outlined in Section 2.1? Intuitively, what seems important is the following:

• We are studying an optimal global flow which minimizes a global cost function
defined as a sum of local cost functions.

• Constraints are local.
• There is a stationary random environment determining costs and constraints.

In such a problem one can seek to modify Theorem 2 by replacing the specific
definition of cM,B with its analog for different model assumptions. But we need
the solution to have the property that flow volumes across different edges have the
same order of magnitude, eliminating the “linear” case in comment 9 above.

Acknowledgments. I thank an anonymous referee and Associate Editor for
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Sourav Chatterjee for helpful discussion.
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