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Abstract. Consider designing a transportation network on n vertices in the
plane, with traffic demand uniform over all source–destination pairs. Suppose the
cost of a link of length � and capacity c scales as �cβ for fixed 0 < β < 1. Under
appropriate standardization, the cost of the minimum cost Gilbert network grows
essentially as nα(β), where α(β) = 1− (β/2) on 0 < β ≤ 1

2 and α(β) = 1
2 + (β/2)

on 1
2 ≤ β < 1. This quantity is an upper bound in the worst case (of vertex

positions) and a lower bound under mild regularity assumptions. Essentially
the same bounds hold if we constrain the network to be efficient in the sense
that average route length is only 1 + o(1) times the average straight line length.
The transition at β = 1

2 corresponds to the dominant cost contribution changing
from short links to long links. The upper bounds arise in the following type
of hierarchical networks, which are therefore optimal in an order-of-magnitude
sense. On the large scale, we use a sparse Poisson line process to provide long-
range links. On the medium scale, we use hierarchical routing on the square
lattice. On the small scale, we link vertices directly to medium-grid points.
We discuss one of the many possible variant models, in which links also have a
designed maximum speed s and the cost becomes �cβsγ .
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1. Introduction

To design a transportation network linking specified points (visualized as cities) in the
plane, one might specify a cost functional and a benefit functional on all possible networks,
and then consider networks which are optimal in the sense of minimizing cost for a given
level of benefit. This paper addresses one particular choice of functionals, but our broader
purpose (see section 1.1) is to draw the attention of statistical physicists to this class of
problem.

We study a simple model involving the ‘economy of scale’ idea:

One link of length � and capacity 2c is less than twice as expensive as two links
of length � and capacity c.

We capture this idea by specifying that the cost of a link of length � and capacity c
scales as �cβ for some 0 < β < 1. In the real world, network designers do not know in
advance what traffic demand will be. We simplify by assuming that traffic demand is
known (and uniform over all source–destination pairs) and routes are controlled, so that
the volume f(e) of flow across an edge (link) e can be determined by the designers and
the corresponding link-capacity built. (Visualize links as roads and flow volume f(e) as
‘number of vehicles per hour’. We are ignoring stochastic fluctuations in traffic.) Thus
our cost structure is

cost of network =
∑

e

�(e)fβ(e) (1)

where �(e) = length of link e.
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To define the model carefully, write xn = {x1, x2, . . . , xn} for a configuration
of n vertices in the square [0, n1/2]2 of area n. So xi is the position of vertex i.
Create a connected network G(xn) by adding links: links are line segments with their
natural Euclidean lengths, and links may meet at places not in the given vertex set
xn. To make the distinction clear let us refer to the given n vertices as cities and
any meeting places (which depend on our choice of network) as junctions. Between
each source–destination pair (i, j) of cities, a flow of volume n−3/2 (this scaling is
explained below) is routed through the network. Define cost(G(xn)), the cost of
the network, via (1). This setting specializes a setting considered by Gilbert [1]
and we call the minimum-cost network the Gilbert network Gil(xn). See [2] for
general properties of, and heuristic algorithms for, Gilbert networks over deterministic
points.

Gilbert networks may be optimal from a network operator viewpoint, but what about
a network user? Write �(xi, xj) for route length and |xj − xi| for straight line distance
between cities i and j. For a typical configuration, the average distance avei,j |xj − xi|
will be of the order of n1/2. The kind of ‘benefit to users’ we have in mind is that the
network provides routes almost as short as possible. So we call the sequence of networks
(G(xn)) modestly efficient if

avei,j(�(xi, xj) − |xj − xi|) = o(n1/2). (2)

The name reflects the remarkable fact [3] that there exist extremely efficient networks for
which this average is O(log n) while their length is only 1+o(1) times the minimum length
of any connected network; such results pay no attention to flow volumes or capacities, and
so constitute the β = 0 case of the present model. The problem we address in this paper
is:

given the sequence (xn), how small can we make cost(G(xn)) subject to the
modestly efficient constraint (2)?

In the β = 0 case just mentioned, we can make cost(G(xn)) be asymptotically the length
of the Steiner tree (minimum length connected network) on xn, which is well known to be
O(n) in the worst case and in the typical case. Recall that an = O(bn) means that an/bn

is bounded as n → ∞. It is often convenient to write the converse relationship bn = O(an)
as an = Ω(bn); if both an = O(bn) and an = Ω(bn) then we write an = Θ(bn).

In the case β = 1 there is no ‘economy of scale’ and so the minimum-cost network is
just the complete graph, that is a direct link between each pair of cities. The associated
cost is

∑

i

∑

j

n−3/2|xi − xj | = n × avei,j|xi − xj|
n1/2

which is O(n) in the worst case and in the typical case.
Recall that the Gilbert network Gil(xn) is the minimum-cost network when there is

no extra ‘modestly efficient’ constraint. Theorem 1 shows that imposing the ‘modestly
efficient’ constraint makes little difference in an order-of-magnitude sense: in either case
the optimal cost grows roughly as the order of nα(β).
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Theorem 1. Fix 0 < β < 1. Define

α(β) = 1 − β

2
, 0 < β ≤ 1

2

=
1 + β

2
,

1

2
≤ β < 1.

Let xn be a configuration of n cities in the square [0, n1/2]2.
(a) Case 0 < β ≤ 1

2
. There exist modestly efficient networks for which cost(G(xn)) =

O(nα(β)) (except for β = 1/2 the bound is O(n3/4 log n)). Under the technical
assumption (7) there do not exist connected networks for which cost(G(xn)) = o(nα(β)).
So under (7) we have cost(Gil(xn)) = Θ(nα(β)) for β < 1

2
.

(b) Case 1
2

< β < 1. Here cost(Gil(xn)) = O(nα(β)). Given ωn → ∞ arbitrarily

slowly, there exist modestly efficient networks for which cost(G(xn)) = O(ωnnα(β)). Under
the technical assumption (8), cost(Gil(xn)) = Θ(nα(β)), but there do not exist modestly
efficient networks for which cost(G(xn)) = O(nα(β)).

Our discussion above of the cases β = 0 and β = 1 implies corresponding results in these
cases with α(0) = 1 and α(1) = 1.

The transition at β = 1
2

corresponds to the dominant cost contribution changing
from short links to long links, as we will explain in section 2.5. The technical regularity
assumptions that we need to impose to obtain lower bounds reflect this transition: for
β < 1/2 we need to assume that nearest-neighbor distances are not atypically small,
whereas for β > 1/2 we assume a large-scale equidistribution of the city configuration.
(We defer statements of these assumptions until the place they are actually used in the
proof, to avoid interrupting the conceptual discussion here.) We show (section 2) that
the upper bounds arise in the following type of hierarchical networks, which are therefore
optimal in an order-of-magnitude sense. On the large scale, use a sparse Poisson line
process to provide long-range links. On the medium scale, use hierarchical routing on the
square lattice. On the small scale, link cities directly to medium-grid points. It is perhaps
counter-intuitive that one can use the same network for the whole range of β; the point is
that only the medium–small scale structure really matters for β < 1/2 and only the large-
scale structure really matters for β > 1/2. Our arguments implicitly imply some weak
properties of the exactly optimal networks. Understanding in detail the structure of the
Gilbert network (or the asymptotically optimal modestly efficient network) over random
points in the critical case β = 1/2 is a challenging problem, interesting because one expects
the network to have some scale-free structure, in the (correct) sense of invariance under
spatial and flow-volume rescaling.

One can imagine many variant models in which extra structure is incorporated. In
section 4 we briefly discuss the case where links have designed speed s and where the cost
of a link becomes �cβsγ ; in this case an analog of theorem 1 remains true.

1.1. Optimal spatial network design methodology

This paper contributes to a general program concerning networks linking points in the
plane:

for mathematically simple cost/benefit functionals, study the properties
(geometry, cost and benefit values) of optimal networks as the number n of points
tends to infinity.
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Network design problems arise in many applied fields, but serious real-world modeling
leads to more complicated functionals tuned to specific applications than we have in mind.
As complementary work, [3] gives a detailed treatment of the extremely efficient networks
mentioned above that minimize average route length subject to total network length;
and [4] analyzes a model (for, e.g., passenger air travel or package delivery) where there
is a substantial cost to transfer from one link to another. In the latter model, theory
predicts that hub-and-spoke networks (as seen in the real world) are near-optimal and
that, constraining the average number of transfers to be say 2, the length of the shortest
possible network scales as n13/10.

The methodological feature we want to emphasize concerns models for the position of
n cities (assumed for simplicity in a square of area n). In each problem we have studied
one gets the same order of magnitude for optimal network cost for worst-case positions
as one gets for arbitrary positions (under mild assumptions) and in particular the same
as for random positions or for regular (e.g. lattice) positions.

The bulk of the statistical physics literature on spatial networks (surveyed in [5])
analyzes networks built according to some specific probability model which combines
ingredients such as

(a) geometric random graphs (link probability depends on inter-vertex distance);

(b) proportional attachment probabilities for arriving vertices;

(c) prescribed power law distribution of lattice vertex degrees;

(d) networks based on recursive partitioning of space.

This theoretical literature makes passing reference to optimality, but we have not seen
analytic results demonstrating optimality over all possible networks in the spatial context
(see [6] for non-spatial results and [7, 8] for assumptions under which optimal networks
are trees). For interesting empirical work see [9].

Our scaling conventions (a square of area n; flow-volume n−3/2 between each source–
destination pair) may seem arbitrary, but are chosen to fit the following standardizations:

(i) cities have density 1 per unit area;

(ii) flow volume across unit area is of the order of 1.

2. The construction

A network satisfying the requirements of theorem 1 will be constructed in section 2.3
using mathematical ingredients described in sections 2.1 and 2.2. Figure 1 illustrates the
construction.

2.1. Hierarchical routing on the square lattice

Fix M and consider the square grid on vertices {0, 1, 2, . . . , 2M − 1}2. Declare lines (and
their edges) to be of some type 0, 1, 2, . . . , M according to the rule:

the horizontal lines {(x, y) : y = (2j − 1)2m}, j = 1, 2, . . . are type m

the boundary line {(x, 0)} is type M ;

doi:10.1088/1742-5468/2008/03/P03006 5

http://dx.doi.org/10.1088/1742-5468/2008/03/P03006


J.S
tat.M

ech.
(2008)

P
03006

Optimal spatial transportation networks

Figure 1. Ingredients of the construction. Left: the hierarchical routing lattice,
with higher type edges indicated by thicker lines, and a typical route shown.
Right: the large-scale grid and the Poisson line process.

and similarly for vertical lines. For each vertex (x, y), define a route from (x, y) to (0, 0)
using only downward and leftward edges as follows. First choose the edge at (x, y) of
higher type (breaking ties arbitrarily). Then repeat the rule

Follow the current edge until it crosses an edge of strictly higher type, then
transfer to that edge

until reaching (0, 0). See figure 1, left side.
It is elementary to verify

Lemma 2. For each 0 ≤ m ≤ M , the number of type-m edges traversed by the route is at
most 2m+1.

2.2. The Poisson line process

A line in the plane may be parameterized by the point z on the line which is closest to
the origin (so the line segment from the origin to z is orthogonal to the line); then write
z in radial coordinates as (r, θ). Recall [10] the notion of a Poisson line process (PLP) of
intensity η > 0, which makes precise the notion of ‘completely random’ lines in the plane.
Parameterizing lines by their closest points (r, θ), this PLP has intensity η with respect
to the Lebesgue measure on parameter space (0,∞) × (0, 2π). The PLP distribution is
invariant under Euclidean transformations, and for a fixed set A

E(length of line segments intersectingA) = πη × area(A). (3)

(We write E for expectation and P for probability). The next result shows how the PLP
is useful in constructing spatial networks. See figure 1, right side.

doi:10.1088/1742-5468/2008/03/P03006 6
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Lemma 3. Let n1/2/σn be an integer. Construct a network as the superposition of the
rectangular grid with cell side length σn and the Poisson line process of intensity η,
intersected with the square [0, n1/2]2. Let vi, vj be vertices of the grid. Then

E(route-length vi to vj) ≤ |vi − vj| + C2
1

η
log(η

√
2n)

for an absolute constant C2.

Lemma 3 is proved in [3], lemma 11, and we will not repeat the argument here. (In
essence, one analyzes the natural routing algorithm: move to a nearby line of the PLP,
move along that line in the direction closer to the direction of the destination city, and
when encountering another line of the PLP, switch to that line if its direction is closer
to the destination city direction). Using the PLP gives us random networks, but a
typical realization will have costs and lengths of the same order as the expectations in our
formulas.

2.3. Construction of the networks

We now describe how the ingredients above (hierarchical routing on the square lattice,
the PLP) are used in a network construction. Recall xn denotes the given configuration
of n cities. Take integers θn ↑ ∞ slowly and define

σn = n1/2/θn.

Let Mn be the integer such that

σn/2 < 2Mn ≤ σn.

Define

sn = σn/2Mn, (so1 ≤ sn < 2).

Construct a network G(xn) as follows.

(i) Take the large-scale network in lemma 3, with ηn = θnn−1/2. This network contains
large cells of side length σn.

(ii) Inside each large cell put a copy of the hierarchical routing lattice of section 2.1, with
M = Mn, and scaled so that the basic small cell of this lattice has side length sn.

(iii) Link each city x ∈ xn via a straight edge to the bottom left corner vertex v(x) of its
small cell.

Figure 1 illustrates (i) and (ii). There is a natural way to define a route from xi to
xj in this network. From xi take the link to v(xi), then follow the section 2.1 routing
scheme to the lower left corner V (xi) of the large cell; navigate from V (xi) to V (xj) via
the shortest route in the lemma 3 graph.

Note that, in addition to the given n cities, this network has several different kinds
of junctions: the vertices of the grid and places where lines of the PLP cross each other
or cross the grid lines or cross the short stage (iii) links. In our model there is no cost
associated with creating a junction or with routes using junctions; the costs involve only
link lengths and route lengths. So the exact number of junctions is unimportant.

doi:10.1088/1742-5468/2008/03/P03006 7
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2.4. Analysis of the networks

Clearly

�(xi, xj) ≤ �(V (xi), V (xj)) + 23/2σn

and so by lemma 3

E�(xi, xj) ≤ |xi − xj| + 23/2σn + C2
1

ηn
log(ηn

√
2n).

From the definitions of σn, ηn we see

E(�(xi, xj) − |xi − xj |) = o(n1/2)

establishing the modestly efficient property.
To analyze costs, we treat stages (i)–(iii) separately and check that each stage cost is

less than the bounds stated in theorem 1.
Stage (iii). There are n links of the form (x, v(x)), each carrying flow-volume

2(1 − (1/n))n−1/2, and each having length at most sn

√
2, and so

the total cost of stage (iii) links is O(n1−β/2). (4)

Stage (ii). Now let Em be the set of type-m edges. The number of such edges is
#Em = O(n2−m). Recall that Hölder’s inequality shows that for any edge set E

∑

e∈E
fβ(e) ≤ (#E)1−β

(
∑

e∈E
f(e)

)β

.

Now
∑

e∈Em

f(e) = 2n−1/2
∑

x∈xn

#{ type-m edges in route v(x) to V (x)} ≤ 2m+2n1/2

using lemma 2. Thus
∑

e∈Em

fβ(e) = O
(
(n2−m)1−β (2mn1/2)β

)
= O

(
n1−(β/2)2m(2β−1)

)
. (5)

Writing Emed for all edges in the copies of the hierarchical routing lattice, we find after
summing over 0 ≤ m ≤ M

∑

e∈Emed

fβ(e) = O(n1−(β/2)), 0 < β < 1
2

= O(n3/4 log n), β = 1
2

= O(n1−(β/2)2M(2β−1)) = O(n(1/2)+(β/2)), 1
2

< β < 1

using 2M < n1/2. Because edge lengths here are sn < 2, these are bounds for the costs
associated with stage (ii).

Stage (i). Write Elarge for the set of links of the large-scale network, that is the
large-scale grid and the PLP lines. Flow along the route from V (xi) to V (xj) contributes
n−3/2�(V (xi), V (xj)) to the ‘flow × distance’ measure, and so

∫

Elarge

f(e) de = n−3/2
∑

i

∑

j

�(V (xi), V (xj))

doi:10.1088/1742-5468/2008/03/P03006 8
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where the left side denotes integrating along all links of the large-scale network. By the
already-established modestly efficient property,

∑

i

∑

j

�(V (xi), V (xj)) = (1 + o(1))
∑

i

∑

j

|xi − xj | = O(n5/2)

and so ∫

Elarge

f(e) de = O(n).

The total length Ln of Elarge is the sum of O(n1/2θn) (= contribution from large-scale
grid) and O(ηnn) (= contribution from the PLP, using (3)), and so Ln = O(n1/2θn). The
integral form of Hölder’s inequality now shows that the cost associated with Elarge is

∫

Elarge

fβ(e) de ≤ L1−β
n ×

(∫

Elarge

f(e) de

)β

= O
(
θ1−β

n n(1+β)/2
)
. (6)

Examining the cost of each stage, we check that the modestly efficient network we have
constructed has its cost bounded as stated in theorem 1. Moreover, if we eliminate the
‘modestly efficient’ constraint then we can eliminate stage (iii) of the construction (take
θn = 1) and get the stated O(nα(β)) upper bound.

2.5. The transition at β = 1/2

To summarize, the costs associated with the constructed networks arising from short-,
medium- and large-scale links are bounded by expressions (4), (5) and (6), respectively.
By examining the exponents of n we see that the transition at β = 1

2
corresponds to the

dominant cost contribution changing from short links to long links. The arguments we
give below for the lower bound show this is a genuine effect (no alternate networks can
do essentially better), not an artifact of the particular networks constructed above.

3. The lower bound

In the settings of [3, 4] the lower bounds require some effort to prove, but in the present
setting the proofs are short.

3.1. The case 0 < β ≤ 1/2

Consider first the case 0 < β ≤ 1/2. Impose the condition: there exists some small δ > 0
such that

for at least δn of the cities of xn, the distance to the nearest neighbor is at least δ. (7)

Consider a city x ∈ xn satisfying this condition and consider the link segments of an
arbitrary connected network within distance δ/2 from x. Because flow of volume 2n−1/2

must enter or leave x, the cost associated with these link segments (which by concavity
of f → fβ is minimized when there is a single link segment) is at least δ/2 × (2n−1/2)β.
Summing over all (there are at least δn) such cities x, noting the link segments are distinct
as x varies, the network cost is at least δn × δ/2 × (2n−1/2)β = Ω(n1−(β/2)).

doi:10.1088/1742-5468/2008/03/P03006 9
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3.2. The case 1/2 < β < 1

In the case 1/2 < β < 1 we impose the classical equidistribution property for the
configuration xn = (xn

i , 1 ≤ i ≤ n) rescaled back to the unit square:

the empirical distribution of {n−1/2xn
i , 1 ≤ i ≤ n} converges

in distribution to the uniform distribution on [0, 1]2. (8)

Our standardization conventions imply that the total volume of flow through the network
is Θ(n1/2) and so assertion (a) below is obvious.

Lemma 4. (a) In the Gilbert network Gil(xn), the maximum edge flow is bounded as

max
e

f(e) = O(n1/2).

(b) For any modestly efficient network (G(xn)) on configurations satisfying the
equidistribution condition (8), the maximum edge flow is bounded as

max
e

f(e) = o(n1/2).

Granted this result, use the fact
∑

e

�(e)f(e) ≥ n−3/2
∑

i

∑

j

|xi − xj | = Θ(n) by equidistribution

and the general inequality

cost(G(xn)) =
∑

e

�(e)fβ(e) ≥
∑

e �(e)f(e)

(maxe f(e))1−β

to deduce that cost(G(xn)) grows strictly faster than n/n(1−β)/2 = nα(β) for any modestly
efficient network, and no slower than order nα(β) for the Gilbert network.

Proof of lemma 4(b). We first quote an easy fact from geometry.

Lemma 5. Let Z1, Z2 be two independent uniform random points in the unit square [0, 1]2.
There exists a constant C such that for all x ∈ [0, 1]2 and all δ > 0

P(|Z1 − x| + |Z2 − x| ≤ |Z1 − Z2| + δ) ≤ Cδ1/2.

Now fix δ > 0. Write X1, X2 for two uniform random picks from the set xn of cities.
The modestly efficient assumption implies

P(�(X1, X2) ≥ |X1 − X2| + δn1/2) → 0 as n → ∞.

Lemma 5 and the equidistribution assumption (8) imply

P(|X1 − x| + |X2 − x| ≤ |X1 − X2| + δ for all x) ≤ Cδ1/2 + o(1).

In order for the route from X1 to X2 to pass through point x, one of the two inequalities
above must hold, and so

sup
x

P(route X1 to X2 passes through x) ≤ Cδ1/2 + o(1).

But δ is arbitrary, so this probability is o(1), and the flow volume is exactly n1/2 times
this probability.

doi:10.1088/1742-5468/2008/03/P03006 10
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4. Associating speeds with links

The main feature of our model—that the cost of building a link is sublinear in link
capacity—is just one of many realistic features one might want to incorporate into a
model. By focusing on route lengths, we have implicitly assumed that users travel at
constant speed. A notable feature of real road or rail networks is that different links
permit different speeds. In this section we state and briefly discuss a variant model in
which links can be designed to permit different speeds.

Suppose a link with length �, nominal capacity c0 and nominal speed s0 costs �cβ
0s

γ
0 ,

for fixed 0 < γ < ∞. On such a link, traffic moves with speed s0 provided the flow volume
f is at most c0; for larger flow volumes, congestion causes the speed to drop, reaching
speed 0 (jammed) at volume σc0 for a constant σ. So σc0 is the maximum capacity.
Precisely,

speed at flow-volume f = s0G(f/c0)

where G(u) = 1 for 0 ≤ u ≤ 1 and G(u) decreases from 1 to 0 as u increases from 1 to
σ. Otherwise the model is the same as before: we are given a configuration of n cities
in the square of area n and we are required to route flow of volume n−3/2 between each
source–destination pair.

For any network and feasible routing, define the average speed as

speed =
avei,j|xi − xj |
avei,jt(xi, xj)

where t(xi, xj) is the time taken to travel from xi to xj . For this model, we ask

What is the minimum cost for a network on a given configuration xn of cities
that allows speed = s?

The answer is that, under the regularity assumptions of theorem 1 (which are needed only
for lower bounds), and ignoring O(log n) terms

minimum cost grows as order sγnα∗(β,γ), where

α∗(β, γ) = 1 − β

2
− γ

2
, 0 < 2β + γ ≤ 1

=
1 + β

2
, 1 ≤ 2β + γ.

(9)

Let us briefly indicate how the previous analysis is adapted to this setting. Because costs
scale with design speed s0 as sγ

0 , it is enough to consider the case speed = 1 and show
that minimum cost grows as order nα∗(β,γ). To construct a network, use the networks
constructed previously and assign design speeds as follows. For links of the large-scale
network, which will be used by routes for a distance of order n1/2, we design speed of order
1. For type m edges in the hierarchical routing lattice, which will be used by routes for
a distance of order 2m, we design speed of order 2mn−1/2 log n. For the local links of the
form (x, v(x)), which will be used by routes for distance O(1), we design speed of order
n−1/2. This ensures the typical times t(xi, xj) are of order n1/2 as required. To calculate
the cost, we simply combine the previous estimates (4), (5) and (6) of costs of providing
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flow volumes of different links with the costs of the design speeds stipulated above; the
total cost is of the order of

n1−(β/2) × n−γ/2 +
M∑

m=0

n1−(β/2)2m(2β−1) × (2mn−1/2 log n)γ + n(1+β)/2 × 1

and this works out to be of the form nα∗(β,γ) stated.
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