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Abstract. Much recent research activity has been devoted to empirical study and
theoretical models of complex networks (random graphs) possessing three qualitative
features: power-law degree distributions, local clustering, and slowly-growing diameter.
We point out a new (in this context) platform for such models – the stochastic mean-
field model of distances – and within this platform study a simple two-parameter
proportional attachment (or copying) model. The model is mathematically natural,
permits a wide variety of explicit calculations, has the desired three qualitative features,
and fits the complete range of degree scaling exponents and clustering parameters; in
these respects it compares favorably with existing models.

1 Introduction

The topic of complex networks, more precisely the design and theoretical analysis
of stochastic models of large graphs which differ from the classical Erdős - Rényi
model, has attracted intense recent attention, surveyed from a statistical physics
viewpoint in [1–3] and from a rigorous mathematical viewpoint in [4].

Let us frame one aspect of this topic, by analogy. In freshman statistics
we learn that bivariate data (e.g. heights and weights of n individuals) can
be summarized by 5 summary statistics: average height, standard deviation of
height, average weight, standard deviation of weight, correlation coefficient. And
there is a 5-parameter probability model, the bivariate Normal, which (in several
precise senses) exactly corresponds to these particular summary statistics. In
the context of real-world graphs (where we will always regard the number n of
vertices as large), one could analogously seek a crude statistical description by
reporting a set of summary statistics. An evident choice is

– ∂ = average vertex-degree

and recently popular extra choices include

– an exponent γ characterizing power-law tail behavior of degree distribution
– a “clustering coefficient” κ measuring relative density of triangles
– the average distance �̄ between vertex-pairs.

These choices reflect and seek to quantify three qualitative features claimed to
hold in many interesting graphs (from WWW links to human social networks):
power-law degree distribution, local clustering of edges, and diameter growing
as O(log n). So from the viewpoint of classical mathematical statistics, it would
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be natural to seek a several-parameter stochastic model of random graphs whose
parameters could be readily identified with summary statistics of the kind above.
In more detail, we propose three desiderata1 for a satisfactory model, beyond
possessing the three qualitative features mentioned above:

– mathematical tractability: one can find reasonably explicit formulas for a va-
riety of quantities of interest

– fitting flexibility: by varying model parameters one can vary summary statis-
tics (like the 4 listed above) broadly through their possible ranges

– naturalness: the qualitative properties emerge from some simple underlying
mathematical structure rather than being forced by fiat.

Unfortunately no satisfactory such models are known. The statistical physics lit-
erature surveyed in [1,2] starts with a few elementary model-construction ideas
(such as the proportional attachment and small worlds models mentioned in
Sect. 6) and then explores numerous variations. Our purpose in this paper is to
introduce a new class of model we call metric copying,2 and to study a partic-
ular two-parameter model (mean-field simple copying, MFSC) within this class.
The description and analysis of the MFSC model involve somewhat more so-
phisticated mathematical visualization than has been used in previous complex
networks literature. So let us first address the first two desiderata by listing re-
sults for the model (Sect. 2), and only later (Sect. 3) describe the model. Section
4 derives most of the formulas in Sect. 2, and Sect. 5 exhibits further calculations.
A briefer account of the model, aimed at mathematicians, appears in [5].

1.1 Some Notation

P (·) denotes probability, E(·) denotes expectation, and var (·) denotes vari-
ance. We assume familiarity with elementary probability notions of random
variables and their distributions. We write Geo(p),Bin(m, p),Exp(µ),Poi(η) for
the geometric, binomial, exponential and Poisson distributions in their usual
parametrizations, reviewed below. We employ a “blackboard shorthand” of also
writing Geo(p) etc for a random variable with that distribution. Thus the el-
ementary reproductive property of the binomial distribution could be written
as

Bin(m1 +m2, p)
d= Bin(m1, p) + Bin(m2, p)

where the random variables on the right are independent, and where d= means
equality in distribution. The point of this notation is that, analogous to “com-
position of functions” in which we interpret exp((x − 1)2) as the composition
of the two functions exp(x) and (x − 1)2, we can “compose” (statisticians say
1 From an applied viewpoint, one could regard “fitting empirical data” as the single

criterion; we are of course taking a theoretical viewpoint
2 We use mathematical terminology: a metric is a distance function. Confusingly, some

engineers use “metric” to mean “summary statistic”
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“mix”) distributions. For instance (cf. (8) below), given a random variable Λ
with values in (0, 1) we can write Geo(Λ) for a random variable whose condi-
tional distribution given Λ = p is the Geo(p) distribution.

Review of elementary distributions.

P (Geo(p) = i) = (1− p)i−1p, i = 1, 2, . . .
EGeo(p) = p−1

P (Bin(m, p) = i) =
(
m

i

)
pi(1− p)m−i, i = 0, 1, . . . ,m

EBin(m, p) = mp (1)
var Bin(m, p) = mp(1− p) (2)
P (Poi(η) = i) = e−ηηi/i!, i = 0, 1, 2, . . .
EPoi(η) = η.

The Exp(µ) distribution has probability density function and expectation

f(x) = µe−µx, 0 < x <∞
EExp(µ) = µ−1.

A Poisson process of rate 1, say (0 < ξ1 < ξ2 < ξ3 < . . . ), is defined by the
property

ξ1, ξ2 − ξ1, ξ3 − ξ2, . . . are independent with Exp(1) distribution

and has the property

P (some ξi ∈ [x, x+ dx]) = 1 · dx, 0 < x <∞. (3)

1.2 Organization of Paper

Because the precise definition and a priori motivation of the model are lengthy
to explain, we start by emphasizing the a posteriori motivation, the fact that
the model permits many explicit calculations. In first reading the formulas in
Sect. 2, focus on the left sides of equations, indicating what quantities can be
calculated. The formulas on the right sides will be derived in Sect. 4.

2 Formulas

2.1 Key Methodology

Like other models involving vertices arriving and creating edges to existing ver-
tices, the MFSC model defines a directed acyclic (no directed cycles) random
graph Gn on n vertices. A key feature of the model is that there exists a well-
defined limit infinite rooted graph G∗

∞ which represents the n→∞ limit of Gn
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rooted at a uniform random (we say “typical”) vertex. So for “local” statistics
of Gn, one can give “exact formulas in the n → ∞ limit” by doing calcula-
tions within the limit structure G∗

∞, and this methodology is how we will derive
(Sect. 4) and interpret the formulas in Sects. 2.2–2.6 below.

Note that “rooting” is introduced merely as a convenient technical way to
deal with infinite graphs. By analogy, one could study two-dimensional space
without introducing the origin point (cf. Euclidean geometry) but for many
purposes an origin and induced coordinate system are helpful.

The MFSC model has two parameters: α, λ. In explicit formulas, we distin-
guish between a low clustering region defined by parameter ranges

0 < α < 1, 0 < λ ≤ 1/α [low] (4)

and the complementary high clustering region defined by αλ > 1; in the latter
case it is convenient to reparametrize by using η := λ−1 log(αλ) in place of α,
and the parameter ranges are

0 < η < 1, η + 1/λ < 1. [high] (5)

This distinction is purely notational; there is no intrinsic “non-analyticity” in
the model’s properties.

2.2 The Two Parameters Control Mean Degree and Clustering

(a). First consider Din and Dout, the random in-degree and out-degree of a
typical vertex. Then

EDin = EDout(= ∂, say) =

{
α

1−α [low]
η+1/λ

1−η−1/λ [high].
(6)

(b). Second, define a normalized clustering coefficient κcluster in words as

The proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is
also an edge.

(see (44) for a more precise definition and derivation of (7)). Then

κcluster =

{
α(1−α)λ
2−α2λ [low]

(η+ 1
2λ )(1−η− 1

λ )
(η+ 1

λ )(1−η− 1
2λ ) [high].

(7)

By solving (6,7) we find (Sect. 4.6) that every pair of values of ∂, κcluster in the
complete range

0 < ∂ <∞, 0 < κcluster < 1

occurs for a unique parameter pair (α, λ) or (η, λ). Moreover the two regions can
be specified as
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0 < ∂ <∞, 0 < κcluster ≤ 1
∂+2 [low]

0 < ∂ <∞, 1
∂+2 < κcluster < 1 [high]

explaining our low and high clustering terminology. So the two model parameters
α, λ have fairly direct interpretations in terms of mean degree and clustering;
of course we could re-parametrize the model in terms of ∂ and κcluster, but the
internal mathematical structure is more conveniently expressed using the given
parameters.

2.3 Distributions of In- and Out-Degrees

(a). The distribution of Din is specified as

1 +Din
d= Geo(e−βT ) where T d= Exp(1) (8)

and where

β =
{

α [low]
η + 1/λ [high]. (9)

This works out explicitly as

P (Din ≥ d) =
Γ (d+ 1)Γ (1/β)
βΓ (d+ 1 + 1

β )
, d ≥ 0 (10)

P (Din = d) =
Γ (d+ 1)Γ (1/β)
β2Γ (d+ 2 + 1

β )
, d ≥ 0 (11)

with asymptotics

P (Din = d) ∼ β−2Γ (1/β) d−1− 1
β .

Formula (11) appears as a special case of recent results in two-parameter propor-
tional attachment models [6–8], but in fact is a famous 80-year old calculation
– see Sect. 4.2.
(b). The distribution of Dout is determined by the distributional equation

D
d=

{ ∑∞
i=1 Bin(1 +Di, αλe−λξi) [low]

∑Poi(η)
i=1 (1 +D′

i) +
∑∞
i=1 Bin(1 +Di, e−λξi) [high]

(12)

whereD, Di, D′
i, i ≥ 1 are i.i.d. random variables distributed asDout and where

0 < ξ1 < ξ2 < . . . are the points of a rate-1 Poisson point process on (0,∞).
We do not know how to extract a useful explicit formula from (12) but we

can compute moments. For instance
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var Dout =






α(1−α+α2λ/2)
(1−α)2(1− 1

2α
2λ) [low]

(η+ 1
2λ )(2−η− 1

λ )
(1−η− 1

2λ )(1−η− 1
λ )2 [high]

(13)

In the case λ = 1/α and in the limits λ → 0, λ → ∞ we get explicit formulas
for the distribution of Dout – see Sect. 4.3 – which show in particular that the
tail of Dout has geometric rather than power-law decay.
(c).

Din and Dout are independent. (14)

Because both Dout andDin can take the value 0, we see that P (Din+Dout =
0) > 0, implying that Gn will typically not be connected (see Sect. 2.7 for further
comments).

2.4 Densities of Induced Subgraphs

One of the major advantages of the model is that, for a fixed “small” graph G,
one can (in principle, and often in practice) calculate explicitly an “asymptotic
density” dens∞(G) interpreted as the limit

lim
n→∞

number of copies of G in Gn
n

= dens∞(G).

Precise definitions are fussy, and are deferred to Sect. 4.4, which also records the
explicit formulas we have found. Here let us point out the formula for triangles
K3:

dens∞(K3) =

{
α3λ

(1−α)(2−α2λ) [low]
(η+ 1

λ )(η+ 1
2λ )

(1−η− 1
λ )(1−η− 1

2λ ) [high].
(15)

The formula above is the key ingredient in the formula for κcluster. Recall the
verbal description of κcluster:

The proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is
also an edge.

It is intuitively clear (and formalized at (40) that the asymptotic density for
occurrence of directed 2-paths v1 → v2 → v3, if one does not look whether
or not a third edge v1 → v2 is present, equals ∂2 (because of independence of
in-degree and out-degree at v2). So the verbal definition translates to

κcluster =
dens∞(K3)

∂2

and then (15) immediately gives formula (7) for κcluster.



A PWITy Complex Network 57

2.5 Triangle Density as a Function of Degree

The parameter κcluster gives an overall measure of triangle density. A more de-
tailed description is provided by statistics C(k), k ≥ 2 defined by

C(k) =
E(number of triangles containing a random degree-k vertex)(

k
2

) .

In principle the methods of this paper could be used to obtain an exact formula
for C(k), but we shall be content with outlining (Sect. 5.5) the tail property

C(k) ∼ 2β2

β − β2
× 1
k

as k →∞. (16)

See Sect. 6 for further comments.

2.6 Edge-Lengths

Our model has a “metric structure”, in that there is a distance dmetric(v, w)
between any two vertices which does not involve the realization of edges in
the random graph. So each edge (v, w) of the graph has a real-valued length
dmetric(v, w), and so a typical edge has a random length L. The probability density
function for L is given by the formula

f(x) =
1− α
α

∞∑

i=0

(i+ 1)Γ (α+ 3) (−λx)i
Γ (i+ α+ 3)

, 0 < x <∞ [low]. (17)

Mathematica gives an equivalent expression as a sum of incomplete hyperge-
ometric functions. One can readily observe that f(x) = exp(−(λ ± o(1))x) as
x→∞. In the underlying metric space, the number of vertices within distance
x of a typical vertex grows as ex. So the tail behavior of f(x) suggests

the chance that a vertex has an edge to its k’th nearest neighbor should
scale as k−λ−1

though we have not attempted detailed calculations to verify this suggestion.
Note this property appears without being explicitly built into the model.

2.7 Other Local Statistics

There are further questions, concerning exact behavior in the n → ∞ limit,
which are in principle solvable in terms of the limit network G∗

∞, but where we
have been unable to obtain usefully explicit answers. A major question concerns
the percolation probability

pperc(α, λ) = P (typical vertex is in infinite connected component of G∗
∞) (18)
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By analogy with classical facts about the Erdős - Rényi model, we expect that
above the percolation threshold, that is when pperc(α, λ) > 0, the random graph
Gn will have a giant component whose size Cn(α, λ) satisfies

n−1ECn(α, λ) → pperc(α, λ).

Unfortunately we do not see how to write pperc(α, λ) as a solution of any simple
equation. By studying an easier-to-analyze directed percolation problem, it is not
hard to show (Sect. 5.3)

if 2β − β2 > 1 then pperc(α, λ) > 0. (19)

2.8 Average Distance

In any graph, write dgraph(v, w) for the minimal number of edges in any path from
v to w. The diameter ∆ and the average vertex-vertex distance Λ are defined by

∆ = max
v,w

dgraph(v, w), Λ = avev,wdgraph(v, w).

In the context of a simple proportional attachment model it is known [9] that

E∆n, EΛn =
(1 + o(1)) logn

log log n
as n→∞.

It is natural to conjecture, but hard to prove, the same result for our model
(above the percolation threshold and restricted to the giant component). On the
other hand it seems likely that standard techniques of abstract mathematical
probability would be enough to show the weaker bound EΛn = O(log n) as n→
∞. Such questions cannot in principle be answered completely using G∗

∞.

2.9 Summary of Advantages and Disadvantages of the Model

The previous sections convey some advantages of the model:

– it has the three qualitative features desired in a complex network model
(power-law degree distribution, clustering, small diameter);

– it fits the complete possible range of mean degree (or scaling exponent) and
clustering parameters;

– it permits a broad range of explicit calculations.

So to be fair let us list some disadvantages from a modeling viewpoint.

– Gn is not connected (for large n); cf. Sect. 2.7;
– there is no power law for distribution of out-degree;
– in-degree and out-degree are independent;
– the scaling exponent for in-degree is determined by the mean degree; one

might prefer a model where these could be specified separately;
– in the n→∞ limit not every finite graph is possible as an induced subgraph

(Sect. 4.5).
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3 The Model

3.1 Metric Copying Models

Let us briefly outline a general modeling framework, metric copying models.
Each vertex v is a point in a metric space; that is, there is some real-valued
distance d(v, w) between any two vertices v, w. Given some rule for the positions
of successive vertices 1, 2, . . . , and given a function p : [0,∞) → [0, 1], we can
construct random directed graphs Gn inductively on n as follows. When vertex
n arrives, then
(i) for each directed edge (i, j) of Gn−1, a “copied” edge (n, j) is created with
probability p(d(n, i));
(ii) for each vertex i (1 ≤ i < n), a new edge (n, i) is created with probability
p(d(n, i));
(iii) the events above are independent, except that repeat edges are censored.

Imagine p(·) to be rapidly decreasing. A moment’s thought shows how this model
resembles proportional attachment models. An existing vertex v with in-degree
d has d+ 1 opportunities to acquire an in-edge, due to the next arriving vertex
being close to v or close to one of the d vertices with edges to v.

In principle one could study such models based on random points in d-
dimensional space, but within such settings it is notoriously hard to do ex-
plicit calculations (see e.g. [10] for different models of random graphs based on
d-dimensional random points), and the choice of d is arbitrary. We will avoid
both problems by using a well known (in other contexts) model which is loosely
interpretable as “random points in infinite-dimensional space”. Note that in d-
dimensional space, the number of points within distance r of a typical point
grows as rd; what will make our model “infinite-dimensional” is that this num-
ber grows as er.

For later use recall that a pre-metric d̄(i, j) is symmetric and strictly positive
for j �= i. A pre-metric can be used to specify a metric d(v, w) as the minimum,
over paths v = i0, i1, . . . , ik = w, of d̄(i0, i1) + d̄(i1, i2) + . . .+ d̄(ik−1, ik).

3.2 A d-Dimensional Analogy

As a final preliminary, the following analogy may be helpful. In d-dimensional
space Rd, take a cube [−n1/d/2, n1/d/2]d of volume n, and put n uniform ran-
dom points in that cube. This structure has a n → ∞ limit, the Poisson point
process in Rd with mean intensity 1 point per unit volume. Moreover the limit
process, which is a spatial point process on all of Rd, can be represented as the
distribution, at any fixed time, of a time-evolving process of points on all of Rd,
where the evolution rules are
(i) points move away from the origin as deterministic motion with exponential
rate 1/d; a point at position x at time t will be at position xe(t

′−t)/d at times
t′ > t.
(ii) New points arrive throughout Rd as a rate-1 space-time Poisson process; that
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is, the chance of a point arriving in a cube of volume dx during a time interval
dt equals 1 · dx dt.
Thus if one takes a volume-1 region of space at time t0, this space expands to
become volume et at time t0 + t, and the arrival rate per unit time within this
expanding volume is et at time t0 + t.

In the limit process, one may regard the “present time” as time 0, and regard
the process as having evolved3 over time −∞ < t ≤ 0. Particles at the present
time have ages which are independent Exp(1) random variables independent of
present positions; from the present configuration of positions and ages one can
deterministically reconstruct the past evolution of the process.

3.3 The Stochastic Mean-Field Model of Distance

Our model of an underlying metric space is specified by three rules.
(i) Point n arrives at time tn = log n.
(ii) At the arrival time tn, define the pre-distances (D̄(n, j; tn), 1 ≤ j ≤ n − 1)
from n to the earlier-arriving points to be independent random variables with
exponential, mean n, distribution.
(iii) Distances grow exponentially with time; D̄(n, j; t) = et−tnD̄(n, j; tn) for
t > tn.
So at time t there are n = �et� points, and the

(
n
2

)
pre-distances D̄(i, j; t), 1 ≤

i < j ≤ n) are independent random variables with exponential, mean et, distri-
bution. These particular pre-distances are an instance of a pre-metric, and this
pre-metric specifies a metric D(i, j; t), 1 ≤ i < j ≤ n). Write (Dt, 0 ≤ t < ∞)
for this process of arriving points and distances.

Here is a key feature of this construction. At time t pick a uniform random
point Vt as a “root”. Then there is a t → ∞ limit (in distribution) structure,
which is a metric space on a countable infinite number of points, one being dis-
tinguished as the root. The limit structure, called the PWIT, is described below.
The meaning of “limit” is that, for arbitrary fixed r < ∞, the configuration of
points in Dt within distance r of Vt converges in distribution to the configu-
ration of points of the PWIT within distance r of the root (this is local weak
convergence of random networks [11]).

3.4 The PWIT

The PWIT is defined by a construction, illustrated in Fig. 1 4. Start with a
single root vertex ∅. This root vertex is then given an infinite number of near
neighbors, and the edges from the root to the near neighbors are assigned lengths
according to a realization of a Poisson process (ξ∅i : 1 ≤ i < ∞) of rate 1 on
(0,∞). Now, recursively, each vertex v arising as a near neighbor of a previous
3 This model is reminiscent of the steady-state theory of the Universe advocated by

Fred Hoyle in the 1950s
4 Our figures are illustrations of the definitions, rather than honest Monte Carlo sim-

ulations
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Fig. 1. The PWIT. Illustration of the vertices of the PWIT within a window of radius
3 centered on the root ∅. Lines indicate the near neighbor relationship, but are drawn
only when both end-vertices are within the window. Thus the four near neighbors of
∅ shown are at distances 0 < ξ∅

1 < ξ∅
2 < ξ∅

3 < ξ∅
4 < 3 from ∅, while there are an

infinite number of near neighbors of ∅ at distances greater than 3. Orientation of lines
in pictures is arbitrary. Labels a, b, c are included for later comparisons.

vertex is given an infinite number of near neighbors, and the edges to these near
neighbors of v are again assigned lengths according to an independent realization
of a Poisson process (ξvi : 1 ≤ i <∞) of rate 1. This procedure is then continued
ad infinitum. The resulting rooted infinite tree is a well defined random object,
called the Poisson weighted infinite tree (PWIT).

The distance D(v, w) between two vertices of the PWIT is just the sum of
edge-lengths along the path from v to w. Though we have drawn a tree in Fig. 1,
the lines merely indicate the near neighbor relationships; it is better to think
of the edges as absent while retaining the distances D(v, w). In this way we
may regard the vertices of the PWIT as an infinite-dimensional analog of the
d-dimensional Poisson point process in Sect. 3.2. Formula (29) later provides one
formalization of “infinite-dimensional”.
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The survey [11] gives a careful explanation of how the PWIT arises as a
limit of finite models such as Dt, and gives some applications to combinatorial
optimization5. The key point is that, for an arriving vertex Vt in Dt, the existing
vertices at smallest D̄-distances correspond in the limit to the near neighbors in
the PWIT. (Recall the Sect. 3.3 construction; we are repeating the “key feature”
from the last paragraph of that section.)

In the present setting, each point v of Dt has an “age” at time t, and in the
limit PWIT these ages are (exactly as in Sect. 3.2) independent Exp(1) random
variables, Av say. Thus if we write D∗

0 for the PWIT and Aroot for the age of the
root, then (given the other ages Av also) we can reconstruct the time-evolution
of a backwards space-time PWIT process (D∗

s , −Aroot ≤ s ≤ 0). Precisely, as s
runs backwards
(a) the edge-lengths ξ decrease exponentially; at time s < 0 the length is ξes;
(b) a vertex v and its incident edges are deleted at s = −Av.
Then D∗

s is defined as the connected component containing the root at time s.
This limit process relates to the finite process as follows. Let Ãt be the age (at
time t) of the randomly-chosen vertex Vt at time t. Then

(D∗(t)
t+s , −Ãt ≤ s ≤ 0) d→ (D∗

s , −Ãroot ≤ s ≤ 0) as t→∞ (20)

where D∗(t)
t+s is the configuration Dt+s rooted at Vt.

There is also a forwards space-time PWIT process (D∗
s , 0 ≤ s <∞) specified

as follows. Start with the PWITD∗
0 . At time s increases, all inter-vertex distances

increase at exponential rate 1. For each vertex v present at time s, and each
0 < r <∞, there is (as explained below) chance 1 · dr ds that during [s, s+ ds]
a new vertex v′ will appear at distance ∈ [r, r + dr] from v as a near neighbor
of v. Along with this vertex (which has current age 0) is an independent copy of
the PWIT rooted at v′, whose other vertex-ages are independent Exp(1). The
relation between the finite-t and the limit process is analogous to (20):

(D∗(t)
t+s , 0 ≤ s <∞) d→ (D∗

s , 0 ≤ s <∞) as t→∞. (21)

Here is the calculation leading to the coefficient “1” in

there is chance 1 · dr ds that during [s, s+ ds] a new vertex v′

will appear at distance ∈ [r, r + dr] from v as a near neighbor of v . (22)

In the process (Dt), during time [t+s, t+s+ds] about et+sds vertices arrive; for
each existing vertex, the chance an arriving vertex is within D̄-distance [r, r+dr]
equals e−(t+s) exp(−re−(t+s))dr. So the chance in (22) equals

et+sds× e−(t+s) exp(−re−(t+s))dr ≈ 1× dr ds.
5 See also [12] for novel scaling exponents arising in the study of the mean-field trav-

eling salesman problem.
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Fig. 2. The space-time PWIT process. Regarding Fig. 1 as showing the PWIT
at a time t+, Fig. 2 shows the space-time PWIT at an earlier time t− at which only
three vertices a, b, c of the vertices in the Fig. 1 window have arrived. Figure 2 shows
smaller windows centered on a and on c. The other vertices in Fig. 2, and the near
neighbor relation shown by lines, are still present at time t+, but are not visible in
Fig. 1 because the expansion of distances has placed them outside the Fig. 1 window.

Recursive Self-Similarity. Implicit in the model is the fact that the “geome-
try” of the space seen by a newly-arriving particle v∗ is statistically the same
as the geometry seen by a typical existing particle. This is the familiar PASTA
(Poisson arrivals see time averages) property in queuing theory. In particular,
at the arrival time of v∗ the geometric components containing the different near
neighbor vertices v1, v2, . . . are independent copies of the PWIT. This recur-
sive self-similarity property of the PWIT process is fundamental to its analytic
tractability.

Figure 2 and its legend may be helpful.

3.5 The MFSC Model

The process (Dtn , n = 1, 2, 3, . . . ) of arrivals and inter-point distances described
in Sect. 3.3 defines an “underlying geometry”; we now define the random graph
process (Gn, n = 1, 2, 3, . . . ) which is the subject of this paper. Fix two parame-
ters 0 < α <∞ and 0 < λ <∞. Write

p(x) = min(1, αλe−λx), 0 ≤ x <∞. (23)

We now implement a version of the “metric copying” idea from Sect. 3.1. G1
consists of vertex 1 and no edges. When vertex n arrives at time tn = log n, then
(i) for each directed edge (i, j) of Gn−1, a “copied” edge (n, j) is created with
probability p(D̄(n, i; tn));
(ii) for each vertex i (1 ≤ i < n), a new edge (n, i) is created with probability
p(D̄(n, i; tn));
(iii) the events above are independent, except that repeat edges are censored.
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Note that we use D̄ instead of D in determining attachment probabilities (be-
cause D̄-near vertices at finite time correspond to the near neighbors in the
limit PWIT). We call (Gn, n = 1, 2, 3, . . . ) the mean-field simple copying (MFSC)
model.

Our focus in this paper is the study of the MFSC model using its limit
structure. Just as the t→∞ limit of the time-t “geometry” Dt is the PWIT, we
can consider Gt as a structure built over Dt, and we get a limit random directed
graph G∗

∞ as a structure built over the PWIT. The structure of G∗
∞ near the root

is exactly the t→∞ limit structure of Gt relative to a random (“typical”) vertex
Vt, and so we can obtain (in principle) a wide variety of asymptotic results about
Gt by doing calculations upon G∗

∞. The only difficulty in this methodology is that
we don’t have a useful explicit description of G∗

∞. Instead, we can consider the
space-time limits (20,21) jointly with (Gt); then in the limit we get the space-time
PWIT processes existing jointly with a random graph process (G∗

∞(s)), where
now G∗

∞(0) = G∗
∞. The process (G∗

∞(s)) evolves with s and the space-time PWIT
process by the rules implied by (i)-(iii) above.

Precisely, the evolution rules (illustrated by Figs. 3–6) are

when a new vertex v∗ arrives in the forwards space-time PWIT process
at time s, it has near neighbors (v1, v2, . . . ) at distances (ξ1, ξ2, . . . ), and
G∗

∞(s) has put a random graph structure on the geometric component
containing each vi. For each i and each directed edge (vi, w), a new edge
(v∗, vi) or (v∗, w) is created with probability p(D(v∗, vi)), independently
for different possible edges.

Recursive Self-Similarity. What makes this process tractable is that the recur-
sive self-similarity property of the PWIT extends to the random graph process;
each vi defines a geometric component and a random graph on that component,
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Fig. 3. The graph process G∗
∞(t−) on the realization of the space-time PWIT at time

t− in Fig. 2. For the graph process we show all edges with either end-vertex within the
window. The following figures show the evolution of G∗

∞(t) over t− < t ≤ t+.
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Fig. 4. Figures 4–6 build up the graph G∗
∞(t+) on the time-t+ PWIT in Fig. 1. Figure 4

here shows only the edges that were present at time t−, that is the edges shown in Fig. 3.
Some edges crossing outside the window have been redrawn at different angles for later
convenience.
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Fig. 5. Suppose in Fig. 1 that the center vertex ∅ arrives at time t+; Fig. 5 illustrates
the graph just before that arrival. Since the time-t− configuration in Fig. 3, more
vertices have arrived and formed edges, and distances have expanded.
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Fig. 6. Vertex ∅ arrives at time t+ with near neighbors d, e, a, f, . . . . Out-edges from ∅
appear according to the metric copying scheme of Sect. 3.1 with p(x) given by (23). So
for each near neighbor v and each existing edge (v, w), an edge (∅, v) or (∅, w) appears
with probability p(D(∅, v)). In this realization, edges appeared to the near neighbors
d and a, and two other edges (one from d and one from e) were copied.

and these are independent copies of the joint distribution of the PWIT and G∗
∞.

This property is used extensively in the calculations in Sect. 4.

3.6 Reparametrization and Extreme Cases

Although the MFSC model makes sense for the full range (0 < α, λ < ∞) of
parameters, we will only consider the ranges (4,5) for which the limit mean
degree is finite.

Note that definition (23) of p(x) can be rewritten as

p(x) = αλe−λx, 0 < x <∞ [low] (24)

p(x) =
{

1 0 < x ≤ η
e−λ(x−η) η < x <∞ [high] (25)

where the reparametrization η := λ−1 log(αλ) when αλ > 1 is used in (25). In
the two extremes of clustering, our model simplifies in different ways. For fixed
α, when n is large and α is small, the model resembles the following variant of
the proportional attachment model:

An arriving vertex has a Poi(α) number of out-edges, whose end-vertices
are chosen with probabilities proportional to 1+ in-degree.
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At the other extreme, for fixed η our model makes sense with λ = ∞, interpreting
(25) to mean p(x) = 0, x > η. In this case the model becomes, for large n,

An arriving vertex v∗ chooses at random a Poi(η) number of neighbors
vj , and creates edges (v∗, vj), and also copies each existing edge (vj , w)
to a new edge (v∗, w).

Clearly in the former limit we have κcluster = 0 and in the latter limit we have
κcluster = 1.

4 Calculations

In Sect. 4 we derive the formulas stated in Sects. 2.2–2.6. As described in
Sect. 3.5, our methodology is to regard Din and Dout as the (random) in-degree
and out-degree of the root in G∗

∞, and to study this using the time-dynamics of
G∗

∞(s) derived from the space-time PWIT process and the evolution rules of the
graph process.

4.1 Two Helpful Calculations

We will make frequent use of the next lemma.

Lemma 1. For integers u ≥ 1 write

Z(u) =
∞∑

i=1

pu(ξi) =
∞∑

i=1

[
min(1, αλe−λξi)

]u
.

Then

βu := EZ(u) =
{
u−1αuλu−1 [low]
η + 1

uλ [high] (26)

var Z(1) =
{ 1

2α
2λ [low]

η + 1
2λ [high]. (27)

In particular, β := β1 < 1 for all parameter values.

Proof. We will do the low clustering density case – the high density case is
similar. By (3) the chance that some ξi falls into an interval [x, x+ dx] is dx, so

βu =
∫ ∞

0
(αλe−λx)u dx = αuλu

∫ ∞

0
e−uλx dx = αuλu/(uλ).

Moreover, there is a general formula for variance of a sum over a Poisson (rate
1) process (ξi):

var

(
∑

i

w(ξi)

)
=

∫ ∞

0
w2(x) dx
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and applying this formula for Z(1) gives

var Z(1) =
∫ ∞

0
(αλe−λx)2 dx = α2λ2/(2λ).

We next recall a classical result. Fix 0 < θ < ∞. Set N(0) = 1 and let
(N(t), t ≥ 0) be the Yule process of rate θ, that is the Markov process which
changes only by +1 steps and for which

P (N(t+ dt) = n+ 1|N(t) = n) = θn dt.

A textbook result (e.g. [13] sec. 5.3) says

N(t) d= Geo(e−θt). (28)

Note that in the PWIT, if N(r) is the number of vertices within distance r
from the root (counting the root itself), then the process (N(r), r ≥ 0) is a Yule
process of rate 1, because for a vertex v at distance r′ < r, the chance of v having
a near neighbor at distance ∈ [r − r′, r − r′ + dr] equals 1 · dr. So in particular,

EN(r) = EGeo(e−r) = er. (29)

4.2 Distribution of In-Degree

We start by giving the derivation of

1 +Din
d= Geo(e−βT ) where T d= Exp(1) (8)

for β = EZ(1). In the forwards space-time PWIT process, let N(t) be 1+ the in-
degree of the root, when the root has age t. Thus N(t) counts the set of vertices
v for which v → root is an edge, or v = root. When a new vertex v′ arrives with
some v in this set as a near neighbor, at distance r, there is chance p(r) for the
root’s in-degree to increase by 1, and so from the dynamics (22) of the forwards
space-time PWIT process we see that N(t) is the Yule process of rate

β =
∫ ∞

0
p(r) dr.

Use formula (28) and the fact that the age of the root of the PWIT has Exp(1)
distribution to obtain (8).

We can quickly use (8) to calculate EDin.

1 + EDin = E(E(Geo(e−βT )|T ))
= EeβT because EGeo(p) = p−1

=
∫ ∞

0
eβte−t dt =

1
1− β

giving EDin = β
1−β as at (6). We now calculate the distribution of Din in the

same way. Because P (Geo(p) ≥ i+ 1) = (1− p)i, i ≥ 0 we have
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P (Din ≥ i) = EP (Din ≥ i|T )
= EP (1 +Din ≥ i+ 1|T )

= E
(
1− e−βT )i

=
∫ ∞

0
(1− e−βt)ie−t dt

= 1
β

∫ 1

0
(1− s)is

1
β−1

ds setting s = e−βt

=
1
β

Γ (i+ 1)Γ ( 1
β )

Γ (i+ 1 + 1
β )

using the Beta integral formula.

This is (10), and (11) follows.
Historical note. Yule [14] introduced what we now call the Yule process in

1924 in the context of a model for evolution of new species. It is interesting that
his central mathematical results are the Geometric distribution (28) [his (5)]
and the calculation starting from our (8) [representing, for Yule, a distribution
of numbers of species in a typical genus] of the explicit distribution (11) [his (12)].
After 80 years we have slicker notation but the argument is the same! Moreover
Yule’s motivation was to find a simple model yielding a power-law distribution
for number of species per genus, just as the motivation for the recent literature on
proportional attachment models was to find a simple model yielding power-law
degree distributions.

4.3 Distribution of Out-Degree

We will first derive (12). Because the out-edges are formed on arrival, we may
suppose the root of the PWIT has just arrived. Consider a near neighbor v′

at distance r. For each out-edge of v′, and for v′ itself, there is chance p(r)
that a corresponding out-edge is created at the root, giving a total number
Bin(1 + D(v′), p(r)) of out-edges, where D(v′) is the out-degree of v′. The
recursive self-similarity property (end of Sect. 3.5) implies that the (D(v′) :
v′ near neighbor of root) are i.i.d. random variables distributed as Dout, and in-
dependent of their distances (ξi) from the root. Rewriting (D(v′)) as (D(i)) in
increasing order of distance from root,

Dout =
∞∑

i=1

Bin(1 +D(i), p(ξi)) (30)

which becomes (12).
We now turn to the issue of using (30) to get information about the distri-

bution of Dout. Because a directed edge contributes equally to total in-degree
and to total out-degree, we know a priori that EDout must equal EDin, but let
us first check that we can indeed use (12) to show EDout = β/(1− β). Because
(1) EBin(n, p) = np we see

EBin(1 +Di, p(ξi)) = (1 +EDout) Ep(ξi).
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So (30) gives

EDout = (1 + EDout) · EZ(1) = (1 + EDout)β

giving EDout = β/(1− β).
Variance. The calculation of the variance var Dout provides a textbook il-

lustration of the utility of the general conditional variance formula

var X = Evar (X|Y ) + var E(X|Y ).

We give the details in the low density case; the high density case is similar. In
the defining equation (12) write D for Dout and write D and Ξ for the random
sequences (Di) and (ξi). Because (2) var Bin(n, p) = np(1− p) we have

var (D|D, Ξ) =
∑

i

(1 +Di)αλe−λξi(1− αλe−λξi).

Recursive self-similarity, as used above, implies independence of the i.i.d. se-
quence (Di, i ≥ 1) and the Poisson process (ξi, i ≥ 1). So

Evar (D|D, Ξ) = (1 + ED)(EZ(1) − EZ(2))

=
α(1− αλ

2 )
1− α using (6) and (26). (31)

Next consider the conditional expectation

E(D|D, Ξ) =
∑

i

(1 +Di)αλe−λξi = W, say.

We will calculate var W by using the conditional variance formula. Because

var (W |Ξ) =
∑

i

(var D) · α2λ2e−2λξi

we have

Evar (W |Ξ) = (var D) · EZ(2) = (var D) · α2λ/2. (32)

And since E(W |Ξ) = (1 + ED)Z(1) = 1
1−αZ

(1) we have

var E(W |Ξ) =
1

(1− α)2
var Z(1) =

α2λ

2(1− α)2
. (33)

Using the conditional variance formula twice

var D = Evar (D|D, Ξ) + var W
= Evar (D|D, Ξ) + Evar (W |Ξ) + var E(W |Ξ)

=
α(1− αλ

2 )
1− α + (var D) · α2λ/2 +

α2λ

2(1− α)2
.
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Solving gives the equation (13) for var Dout.
Special cases. (a). Fix α. Because p(x) ≤ αλ, in the λ→ 0 limit we can apply

the Poisson limit of Binomials result to the defining equation (12) to obtain (cf.
Sect. 3.6)

(in λ→ 0 limit) Dout
d= Poi(α). (34)

(b). Fix η. In the λ → ∞ limit we can use the limit process of Sect. 3.6 to
show that 1+Dout has the distribution of the total population size in a Galton-
Watson branching process6 with Poi(η) offspring distribution. This is (see e.g.
[15]) the Borel-Tanner(η) distribution

(in λ→∞ limit) P (1 +Dout = d) =
(ηd)d−1e−ηd

d!
, d ≥ 1. (35)

(c). In the case αλ = 1 it turns out (an argument is sketched in Sect. 5.4)

1 +Dout
d= Geo(1− α). (36)

Independence of in-degree and out-degree. This independence, noted at (14),
follows from the fact that in the forwards space-time PWIT process the out-
degree of the root is determined at the arrival time of the root vertex; the
subsequent evolution of the process of in-edges is clearly independent of the
state of the graph immediately after arrival.

4.4 Densities of Induced Subgraphs

Here we give details of the definition and interpretation of “density of induced
subgraphs” mentioned in Sect. 2.4, and list explicit formulas.

Let G and G be finite directed acyclic graphs; think of G as small and G as
large. Define “density of G as an induced subgraph of G” by

dens(G|G) =
#{V ⊂ G : V isomorphic to G}

#{ vertices of G}

where # denotes cardinality (“number of”) and V denotes a vertex-subset of
G with its induced subgraph. See Fig. 7, where there are 3 such vertex-subsets
{a, b, e}, {b, c, e}, {c, d, e} and so where dens(G|G) = 3/5.

We want to study n→∞ limits of dens(G|Gn) in our MFSC random graph
model (Gn), for fixed G. To use our methodology we must first rephrase the
definition of dens(G|G) in terms of the rooted graph G∗ obtained by giving G a
uniform random root. For such G∗, and for an arbitrarily-rooted directed graph
G∗, define a random variable

6 A population process starting with one individual in generation 0, individuals having
i.i.d. random numbers of offspring in successive generations
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Fig. 7. Two rootings G∗
1, G

∗
2 of a graph G.

X(G∗|G∗) = number of vertex-subsets V of G∗ including the root such
that G∗ restricted to V is isomorphic to G∗ via a root-preserving isomor-
phism.

The randomness arises only from choice of root of G∗; notation X has no special
significance except to distinguish this from simpler random variables.

It is an easy fact that

dens(G|G) =
EX(G∗|G∗)
ι(G∗)

(37)

where G∗ is G with an arbitrary choice of root, and where ι(G∗) ≥ 1 is the num-
ber of different root-choices which would give a rooted graph isomorphic to this
particular choice. Rather than write a formal proof, let us just illustrate identity
(37) using Fig. 7. For the choice of root giving G∗

1, the number of isomorphic
vertex-subsets V of G∗ equals 2 (resp. 1) if the root of G∗ chances to be b (resp.
d), and so EX(G∗

1|G∗) = 3/5. For the choice of root giving G∗
2, the number of

isomorphic vertex-subsets V of G∗ equals 1 (resp. 2, 3) if the root of G∗ chances
to be a (resp. c, e), and so EX(G∗

2|G∗) = 6/5. Since ι(G∗
1) = 1 while ι(G∗

2) = 2,
we have checked identity (37) in this example.

Note that in Fig. 7, the induced subgraph on {a, b, c} is not isomorphic to
G because of the extra edge a → c. Obviously we can make parallel definitions
allowing extra edges (pedantically: replace “isomorphism” by “vertex-bijection
and edge-surjection”) and we write dens (G|G) and X̄(G∗|G∗) in this setting.
For instance, in Fig. 7 we have dens (G|G) = 4/5 and EX̄(G∗

1|G∗) = 4/5.
The point of all this is that the definition of X(G∗|G∗) makes sense when G∗

is a rooted infinite graph. The key methodology in our analysis of the MFSC
model (Gn) is that the randomly-rooted G∗

n converge locally to a limit random
infinite rooted graph G∗

∞, implying via (37) that

dens(G|Gn) → EX(G∗|G∗
∞)

ι(G∗)
:= dens∞(G), say. (38)

In parallel.

dens (G|Gn) → EX̄(G∗|G∗
∞)

ι(G∗)
:= dens∞ (G), say. (39)

In Sects. 4.5 and 5.2 we calculate dens(G) for several cases of G; let us record
the formulas below. Note that limit densities may be infinite, in which cases we
will point out the conditions on parameters needed for finiteness.
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(a). For a directed path πr with r ≥ 1 edges,

dens∞ (πr) = ∂r. (40)

(b). For the complete directed acyclic graph Kr on r ≥ 2 vertices, (that is,
vertices {1, 2, . . . , r} and edges i→ j for 1 ≤ i < j ≤ r),

dens∞(Kr) =
r−1∏

u=1

βu
1− βu (41)

where β1 = β and for general u ≥ 1

βu :=
{
u−1αuλu−1 [low]
η + 1

uλ [high]. (42)

In particular, for the case of triangles K3 we have explicitly

dens∞(K3) =

{
α3λ

(1−α)(2−α2λ) [low]
(η+ 1

λ )(η+ 1
2λ )

(1−η− 1
λ )(1−η− 1

2λ ) [high].
(43)

As already mentioned in Sect. 2.4, the formula above is the key ingredient in the
formula for κcluster. Recall its verbal description

The proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is
also an edge.

This becomes

κcluster =
dens∞(K3)

dens∞ (π2)
(44)

and then (40,44) immediately give the formula (7).
(c). For a directed path πr with r ≥ 1 edges,

dens∞(πr) = δ

(
β1 − β2

(1− β1)(1− β2)

)r−1

. (45)

(d). For the complete bipartite directed graph K2,2, for β2 <
1
2 (which always

holds in the low density case)

dens∞ (K2,2) =
∂β2(β2 + 1

2∂β)
(1− 2β2)(1− β2)

. (46)

(e). In principle one can calculate dens∞(G∗) for any G∗, but in practice it is
not clear to what extent useful explicit formulas can be found – see Sect. 4.5
for further discussion, and for the observation that certain graphs G∗ have
dens∞(G∗) = 0, “asymptotically negligible density”.
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4.5 Densities of Induced Subgraphs: Easy Explicit Formulas

Recall the basic result (38) on subgraph density:

dens(G|Gn) → EX(G∗|G∗
∞)

ι(G∗)
:= dens∞(G)

where G∗ is an arbitrary rooting of G. In calculating the right side, to simplify
notation we write

χ(G∗) = EX(G∗|G∗
∞)

and similarly for χ̄(·) and X̄(·) and dens (G).
First consider πr, the directed path with r edges, rooted at the last-arriving

vertex, which we will call the head. Clearly χ(π1) = EDout = ∂. Let us write out
the (rather obvious) inductive argument for calculating χ̄(πr). Whether or not
the root vertex of G∗

∞ is the head of a r-path is determined at its arrival time.
Consider a near neighbor vi of the root, at distance ξi. The expected number of
r − 1-paths headed by vi equals χ̄(πr−1). So the expected number of r-paths of
the form root→ vi → . . . equals χ̄(πr−1)×P ((root, vi) is edge of G∗

∞). Summing
over i gives

χ̄(πr) = χ̄(πr−1)× EDout = χ̄(πr−1)× ∂

and so χ̄(πr) = ∂r by induction. This is formula (40).
The result for the complete directed graph Kr on r vertices is similar. For

r = 2 we have χ(K2) = χ(π1) = ∂ and so to establish formula (41) by induction
it is enough to show

χ(Kr+1) = χ(Kr)× βr
1− βr . (47)

In the forwards space-time PWIT process, consider a vertex-set Sr isomorphic
to Kr, headed by its latest-arriving vertex v∗. At time t after the arrival of v∗,
let Nt = 1+ the number of Kr+1-subgraphs of the forwards space-time PWIT
process which are of the form {v} ∪ Sr for some v; regard the “+1” as counting
Sr itself. Then Nt is a Yule process of rate

E
∑

i

pr(ξi) = βr (48)

because for each vertex v counted in Nt, a new vertex v′ arriving with near
neighbor v at distance x has chance [p(x)]r to create the r edges needed to
make {v′} ∪ Sr be a Kr+1 subgraph. Moreover these are the only ways in which
a new Kr+1 of the form {v′} ∪ Sr can be formed. By the Yule formula (29)
Nt

d= Geo(exp(−tβr)). Now regard Kr+1 as rooted by its second-latest arriving
vertex. In G∗

∞ the root has age T d= Exp(1). At its arrival time the root headed
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some random number of Kr’s, with mean χ(Kr), so by considering the mean
number of Kr+1’s at the present time

χ(Kr+1) = χ(Kr)× (ENT − 1)
= χ(Kr)× (E exp(T βr) − 1)

= χ(Kr)×
(

1
1− βr − 1

)

giving (47).
Other subgraphs. The derivations of formulas (45,46) dealing with paths and

K2,2 are relegated to Sects. 5.1 and 5.2.
For the graph out− starr consisting of r out-edges at a root, it is clear that

χ̄(out− starr) = E

(
Dout
r

)

and similarly

χ̄(in− starr) = E

(
Din
r

)
,

and these can in principle be evaluated using (12,8).
Some subgraphs have density zero.

�
��

�
�


�
�


�
��

�

�

�

�

It is easy to see that the graph G∗ above (where no “vertical” edge is present)
has χ(G∗) = 0.

4.6 Reparametrization

Writing α, λ in terms of ∂, κ = κcluster by solving (6,7) gives the formulas

α = ∂
∂+1

λ = 2(1+ 1
∂ )2

1+ 1
∂κ

}
0 < κ ≤ 1

∂ + 2
(49)

η = ∂((∂+2)κ−1)
(∂+1)(1+∂κ)

λ = (∂+1)(1+∂κ)
2∂(1−κ)

}
1

∂ + 2
< κ < 1. (50)
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4.7 Edge-Lengths

The previous calculations have not made very extensive use of the time-dynamics
of the forwards space-time PWIT process, and in particular have not used the
fact that edge-lengths grow exponentially at rate 1. To derive the formula (17)
for edge length density we do need to exploit such time-dynamics. We consider
only the low-density case; the high density case is more complicated because the
distribution in (ii) below is no longer exponential.

Consider the lengths of the in-edges at a particular vertex v0. Following a
tradition in mathematical probability, we visualize an in-edge of length � as a
“particle” at position � on a line; we also put a particle at position 0 to represent
the vertex v0 itself. If we start time τ with τ = 0 at the arrival time of v0, then
the evolution of the “particle process” can be specified as follows.
(i) There is a particle at position 0 at all times τ ≥ 0.
(ii) For each particle (at position x at time τ , say), at stochastic rate α per unit
time a new particle appears at position x+ Exp(λ).
(iii) particle positions increase deterministically at exponential(1) rate: a particle
at x at time τ will be at xeτ0−τ at time τ0 > τ .
Rule (ii) derives from (22): for an existing edge (v′, v0), a new vertex arriving at
distance r from near neighbor v′ creates an edge to v0 with probability p(r), so
the rate at which each existing edge is copied equals

∫ ∞
0 p(x) dx = α; moreover

conditional on copying, the distance r has Exp(λ) distribution, and so the length
of the new edge equals the length of the old edge +Exp(λ).

To analyze this particle process of edge lengths, define

G(τ, x) = E(number of edges of length > x at time τ)

so that

g(τ, x) = − d

dx
G(τ, x) = mean edge-length density at time τ .

We shall study

f(x) dx = E(number of in-edges at a typical vertex with length ∈ [x, x+ dx]).

Because the age of a typical vertex has Exp(1) distribution, f(x) can be written
as

f(x) =
∫ ∞

0
g(τ, x)e−τ dτ.

The verbal description of the particle process leads to the equation

d

dτ
G(τ, x) = xg(τ, x) + α

∫ x

0
g(τ, y)e−λ(x−y) dy + αe−λx.

Here the first term on the right expresses the deterministic exponential growth,
the second term expresses birth of particles to parents not at 0 (copying of
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existing edges) and the third expresses births to the 0-particle (new edge to v0).
Multiply the terms of the equation by e−τ and integrate out τ ; noting

∫ ∞

0

d

dτ
G(τ, x)e−τ dτ =

∫ ∞

0
G(τ, x)e−τ dτ = F (x), say,

we obtain

F (x) = xf(x) + α
∫ x

0
f(y)e−λ(x−y) dy + αe−λx. (51)

Differentiate: −f = (xf)′ + αf − λα ∫ x
0 f(y)e

−λ(x−y) dy − λαe−λx.
Rewrite with the integral term on the left, and then substitute the integral term
by the expression implied in (51):

λ(−xf − αe−λx + F ) = f + (xf)′ + αf − λαe−λx.
Differentiate: λ(−(xf)′ + λαe−λx − f) = f ′ + (xf)′′ + αf ′ + λ2αe−λx.
Tidy: (xf)′′ + λ(xf)′ + (1 + α)f ′ + λf = 0.
Look for a series solution f(x) =

∑∞
n=0 anx

n. Equating coefficients of xn:

(n+ 2)(n+ 1)an+1 + λ(n+ 1)an + (1 + α)(n+ 1)an+1 + λan = 0.

That is,

an+1

an
=

−λ(n+ 2)
(n+ 1)(n+ 3 + α)

and so

an =
(−λ)n(n+ 1)Γ (3 + α)

Γ (n+ 3 + α)
a0.

One can directly check that f(0+) = 1, identifying a0 = 1. Because the mean
in-degree is α/(1− α), the probability density function of a typical edge-length
must be 1−α

α f(x), establishing (17).

5 Further Calculations

5.1 Yule Arguments for Subgraph Density

The next Lemma abstracts the Yule process arguments used in Sect. 4.5. Recall
the reformulation there of limit subgraph density in terms of χ(G) and χ̄(G).

Lemma 2. Let G0 be a rooted directed acyclic graph such that each vertex is a
descendant of the root (Fig. 8). Let q be the out-degree of the root. Let G1 be a
directed acyclic graph obtained from G0 by adding an extra vertex w and edges
(w, root) and c further edges from w to some children of the root (so 0 ≤ c ≤ q).
Then
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Fig. 8. Illustration of Lemma 2.

χ̄(G1)/χ̄(G0) =
βc+1

1− βc+1
. (52)

χ(G1)/χ(G0) =
q−c∑

j=0

(−1)j
(
q − c
j

)
βc+1+j

1− βc+1+j
. (53)

(54)

In particular, if q = c then

χ(G1)/χ(G0) =
βc+1

1− βc+1
. (55)

As a quick application let us derive formula (45) for χ(πr) for the directed path
πr on r edges. Applying (53) with q = 1, c = 0,

χ(πr+1)/χ(πr) =
β1

1− β1
− β2

1− β2
=

β1 − β2

(1− β1)(1− β2)
.

Because χ(π1) = ∂ and ι(πr) = 1 we obtain formula (45).
Proof of Lemma 2. We will do the harder case (53). Consider a copy of G0

(i.e. an isomorphic subgraph) at the root of the PWIT. In the space-time PWIT
process, let M(t) be the number of copies of G1 which contain the given copy of
G0, at time t after the arrival of the root. Since the age T of the root has Exp(1)
distribution,

χ(G1)/χ(G0) = EM(T ).

Write S for the set of children of the root in G0 and write A for a subset of S.
Consider the process of arriving vertices v which form an edge to the root.

Such a v has a near neighbor v′, where either v′ = root or (v′, root) is already
an edge. Writing A(v′) ⊆ S for the set of children of the root to which v′ creates
an edge, then A(v) ⊆ A(v′). We can now write

M(t) = #{v : (v, root) is an edge, A(v) = A1}
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where A1 is the set of children of the root of G1 to which w has an edge.
In representing M(t) as above, we are using the hypothesis “each vertex is a
descendant of the root” to ensure that, in a subgraph of the space-time PWIT
isomorphic to G1, the last-arriving vertex must be w.

Consider a sequence root = v(0), v(1), . . . , v(i) of arriving vertices such that
each vertex v(k) arrives at distance xk from its near neighbor v(k−1). The
chance that each v(k) makes an edge to the root and to each child in A1

equals
∏i
k=1 p

c+1(xk). The chance that furthermore no other child in S ac-
quires an edge to v(i) equals (1 − ∏i

k=1 p(xk))
q−c. By considering the times

0 < t1 < t2 < . . . < ti < t of arrivals of v(i),

EM(t) =
∞∑

i=1

∫

0<t1<...<

∫

ti<t

dt1 . . . dti

∫ ∞

0
. . .

∫ ∞

0
dx1 . . . dxi pc+1(x)(1− p(x))q−c

where p(x) =
∏i
k=1 p(xi). Because pc+1(x)(1 − p(x))q−c =

∑q−c
j=0(−1)j

(
q−c
j

)

pc+1+j(x) and
∫ ∞
0 pc+1+j(xk) dxk = βc+1+j ,

EM(t) =
∞∑

i=1

ti

i!

q−c∑

j=0

(−1)j
(
q − c
j

)
βic+1+j

=
q−c∑

j=0

(−1)j
(
q − c
j

)
(exp(βc+1+jt)− 1).

Calculating EM(T ) =
∫ ∞
0 e−tEM(t) dt establishes (53).

5.2 Subgraph Density of K2,2

We have not pursued general methods for induced subgraph density beyond
Lemma 2, but the argument that follows for the particular case of K2,2, based
on splitting into two cases, could clearly be applied somewhat more widely.

We first quote

Lemma 3.

E

(
Geo(p)

2

)
= p−2 − p−1 (56)

E

(
Geo(p)− 1

2

)
= p−2 − 2p−1 + 1. (57)

Next consider the graph G∗ on the left of Fig. 9.
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Fig. 9. Graphs related to K2,2.

We will show

χ̄(G∗) =
2β2

2∂

(1− 2β2)(1− β2)
(58)

where β2 = EZ(2).
We start by repeating the argument in the r = 2 case of (47). In the for-

wards space-time PWIT process, consider the newly-arrived root and an edge
(root, v−1). At time t after the arrival of the root, let Nt = 1+ the number
of vertices v such that (v, root) and (v, v−1) are both edges of the graph pro-
cess; regard the “+1” as counting the root itself. Then Nt is a Yule process of
rate β2 =

∫ ∞
0 p2(x) dx. Thus at time t there are

(
Nt−1

2

)
graphs of the desired

form containing the edge (root, v−1). Because the age T of the root has Exp(1)
distribution, we see

χ̄(G∗) = ∂E

(
NT − 1

2

)

where ∂ = EDout is the expected number of edges of the form (root, v−1). Using
(28) and (57),

χ̄(G∗) = ∂E
(
e2β2T − 2eβ2T + 1

)

= ∂
(

1
1−2β2

− 2
1−β2

+ 1
)

leading to (58).
Next, in G∗

∞ consider

Q := number of unordered pairs (v−1, v−2) such that (root, v−1) and
(root, v−2) are edges, and v−1 and v−2 were in different geometric com-
ponents at the arrival time of the root.

By considering distances r1, r2 from the root to the near neighbors of the geo-
metric components containing v1, v2,

EQ = 1
2

∫ ∫
p(r1)p(r2) dr1dr2 × ∂2 = β2∂2/2.
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Now consider in G∗
∞ configurations G̃ as on the right of Fig. 9, where there

is no edge between v−1 and v−2, and where the root is the first-arriving vertex
to have edges to both v−1 and v−2; these requirements are equivalent to saying
that at the arrival time of the root, v−1 and v−2 were in different geometric
components. Reuse a now-familiar argument. At time t after the arrival of the
root, let Nt = 1+ the number of vertices v �= root such that (v, v−2) and (v, v−1)
are both edges of the graph process; regard the “+1” as counting the root itself.
Then Nt is a Yule process of rate β2 =

∫ ∞
0 p2(x) dx. Thus at time t the number

of possible unordered pairs {v1, v2} which give the configuration in the figure,
where we allow one of {v1, v2} to be the root, equals

(
Nt

2

)
. Because the age T of

the root has Exp(1) distribution, we see

χ̄(G̃) = E

(
NT
2

)
× EQ

where χ̄(G̃) is the density of graphs as on the right of Fig. 9, perhaps with extra
edges, but subject to the requirement that the root is the first-arriving vertex
to have edges to both v−1 and v−2. Using (28) and (57),

E

(
NT
2

)
= E

(
e2β2T − eβ2T

)
= 1

1−2β2
− 1

1−β2
=

β2

(1− 2β2)(1− β2)
.

One can now write

dens (K2,2) = 1
2 χ̄(K2,2) = χ̄(G∗) + χ̄(G̃)

because a 4-vertex graph in G∗
∞ containing K2,2 is either of the form G∗ or is

the restriction of a graph of the form G̃, in which the extra root is specified
by the requirement stated above (the factor 1/2 reflects the fact ι(K2,2) = 2).
Combining the formulas above gives

1
2 χ̄(K2,2) =

β2
2∂

(1− 2β2)(1− β2)
+ β2∂2/2× β2

(1− 2β2)(1− β2)

which simplifies to (46).

5.3 Directed Percolation

Here we record some calculations without detailed explanation. In the context
of the space-time PWIT and the evolving random graph process G∗

∞(s), we can
seek to grow a “core” graph C(s) inside G∗

∞(s) via a greedy rule:

a newly-arriving vertex is included in C(s) if it creates an edge to some
vertex already in C(s), in which case all such edges are included in C(s).

If this construction works, we expect the process (C(s)) to have a a stationary
distribution C(0), say, where C(0) ⊂ G∗

∞. Consider
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q = P (root ∈ C(0))
Y = out-degree of root in C(0), given root ∈ C(0).

Consider the relation

Ỹ =
∞∑

i=1

Beri(q)Bini(1 + Yi, p(ξi))

where we write Ber(p) for a Bernoulli(p) r.v. (taking value 1 with probability p
and value 0 otherwise). Using the recursive structure of the limit random graph
process, we see that q and Y solve the equations (for unknown 0 < q < 1 and
an unknown distribution Y on {1, 2, 3, . . . })

Y
d= dist(Ỹ |Ỹ ≥ 1); q = P (Ỹ ≥ 1). (59)

Define pdir-perc(α, λ) to be the solution q if it exists, and to be 0 otherwise.
The interpretation of this quantity in terms of the finite random graph process
(Gn, n ≥ 1) is that

n−1ET→ pdir-perc(α, λ)

where T is the maximal size of a tree in Gn directed toward some root. So in
particular, for pperc(α, λ) defined at (18),

pdir-perc(α, λ) ≤ pperc(α, λ).

Equation (59) in principle determines pdir-perc(α, λ), but to get an explicit
bound we reuse an underlying idea. Because 1 + Yi ≥ 2,

Ỹ ≥
∞∑

i=1

Beri(q)Bini(2, p(ξi)) = Y ∗, say.

If the equation

q = P (Y ∗ ≥ 1) (60)

has a solution q > 0 then one can argue pdir-perc(α, λ) ≥ q. But (60) is an
explicit equation

1− q = exp
(
−

∫
(2p(x)− p2(x))q dx

)
= exp(−(2β − β2)q).

If 2β − β2 > 1 there is a solution q > 0, establishing (19).



A PWITy Complex Network 83

5.4 Out-Degree in the Case αλ = 1

The special property of this case is that p(x) = e−λx. On the PWIT consider

Y =
∑

v 	=root
Ber(e−λd(v,root)).

This satisfies the same recursion (in the special case) as does Dout. But there is
another way to study Y , which we sketch briefly. Either the root of the PWIT has
no children within a small distance δ; or it does have a child, and the distances
to the other descendants of the root and of this child are independent copies of
the PWIT distances. Because the effect on Y of increasing distances by δ is to
censor each Bernoulli success with probability λδ, we see that Y is the stationary
distribution of the continuous-time Markov chain on states {0, 1, 2, . . . } with
dynamics

y → y − 1 : rate λy
y → y + Ŷ + 1 : rate 1

where Ŷ is an independent copy of Y . One can now check algebraically that

P (Y = y) = (1− 1
λ )( 1

λ )y, y ≥ 0

solves the balance equations for this chain. That is, 1 +Dout has Geo(1− 1
λ ) =

Geo(1− α) distribution, as asserted in (36).
Remark. Antar Bandyopadhyay (personal communication) has given a purely

analytic verification of (36).

5.5 Triangle Density of a Function of Degree

Here we outline an argument for (16). Because Din has power-law tail and Dout
has geometric tail, when D = Din +Dout is large, say k, then Dout = O(1) and
Din = k −O(1). It is then not hard to argue that the large-k behavior for C(k)
will be the same as for

C∗(k) =
E(number of triangles with in-vertex v0 | v0 has in-degree k)(

k
2

)

where the in-vertex of a triangle is the vertex with two in-edges.
Recall from Sect. 4.2 that

N(t) = number of in-edges at a typical vertex v0 at time t after its arrival

is the Yule process of rate β. Write v1, v2, v3, . . . for the successive arriving
vertices which create edges to v0, and for i ≥ 2 write

Mi = number of edges from vi to {vi−1, vi−2, . . . , v1}.
After vk arrives there are M2 +M3 + . . .+Mk triangles with in-vertex v0. If we
can show
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EMk → b as k →∞

then we will have

C(k) ≈ kb(
k
2

) ∼ 2b
k
. (61)

Here we are sliding over the fact that 1+Din is the Yule process evaluated at an
independent Exp(1) time T ; conditioning this to take a value k does not affect
the properties used in the argument below.

Suppose vertices v1, . . . , vk−1 have arrived and consider what edges will be
created when vk arrives. The dynamics (22) of the space-time PWIT say

the rate of arrival of new vertices with some one of v0, v1, . . . , vk−1 as
near neighbor and at distance ∈ [x, x+dx] from that near neighbor equals
k dx. The index I of that near neighbor vI is uniform on {0, 1, . . . , k−1}.

Such an arriving vertex creates an edge to v0 with probability p(x). So condi-
tional on that event (meaning the arriving vertex is vk), the distance ξ̂ from the
near neighbor vI and the index I = Ik of that near neighbor satisfy
(i) ξ̂ has probability density function p̂(x) = p(x)∫

p(u)du ;
(ii) I is uniform on {0, 1, . . . , k − 1}.
Because vk will copy each of theMI out-edges from vI with probability p(ξ) each,
and create an edge to VI with the same probability, we obtain the recursion

Mk
d= Bin(1 +MI , p(ξ̂))

where M1 = 0 and where we interpret the right side as 0 when I = 0. So the
limit limk EMk = b solves b = (1 + b)Ep(ξ̂) and so b = Ep(ξ̂)

1−Ep(ξ̂) . Finally,

Ep(ξ̂) =
∫
p(x)p̂(x) dx = β2/β.

So b = β2
β−β2

and (16) follows from (61).

6 Comparison with Other Models

Recent complex networks models fall into two categories. In the small worlds
models popularized by Strogatz and Watts, vertices are points in d-dimensional
space, which automatically provides a metric distance between vertices, and
the model uses some rule to create a random graph with short-range and long-
range edges. In purely graph-theoretical models, such as the basic proportional
attachment model popularized by Albert and Barabási7 the vertices have no
“intrinsic structure” other than that provided by the graph; we visualize this as
7 but really just a minor variation of Yule’s idea: see Lecture 4 of [16]
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saying that each pair of vertices is metric distance 1 apart. In a metric copying
model we visualize vertices as points in some abstract metric space, representing
(in the case of web pages, say) the difference between the content of the pages,
or (for people) some notion of “social distance” based on location, education,
profession, interests etc of the individuals. In detail the mean-field model of
distance model is used for mathematical tractability rather than any claimed
realism. But the exponential growth of number of vertices with metric distance
is intermediate between, and surely in many contexts more plausible than, the
alternatives implicit in the two standard categories of model above.

Within graph-theoretic models, the idea of distance preferences in attach-
ment has been explored (see [17] and citations therein). But the general idea
of combining proportional attachment with metric geometry has scarcely been
explored8, and the specific use of the mean-field model is novel.

As a technical note, the mean-field model is a zero-parameter9 model of
distance. Our full network model has the two parameters (α, λ); in contrast a
typical small-worlds network model has four parameters (dimension, number of
short-range links, constant and exponent for probability of long-range edges).

As another technical note, the property (cf. (16)) C(k) ∼ c/k has been pro-
posed [19] as a criterion for identifying networks which are “hierarchical” in some
sense. But in our finite-n model (recall Sect. 3.5) each vertex has qualitatively
the same behavior, rather than different vertices being a priori assigned different
hierarchical roles. So our model is non-hierarchical, and we are inclined to regard
the criterion as ineffective10.

The specific model studied in this paper is intended as a “general purpose”
model rather than being tuned to some particular subclass of real-world net-
works. Having as one ingredient the now-familiar proportional attachment fea-
ture, one could look at the many existing variant models in the literature and
explore them within our platform. In other words, there are many ways to add a
third parameter intended to express some presumed real-world feature or some
theoretical desideratum. For instance

– One can impose connectivity by requiring that a new vertex always links to
its nearest neighbor.

– one can add rules allowing a new vertex to immediately acquire in-edges,
or for edges to randomly appear between existing edges. Such rules can be
designed (as in e.g. [4] Sect. 11) to produce power law distributions for in-
degree.

8 [18] gives a simulation study of an explicitly power-law model, as well as interesting
empirical study of a notion of lexical distance between web pages

9 Zero dimensionless parameters, to be pedantic
10 One could alternatively regard it as indicating some subtle emergent hierarchical

structure; cf. [20]
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6.1 Concluding Remarks

In this paper we have focused on

– describing the model and its conceptual background (section 3)
– listing explicit formulas (sections 2.2 – 2.6) and exhibiting the calculations

which lead to these formulas (sections 4 and 5).

We are postponing to a later paper consideration of

– technical issues in the relation between the finite-n model and its infinite
limit G∗

∞
– the open problems indicated in sections 2.7 – 2.8, whose study requires the

“bounding” techniques of theoretical mathematical probability rather than
explicit calculations.
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