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Abstract

We review mathematically tractable models for connected networks
on random points in the plane, emphasising the little-studied class of
proximity graphs and introducing a new model called the Hammersley
network. We introduce and motivate a particular statistic R measur-
ing shortness of routes in a network. We show (via Monte Carlo, in
part) the trade-off between normalized network length and R in a one-
parameter family of proximity graphs. How close this family comes to
the optimal trade-off over all possible networks remains an intriguing
open question.

This material has been presented in talks since 2007. It will
be periodically updated as technical papers [3, 4, 7, 8] are completed,
and ultimately published as some kind of survey.
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1 Introduction

This is intended as the least technical in a series of papers [6, 8, 3, 4] on spa-
tial networks. For concreteness, visualize a road network linking a given set
of cities. Our first purpose is to introduce a specific statistic R for measuring
the effectiveness of a network in providing short routes (“route-length effi-
ciency”). The definition of R and its motivation are given in section 3.2. A
second purpose, perhaps of broader interest (hence presented first, in section
2), is to review models for connected networks on deterministic or random
points in the plane. Recall that the most studied network model, the ran-
dom geometric graph [33], does not permit both connectivity and bounded
normalized length in the n → ∞ limit.. An attractive alternative is the
class of proximity graphs, reviewed in section 2.3, which in the deterministic
case have been studied within computational geometry. Proximity graphs
on random points have scarcely been studied, but are potentially interesting
for many purposes other than the specific “short route lengths” topic of this
paper (see section 6.5), so we take this opportunity to draw the attention of
the applied probability community to this class of random proximity graphs.
One could also imagine constructions which depend on points having specif-
ically the Poisson point process distribution, and one novel such network,
which we name the Hammersley network, is described in section 2.5.

The central theme in the series of papers is seeking to quantify the trade-
off between network length (precisely, the normalized length L defined at (2))
and route length efficiency statistics such as R. Our particular statistic R is
not amenable to explicit calculation even in the “tractable” models of section
2, but in section 4 we present the results from Monte Carlo simulations of
these models in the random case. In particular, Figure 7 shows the tradeoff
for the particular β-skeleton family of proximity graphs.

Given a normalized network length L, for any realization of cities there
is some network of normalized length L which minimizes R. As indicated in
section 5, by general abstract mathematical arguments there must exist a
deterministic function Ropt(L) giving (in the “number of cities →∞” limit
under the random model) the minimum value of R over all possible networks
of normalized length L. An intriguing open question is

how close are the values Rβ-skel(L) from the β-skeleton proximity
graphs to the optimum values Ropt(L)?

As discussed in section 5.3, at first sight it looks easy to design heuristic
algorithms for networks which should improve over the β-skeletons, e.g. by
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introducing Steiner points, but in practice we have not succeeded in doing
so.

This paper focusses on the random model for city positions because it
seems the natural setting for theoretical study. As a complement, in [10] we
give empirical data for the values of (L,R) for certain real-world networks
(on the 20 largest cities, in each of 10 U.S. States). In [8] we give analytic
results and bounds on the trade-off between L and a mathematically more
tractable stretch statistic Rmax at (4), in both worst-case and random-case
settings for city positions. Let us also point out a (perhaps) non-obvious
insight discussed in section 3.3: in designing networks to be efficient in the
sense of providing short routes, the main difficulty is proving short routes
between city-pairs at a specific distance (2 - 3 standardized units) apart
rather than pairs at large distances apart.

Finally, recall this is a non-technical paper. Our purpose is to elaborate
the ideas outlined above; technical aspects may be briefly mentioned (e.g.
section 6.2) but will be pursued elsewhere.

2 Models for connected spatial networks

There are several conceptually different ways of defining networks on random
points in the plane. To be concrete we call the points cities; to be consistent
about language we regard xi as the position of city i and represent network
edges as line segments (xi, xj).

First (sections 2.1 - 2.3) are schemes which use deterministic rules to
define edges for an arbitrary deterministic configuration of cities; then one
just applies these rules to a random configuration. Second, one can have
random rules for edges in a deterministic configuration (e.g. the probability
of an edge between cities i and j is a function of Euclidean distance d(xi, xj),
as in popular small worlds models [32]), and again apply to a random con-
figuration. Third, and more subtly, one can have constructions that depend
on the randomness model for city positions – section 2.5 provides a novel
example.

2.1 The geometric graph

In sections 2.1 - 2.3 we have an arbitrary configuration x = {xi} of city
positions, and a deterministic rule for defining the edge-set E . Usually in
graph theory one imagines a finite configuration, but note that everything
makes sense for locally finite configurations too. Where helpful we assume
“general position”, so that intercity distances d(xi, xj) are all distinct.
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For the geometric graph one fixes 0 < c <∞ and defines

(xi, xj) ∈ E iff d(xi, xj) ≤ c.

For the K-neighbor graph one fixed K ≥ 1 and defines

(xi, xj) ∈ E iff xi is one of the K closest neighbors of xj or xj is
one of the K closest neighbors of xi.

A moment’s thought shows these graphs are in general not connected, so we
turn to models which are “by construction” connected.

2.2 A nested sequence of connected graphs

For more about the material here and in the next section see [25], which
develops algorithmic applications in computational geometry and pattern
recognition. But everything we need is immediate from the (careful choice
of) definitions. On our arbitrary configuration x we can define four graphs
whose edge-sets are nested as follows:

MST ⊆ relative n’hood ⊆ Gabriel ⊆ Delaunay . (1)

Here are the definitions (for MST and Delaunay, it is easy to check
these are equivalent to more familiar definitions). In each case, we write the
criterion for an edge (xi, xj) to be present.

• Minimum spanning tree (MST) [22]. There does not exist a sequence
i = k0, k1, . . . , km = j of cities such that
max(d(xk0 , xk1), d(xk1 , xk2), . . . , d(xkm−1 , xkm)) < d(xi, xj).

• Relative neighborhood graph. There does not exist a city k such that
max(d(xi, xk), d(xk, xj)) < d(xi, xj).

• Gabriel graph. There does not exist a city inside the disc with diameter
d(xi, xj).

• Delaunay triangulation [21]. There exists some disc, with xi and xj
on its boundary, so that no city is inside the disc.

The inclusions (1) are immediate from the definitions. Because the MST
(for a finite configuration) is connected, all these graphs are connected.
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Figure 1. The relative neighborhood graph (left) and Gabriel graph (right)
on different realizations of 500 random points.

Figure 1 illustrates the relative neighborhood and Gabriel graphs. Fig-
ures for the MST and the Delaunay triangulation can be found online at
http://www.spss.com/research/wilkinson/Applets/edges.html.

Constructions such as the relative neighborhood and Gabriel graphs have
become known loosely as proximity graphs in [25] and subsequent literature,
and we next take the opportunity to make an implicit definition in the
literature into an explicit definition.

2.3 Proximity graphs

Write v− and v+ for the points (−1
2 , 0) and (1

2 , 0). The lune is the intersection
of the open discs of radii 1 centered at v− and v+. So v− and v+ are not in
the lune but are on its boundary. Define a template A to be a subset of R2

such that
(i) A is a subset of the lune;
(ii) A contains the open line segment (v−, v+);
(iii) A is invariant under the “reflection in the y-axis” map Reflectx(x1, x2) =
(−x1, x2) and the “reflection in the x-axis” map Reflecty(x1, x2) = (x1,−x2).
(iv) A is open.

For arbitrary points x, y in R2, define A(x, y) to be the image of A under
the transformation (translation, rotation and scaling) that takes (v−, v+) to
(x, y).

Definition. Given a template A and a locally finite set V of vertices,
the associated proximity graph G has edges defined by: for each x, y ∈ V,

(x, y) is an edge of G iff A(x, y) contains no vertex of V.
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From the definitions:

• if A is the lune then G is the relative neighborhood graph;

• if A is the disc centered at the origin with radius 1/2 then G is the
Gabriel graph.

But the MST and Delaunay triangulation are not instances of proximity
graphs.

Note that replacing A by a subset A′ can only introduce extra edges. It
follows from (1) that the proximity graph is always connected. On the other
hand, if A is not a superset of the disc centered at the origin with radius
1/2, then G might not be a subgraph of the Delaunay triangulation, and in
this case edges may cross (i.e. G is not planar).

For a given configuration x, there is a collection of proximity graphs
indexed by the template A, so by choosing a monotone one-parameter family
of templates one gets a monotone one-parameter family of graphs, analogous
to the one-parameter family Gc of geometric graphs. Here is a popular choice
[27] in which β = 1 gives the Gabriel graph and β = 2 gives the relative
neighborhood graph.

Definition: the β-skeleton family.
(i) For 0 < β < 1 let Aβ be the intersection of the two open discs of radius
(2β)−1 passing through v− and v+.
(ii) For 1 ≤ β ≤ 2 let Aβ be the intersection of the two open discs of radius
β/2 centered at (±(β − 1)/2, 0).

2.4 Networks based on powers of edge-lengths

It is not hard to think of other ways to define one-parameter families of
networks. Here is one scheme, used in e.g. [36]. Fix 1 ≤ p < ∞. Given
a configuration x, and a route (sequence of vertices) x0, x1, . . . , xk, say the
cost of the route is the sum of p’th powers of the step lengths. Now say that
a pair (x, y) is an edge of the network Gp if the cheapest route from x to y
is the one-step route. As p increases from 1 to ∞ these networks decrease
from the complete graph to the MST. Moreover for p ≥ 2 the network Gp is
a subgraph of the Gabriel graph.

2.5 The Hammersley network

There is a quite separate recent literature in theoretical probability [23, 24]
defining structures such as trees and matchings directly on the infinite Pois-
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son point process. In this spirit, we observe that the Hammersley process
studied in [5] can be used to define a new network on the infinite Poisson
point process, which we name the Hammersley network. This network is de-
signed to have the feature that each vertex has exactly 4 edges, in directions
NE (between North and East), NW, SE and SW. The conceptual difference
from the networks in the previous section is that there is not such a simple
“local” criterion for whether a potential edge (xi, xj) is in the network. And
edges cross, creating junctions.

For a picturesque description, imagine one-eyed frogs sitting on an in-
finitely long, thin log, each being able to see only the part of the log to their
left before the next frog. At random times and positions (precisely, as a
space-time Poisson point process of rate 1) a fly lands on the log, at which
instant the (unique) frog which can see it jumps left to the fly’s position
and eats it. This defines a continuous time Markov process (Hammersley
process) whose states are the configurations of positions of all the frogs.

Figure 2. Space-time trajectories in Hammersley’s process.
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Figure 3. The Hammersley network on 2,500 random points.

There is a stationary version of the process in which at each time, the
positions of the frogs form a Poisson (rate 1) point process on the line.

Now consider the space-time trajectories of all the frogs, drawn with
time increasing upwards on the page. See Figure 2. For each frog, the part
of the trajectory between the ends of two successive jumps consists of an
upward edge (the frog remains in place as time increases) followed by a
leftward edge (the frog jumps left). Reinterpreting the time axis as a second
space axis, and introducing compass directions, that part of the trajectory
becomes a North edge followed by a West edge. Now replace these two
edges by a single North-West straight edge. Doing this procedure for each
frog and each pair of successive jumps, we obtain a collection of NW paths;
that is, a network in which each city (the reinterpreted space-time random
points) has a edge to the NW and an edge to the SE. Finally we repeat
with the same realization of the space-time Poisson point process but with
frogs jumping rightwards instead of leftwards. This yields a network on the
infinite Poisson point process, which we name the Hammersley network. See
Figure 3.

Remarks. (a). To draw the Hammersley network on random points in
a finite square, one needs external randomization to give the initial (time
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0) frog positions, in fact two independent randomizations for the leftwards
and the rightwards processes. So to be pedantic, one gets a random network
over the given realization of cities. However, one can deduce from the theo-
retical results in [5] that the external randomization has effect only near the
boundary of the square.

(b). The property that each vertex has exactly 4 edges, in directions
NE (between North and East), NW, SE and SW, is immediate from the
construction. Note however that while adjacent NW space-time trajectories
in Figure 2 do not cross, the corresponding diagonal roads in the Hammersley
network may cross.

2.6 Normalized length

The notion of normalized network length L is most easily visualized in the
setting of an infinite deterministic network which is “regular” in the sense
of consisting of a repeated pattern. First choose the unit of length so that
cities have an average density of one per unit area. Then define

L = average network length per unit area (2)
d̄ = average degree (number of incident edges) of cities. (3)

Figure 4 shows the values of L and d̄ for some simple “repeated pattern”
networks. Though not directly relevant to our study of the random model,
we find Figure 4 helpful for two reasons: as intuition for the interpretation
of the different numerical values of L, and because we can make very loose
analogies (section 6.6) between particular networks on random points and
particular deterministic networks.
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L = 1.25 d̄ = 2.5
Punctured lattice

L = 1.32 d̄ = 3 L = 1.50 d̄ = 3

L = 1.61 d̄ = 3 L = 2.00 d̄ = 4
Square lattice

L = 2.71 d̄ = 5

L = 2.83 d̄ = 4
Diagonal lattice

L = 3.22 d̄ = 6
Triangular lattice

L = 3.41 d̄ = 6

Figure 4. Variant square, triangular and hexagonal lattices.
Drawn so that the density of cities is the same in each diagram, and ordered by
value of L.
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3 Normalized length and route-length efficiency

3.1 The random model

For the remainder of the paper we work with “the random model” for city
positions. The finite model assumes n random vertices (cities) distributed
independently and uniformly in a square of area n. The infinite model
assumes the Poisson point process of rate 1 (per unit area) in the plane.
The quantities L, d̄ above and R below that we discuss may be interpreted
as exact values in the infinite model or as n→∞ limits in the finite model:
see section 5. We use the word normalized as a reminder of the “density 1”
convention – we choose the normalized unit of distance to make cities have
average density 1 per unit area.

3.2 The route-length efficiency statistic R

In designing a network, it is natural to regard total length as a “cost”. The
corresponding “benefit” we seek is to have short routes between cities. Write
`(i, j) for the route-length (length of shortest path) between cities i and j
in a given network, and d(i, j) for Euclidean distance between the cities. So
`(i, j) ≥ d(i, j), and we write

r(i, j) = `(i,j)
d(i,j) − 1

so that “r(i, j) = 0.2” means that route-length is 20% longer than straight
line distance. With n cities we get

(
n
2

)
such numbers r(i, j); what is a reason-

able way to combine these into a single statistic? Two natural possibilities
are

Rmax := max
j 6=i

r(i, j) (4)

Rave := ave(i,j)r(i, j)

where ave(i,j) denotes average over all distinct pairs (i, j). The statistic Rmax

has been studied in the context of the design of geometric spanner networks
[31] where it is often called the stretch. However, being an “extremal”
statistic Rmax seems unsatisfactory as a descriptor of real world networks
– for instance, it seems unreasonable to characterize the U.K. rail network
as inefficient simply because there is no very direct route between Oxford
and Cambridge.

The statistic Rave has a more subtle drawback. Consider a network
consisting of
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• the minimum-length connected network (Steiner tree) on given cities;

• and a superimposed sparse collection of randomly oriented lines (a
Poisson line process [38]).

See Figure 5. By choosing the density of lines to be sufficiently low, one can
make the normalized network length be arbitrarily close to the minimum
needed for connectivity. But it is easy to show (see [6] for careful analysis
and stronger result) that one can construct such networks so that Rave → 0
as n→∞. Of course no-one would build a road network looking like Figure
5 to link cities, because there are many pairs of nearby cities with only very
indirect routes between them. The disadvantage of Rave as a descriptive
statistic is that (for large n) most city-pairs are far apart, so the fact that
a given network has a small value of Rave says nothing about route-lengths
between nearby cities.

We propose a statistic R which is intermediate between Rave and Rmax.
First consider

ρ(d) := mean value of r(i, j) over city-pairs with d(i, j) = d

and then define
R := max

0≤d<∞
ρ(d). (5)

In words, R = 0.2 means that on every scale of distance, route-lengths are
on average at most 20% longer than straight line distance.

On an intuitive level, R provides a sensible and intepretable way to
compare efficiency of different networks in providing short routes. On a
technical level, we see two advantages and one disadvantage of using R
instead of Rave.
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A graph is a set {V,E}, where V is a set of m vertices (nodes) and E is a
set of n edges that link (associate) pairs of vertices to each other. A graph
may be embedded in a space, in which case the set V is associated with a
set of m points, one for each vertex, and the set E is represented by lines
connecting points, one line for each edge. 

This applet illustrates several graphs that may be computed for a set of m
data points embedded in a space. These are discussed in Chapter 8 of The

Grammar of Graphics (Springer-Verlag, 1999). The Voronoi tessellation
partitions a set of data points such that every point within a polygon is

Figure 5. Efficient or inefficient? Rave would judge this network efficient
in the n→∞ limit. 1

Advantage 1. Using R to measure efficiency, there is a meaningful n→∞
limit for the network length/efficiency tradeoff (the function Ropt(L) dis-
cussed in section 5), and so in particular it makes sense to compare the
values of R for networks with different n.

Advantage 2. A more realistic model for traffic would posit that volume
of traffic between two cities varies as a power-law d−γ of distance d, so that
in calculating Rave it would be more realistic to weight by d−γ . This means
that the optimal network, when using Rave as optimality criterion, would
depend on γ. Use of R finesses this issue; the value of γ does not affect R.2

1The tree is actually a MST, taken from http://www.spss.com/research/wilkinson,
because we could not print a suitable Steiner tree picture, but one can be viewed at
http://www.css.taylor.edu/∼bbell/steiner/1600.gif. Similarly, Table 1 quotes the
MST rather than the Steiner tree because we could not find data for normalized length
for the Steiner tree.

2A related issue is that volume of traffic between two cities should depend on their
populations. Intuitively, incorporating random population sizes should make the optimal
R smaller because the network designer can create shorter routes between larger cities.
We see this effect in data [10]; R calculated via population-wieghting is typically smaller.
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Disadvantage. The statistic R is tailored to the infinite model, in which
it makes sense to consider two cities at exactly distance d apart (then the
other city positions form a Poisson point process). For finite n we need to
discretize. For the empirical data in [10], where n = 20, we average over
intervals of width 1 unit (recall the unit of distance is taken such that the
density of cities is 1 per unit area); that is for d = 1, 2, . . . , 5 we calculate

ρ̃(d) := mean value of r(i, j) over city-pairs with d− 1
2 < d(i, j) < d+ 1

2

R̃ := max
1≤d<∞

ρ̃(d) (6)

and use R̃ as proxy for R. For larger n we can use shorter intervals. Thus
there is in principle a certain fuzziness to the notion of R for finite networks,
and in particular it is not clear how to assign a value of R to regular networks
such as those in Figure 4. But in practice, for networks we have studied on
real-world data and on random points, this is not a problem, as explained
next.

3.3 Characteristic shape of the function ρ(d)

For the tractable networks on random points (excluding the Hammersley
network) the function ρ(d) has a characteristic shape (see Figure 6) attain-
ing its maximum between 2 and 3 and slowly decreasing thereafter. This
“smoothness near the maximum” is technically convenient, implying that
any calculated value R̃ at (6) is quite insensitive to the choice of discretiza-
tion.

But we have not tried theoretical study.
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1 2 3
Normalized distance d
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0.1

0.2

ρ(d)

0.3

0.4

Gabriel

Relative n’hood

Delaunay

Figure 6. The function ρ(d) for three theoretical networks on random cities.
Irregularities are Monte Carlo random variation.

This characteristic shape has a common-sense interpretation. Any efficient
network will tend to place roads directly between unusually close city-pairs,
implying that ρ(d) should be small for d < 1. For large d the presence
of multiple alternate routes helps prevent ρ(d) from growing.. At distance
2− 3 from a typical city i there are about π32−π22 ≈ 16 other cities j. For
some of these j there will be cities k near the straight line from i to j, so
the network designer can create roads from i to k to j. The difficulty arises
where there is no such intermediate city k: including a direct road (xi, xj)
will increase L, but not including it will increase ρ(d) for 2 < d < 3.

Thus Figure 6 offers a minor insight into spatial network design: that it
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is city pairs at normalized distance 2−3 specifically that cause the problems
in efficient network design.

The characteristic shape – at least, the flatness over 2 ≤ d ≤ 5 – is also
visible in the real-world data [10].

For the Hammersley network, the graph of ρ(d) is quite different; ρ(d)
increases to a maximum of 0.35 around d = 0.8 and then decreases more
steeply to a value of 0.21 at d = 5. This arises from the particular structure
(from each city there is one road in each quadrant) resembling the determin-
istic “diagonal lattice” of Figure 4, in which the route between some nearby
pairs will be via two diagonal roads and a junction.

4 Length-efficiency tradeoff for tractable networks

Recall that our overall theme is the tradeoff between network length and
route-length efficiency, and that in this paper we focus on n→∞ limits in
the random model and the particular statistics L and R.

The models described in section 2 are “tractable” in the specific sense
that one can find exact analytic formulas for normalized length L. Unfor-
tunately R is not amenable to analytic calculation, and we resort to Monte
Carlo simulation to obtain values for R. Table 1 and Figure 7 show the
values of (L,R) in the models. We explain below how the values of L are
calculated.

Network L d̄ R

Minimum spanning tree 0.633 2 ∞
Relative n’hood 1.02 2.56 0.38
Gabriel 2 4 0.15
Hammersley 3.25 4 0.35
Delaunay 3.40 6 0.07

Table 1. Statistics of tractible networks on random points.
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0.1

0.2

0.3

0.4

♦

Normalized network length L

R

�

Figure 7. The normalized network length L and the route length efficiency
statistic R for certain networks on random points. The ◦ show the beta-skeleton
family, with RN the relative neighborhood graph and G the Gabriel graph. The •
are special models: 4 shows the Delaunay triangulation, � shows the network G2

from section 2.4, and ♦ shows the Hammersley network.

Notes on Table 1. (a) Values of R from our simulations with n = 2, 500.
(b) Value of L for MST from Monte Carlo [18]. In principle one can calcu-
late arbitrarily close bounds [11] but this has never been carried through.
Of course d̄ = 2 for any tree.
(c) The Gabriel graph and the relative neighborhood graph fit the assump-
tions of Lemma 1 below with c = π/4 and c = 2π

3 −
√

3
4 respectively, and

their table entries for L and d̄ are obtained from Lemma 1, as are the values
for β-skeletons in Figure 7.
(d) For the Hammersley network, every degree equals 4, so L = 2×(mean
edge-length). It follows from theory [5] that a typical edge, say NE from
(x, y), goes to a city at position (x + ξx, y + ξy), where ξx and ξy are inde-
pendent with Exponential(1) distribution. So mean edge-length equals∫ ∞

0

∫ ∞
0

√
x2 + y2 e−x−y dxdy ≈ 1.62. (7)
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(e) For any triangulation, d̄ = 6. For the Delaunay triangulation, L = ES
where S is the perimeter length of a typical cell, and it is known ([29] page
113) that ES = 32

3π . Note [28] that the Delaunay triangulation is in general
not the minimum-length triangulation. Our simulation results in Figure 6
for ρ(d) for the Delaunay triangulation are roughly consistent with a simu-
lation result in [12] saying that ρ(65) ≈ 0.05.

4.1 A simple calculation for proximity graphs

Lemma 1 For a proximity graph with template A on the Poisson point
process,

L = π3/2

4c3/2
(8)

d̄ = π
c (9)

where c = area(A).

Particular cases can be found elsewhere, (e.g. for d̄ in examples in [19]),
but our point is to emphasize that Lemma 1 is an elementary and general
calculation.
Proof. Take a typical city at position x0. For a city x at distance s the
chance that (x0, x) is an edge equals exp(−cs2) and so

mean-degree =
∫ ∞

0
exp(−cs2) 2πs ds

L = 1
2

∫ ∞
0

s exp(−cs2) 2πs ds.

Evaluating the integrals gives (9,8).

4.2 Other tractable networks

Curiously, we do not know any other ways of defining networks on random
points which are both “natural” and are tractable in the sense that one can
find exact analytic formulas for L. In particular we know no tractable way
of defining networks with deliberate junctions as in Figure 8 below. Note
also that, while it is easy to make ad hoc modifications to the geometric
graph to ensure connectivity, these destroy tractability. On the other hand,
one can construct “unnatural” networks (see e.g. [8]) designed to permit
calculation of L.
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5 Optimal networks and n→∞ limits

5.1 Tractable models

As mentioned earlier, the quantities L, d̄, R we discuss may be interpreted
as exact values in the infinite model or as n→∞ limits in the finite model.
To elaborate briefly, in a realization of the finite model (n cities distributed
independently and uniformly in a square of area n), a network in Table 1 has
a normalized length Ln = n−1× (network length) and an average degree d̄n
which are random variables, but there is convergence (in probability and in
expectation)

Ln → L, d̄n → d̄ as n→∞ (10)

to limit constants definable in terms of the analogous network on the infinite
model (rate 1 Poisson point process on the infinite plane). For the proximity
graphs or Delaunay triangulation, the network definition applies directly to
the infinite model and proof of (10) is straightforward. For the Hammersley
network, (10) is implicit in [5], and for the MST a detailed argument can be
found in [9]. Convergence of ρn(d) to ρ(d) and of Rn to R is similar.

5.2 Optimal networks

We now turn to consideration of optimal networks. Given a configuration
x of n cities in the area-n square, and a value of L which is greater than
n−1 × (length of Steiner tree), one can define a number

Rn(x, L) = min. of R̃ over all networks on x with normalized length ≤ L
(11)

where R̃ is the discretized version (6) calculated using intervals of some
suitable length δn. Applying this to a random configuration X in the finite
model gives, for each L, a random variable

Ξn(L) := Rn(X, L).

One intuitively expects convergence to some deterministic limit

Ξn(L)→ Ropt(L), say, as n→∞. (12)

The analogous result for Rmax is proved carefully in [8], and the same “super-
additivity” argument could be used to prove (12). See [35, 37, 39] for general
background to such results. The point is that we don’t have any explicit
description of the optimal (i.e. attaining the minimum in (11)) networks
in the finite or infinite models, so it seems impossible to prove the natural
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stronger supposition that the finite optimal networks themselves converge
(in some appropriate sense) to an infinite optimal network for which the
value R = Ropt(L) is attained.

5.3 The curve Ropt(L)

Every possible network on the infinite Poisson point process defines a pair
(L,R), and the curve R = Ropt(L) can be defied equivalently as the lower
boundary of the set of possible values of (L,R). There is no reason to believe
that proximity graphs are exactly optimal, and indeed Figure 7 shows that
the Delaunay triangulation is slightly more efficient than the corresponding
β-skeleton. But our attempts to do better by ad hoc constructions (e.g.
by introducing degree-3 junctions – see Figure 8 for an example) have been
unsuccessful. We therefore speculate that the function Ropt looks something
like the curve in Figure 9, which we now discuss.

Figure 8. An ad hoc modification of the relative neighborhood graph,
introducing junctions.

What can we say about Ropt(L)? It is a priori non-decreasing. It is known
[39] that there exists a Euclidean Steiner tree constant LST representing
the limit normalized Steiner tree length in the random model, and clearly
Ropt(L) =∞ for L < LST. The facts

Ropt(L) <∞ for all L > LST; Ropt(L)→ 0 as L→∞ (13)

are not trivial to prove rigorously, but follow from the corresponding facts
for Rmax proved in [8]. But we are unable to prove rigorously that Ropt is
strictly decreasing or that it is continuous.
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xxx Quote upper and lower bounds as L→∞ from final version
of [8].
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0.1

0.2

0.3

0.4

Normalized network length L

R
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Figure 9. Speculative shape for the curve Ropt(L), with ◦ and • values from
tractable networks in Figure 7.

6 Final remarks

6.1 Toy models for road networks

The idea of using proximity graphs as toy models for road networks has pre-
viously been noted [27] but not investigated very thoroughly. It’s intuitively
natural to a network designer: whether or not to place a direct road from
city i to a nearby city j depends (partly) on whether some other city k is
close to the line between them.

For other cost/benefit functionals leading to different optimal networks
see [1, 2, 13, 20].

6.2 Rigorous proof of finite R in random proximity graphs?

Table 1 presented the Monte Carlo numerical value ≈ 0.38 of R for the rela-
tive neighborhood graph on random points. From a rigorous viewpoint, the
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assertion that a random network has R <∞ is essentially the assertion that
ρ(d) = O(d) as d → ∞. This is often non-trivial to prove. A general suffi-
cient condition for this property, which applies to the relative neighborhood
graph (and hence all proximity graphs), is proved in [3]. The related fact
that the limit limd→∞ ρ(d)/d exists is proved in [4].

6.3 Optimal trade-off between network length and route-
length efficiency

Recall that a central theme is seeking to quantify the trade-off between nor-
malized network length l and route length efficiency R. Figure 9 suggests
that for optimal networks the “law of diminishing returns” sets in around
L = 2 (for comparison, this is the value of L corresponding to the square
grid network), in that Ropt(L) decreases rapidly to around 0.13 as L in-
creases to 2 but decreases only slowly as L increases further. We boldly
conjecture that for real-world networks in which short route-lengths are a
major desideratum, and that are perceived as efficient in actually having
short routes, their summary statistics (L,R) will typically be near (2, 0.2).
The preliminary data in [10] is roughly consistent with this conjecture.

6.4 Other results for the random network models

There is substantial literature on the networks (MST, proximity graphs, De-
launay triangulation) in the deterministic setting, but the literature for the
random case is rather diffuse, with different focuses for different networks.
For instance, work on MSTs has focused on central limit theorems for net-
work length [26] and connections with critical continuum percolation [16].
For the relative neighborhood graph and the Gabriel graph, [19] calculates
d̄ and [17] shows that in the finite model, in a certain range the β-skeletons
have

Rmax grows as order
√

log n/ log log n. (14)

As for the Delaunay triangulation, there has been surprisingly little follow-
up to the seminal analysis by Miles [29] (various maximal statistics are
studied in [15]), though the closely related Voronoi tessellation has been
studied in more detail [30].

6.5 Speculative applications of random proximity graphs

Random proximity graphs seem an interesting object of study from many
viewpoints, in particular as an attractive alternative to random geometric
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graphs for modeling spatial networks that are connected by design. It is
remarkable that (14) is the only non-elementary result about them that we
can find in the literature. As well as being natural models for road networks,
they might be useful in modeling communication networks suffering line of
sight interference.

At a more mathematical level, for questions such as spread-out percola-
tion [34] or critical value of contact processes [14], random proximity graphs
with small A are an interesting alternative to the usual lattice- or random
graph-based models. For instance, it is natural to conjecture that the critical
value p∗A for a random proximity graph with template A satisfies

p∗A ∼ π−1 area(A) as area(A)→ 0 (15)

(the right side = 1/d̄ from (9)) and that the critical value λ∗A for the contact
process has the same asymptotics.

6.6 Analogies between deterministic and random networks

As mentioned earlier we may make very loose analogies between these net-
works on random points and particular deterministic networks in Figure 4,
based in part on exact equality of d̄ in the latter three cases.

Relative n’hood graph ↔ punctured lattice
Gabriel graph ↔ square lattice

Hammersley network ↔ diagonal lattice
Delaunay triangulation ↔ triangular lattice

6.7 Scale invariant continuum networks

Introducing the statistic R can be viewed as one approach to resolving the
“paradox” from [6], discussed in section 3.2, that the more natural statistic
Rave doesn’t lead to realistic optimal networks in the n → ∞ limit. This
particular approach was prompted by visualizing real-world road networks
– cf. discussion in section 3.3. Let us mention a mathematically more
sophisticated alternative, under study as work in progress [7]. Instead of a
discrete Poisson process of cities we imagine a continuum limit. That is, for
each finite set (z1, . . . , zk) of points there is a random network S(z1, . . . , zk)
linking the points, consistent as more points are added. Mathematically
natural structural properties for the distribution of such a process are
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(i) translation and rotation invariance
(ii) scale invariance
where the latter means that routes, as point-sets in R2, are invariant in
distribution under Euclidean scaling. This implies that the quantity ρ(d)
analogous to (5), assumed finite, is a constant, which we can call R′. The
analog L′ of L is defined by

the expected length of the network on n uniform random points
in the area-n square grows ∼ L′n as n→∞.

In this setting we can study the optimal trade-off between L′ and R′, and
the kind of “paradoxical” Figure 5 network cannot arise because it violates
scale-invariance.
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[13] M. Barthélemy and A. Flammini. Optimal traffic networks. Journal of
Statistical Mechanics: Theory and Experiment, 2006:L07002, 2006.

25



[14] N. Berger, C. Borgs, J.T. Chayes, and A. Saberi. On the spread of
viruses on the internet. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 301–310 (electronic),
New York, 2005. ACM.

[15] M. Bern, D. Eppstein, and F. Yao. The expected extremes in a Delau-
nay triangulation. Internat. J. Comput. Geom. Appl., 1:79–91, 1991.

[16] C. Bezuidenhout, G. Grimmett, and A. Löffler. Percolation and mini-
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