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Overview of the MM Algorithm

1. The MM algorithm is not an algorithm, but a prescription

for constructing optimization algorithms.

2. The EM algorithm from statistics is a special case.

3. An MM algorithm operates by creating a surrogate function

that minorizes or majorizes the objective function. When

the surrogate function is optimized, the objective function is

driven uphill or downhill as needed.

4. In minimization MM stands for majorize/minimize, and in

maximization MM stands for minorize/maximize.

1



History of the MM Algorithm

1. Ortega and Rheinboldt (1970) enunciate the principle in the
context of line search methods.

2. de Leeuw and Heiser (1977) present an MM algorithm for
multidimensional scaling contemporary with the classic Demp-
ster et al. (1977) paper on EM algorithms.

3. Subsequent appearances: robust regression (Huber, 1981),
quadratic lower bound principle (Böhning & Lindsay,1988),
medical imaging (Lange et al, 1987, De Pierro, 1995; Lange
& Fessler, 1995), quantile regression (Hunter & Lange, 2000),
survival analysis (Hunter & Lange, 2002), paired and multi-
ple comparisons (Hunter, 2004), variable selection (Hunter &
Li, 2002), DNA sequence analysis (Sabatti & Lange, 2002),
and discriminant analysis (Lange & Wu, 2006).
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Rationale for the MM Principle

1. It can generate an algorithm that avoids matrix inversion.

2. It can separate the parameters of a problem.

3. It can linearize an optimization problem.

4. It can deal gracefully with equality and inequality constraints.

5. It can turn a non-differentiable problem into a smooth prob-

lem.
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Majorization and Definition of the Algorithm

1. A function g(θ | θn) is said to majorize the function f(θ) at
θn provided

f(θn) = g(θn | θn)

f(θ) ≤ g(θ | θn) for all θ.

The majorization relation between functions is closed under
the formation of sums, nonnegative products, limits, and
composition with an increasing function.

2. A function g(θ | θn) is said to minorize the function f(θ) at
θn provided −g(θ | θn) majorizes −f(θ).

3. In minimization, we choose a majorizing function g(θ | θn)
and minimize it. This produces the next point θn+1 in the
algorithm.
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A Quadratic Majorizer
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Descent Property

1. An MM minimization algorithm satisfies the descent property

f(θn+1) ≤ f(θn) with strict inequality unless both

g(θn+1 | θn) = g(θn | θn)

f(θn+1) = g(θn+1 | θn).

2. The descent property follows from the definitions and

f(θn+1) = g(θn+1 | θn) + f(θn+1) − g(θn+1 | θn)

≤ g(θn | θn) + f(θn) − g(θn | θn)

= f(θn).

3. The descent property makes the MM algorithm very stable.
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Generic Methods of Majorization and Minorization

1. Jensen’s inequality — EM algorithms

2. Chord above the graph property of a convex function —
image reconstruction

3. Supporting hyperplane property of a convex function

4. Quadratic upper bound principle — Böhning and Lindsay

5. Arithmetic-geometric mean inequality

6. The Cauchy-Schwartz inequality — multidimensional scaling
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Chord and Supporting Hyperplane Properties
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Example 1: Finding a Sample Median

1. Consider the sequence of numbers y1, . . . , ym. The sample

median θ minimizes the non-differentiable criterion

f(θ) =
n∑

i=1

|yi − θ|.

2. The quadratic function

hi(θ | θn) =
1

2

(yi − θ)2

|yi − θn|
+

1

2
|yi − θn|

majorizes |yi − θ| at the point θn.

3. Hence, g(θ | θn) =
∑n

i=1 hi(θ | θn) majorizes f(θ).
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A Sum of Quadratic Majorizers
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Example 1: MM Algorithm

1. The minimum of the quadratic

g(θ | θn) =
1

2

n∑

i=1

[
(yi − θ)2

|yi − θn|
+ |yi − θn|

]
.

occurs at

θn+1 =

∑n
i=1 wn

i yi∑n
i=1 wn

i

for wn
i = |yi − θn|−1.

2. The algorithm works except when a weight wn
i = ∞. It

generalizes to sample quantiles, to least L1 regression, and

to quantile regression.
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Example 2: Bradley-Terry Ranking

1. Consider a sports league with m teams. Assign team i the

skill level θi. Bradley and Terry proposed the model

Pr(i beats j) =
θi

θi + θj
.

2. To ensure that the skill levels are identifiable, set θ1 = 1.

3. If bij is the number of times i beats j, then the likelihood of

the data is

L(θ) =
∏

i,j

(
θi

θi + θj

)bij

.
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Example 2: Loglikelihood

1. We estimate θ by maximizing f(θ) = lnL(θ) and then rank
the teams on the basis of the estimates.

2. The form of the loglikelihood

f(θ) =
∑

i,j

bij

[
ln θi − ln(θi + θj)

]

suggests that we work on the term − ln(θi + θj) if we want
to separate parameters.

3. Hence we apply the supporting hyperplane property

h(y) ≥ h(x) + ∇h(x)t(y − x),

of a convex function h(x). For the choice h(x) = − ln x, this
minorization amounts to − ln y ≥ − ln x − 1

x(y − x).
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Example 2: Minorization

1. The minorization − ln y ≥ − lnx − (y − x)x−1 produces the
surrogate

g(θ | θn) =
∑

i,j

bij


ln θi − ln(θn

i + θn
j ) −

θi + θj

θn
i + θn

j

+ 1


 .

2. Because the parameters are separated, the optimal point

θn+1
i =

∑
j 6=i bij∑

j 6=i(bij + bji)/(θ
n
i + θn

j )

is easy to find.

3. Under natural assumptions, these MM iterates converge to
the unique maximum likelihood point.
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Example 3: Random Graph Model

1. Random graphs provide interesting models of connectivity in
genetics and internet node ranking.

2. In a simplified version of the Chatterjee and Diaconis model,
we assign a propensity pi ∈ [0,1] to each node i.

3. An edge between nodes i and j then forms independently
with probability pipj. In other words, for a handshake to
occur, both parties must agree.

4. The most obvious statistical question in the model is how to
estimate the pi from data. Once this is done, we can rank
nodes by their estimated propensities.
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Example 3: Loglikelihood

1. If E denotes the edge set of the graph, then the loglikelihood

can be written as

L(p) =
∑

{i,j}∈E

[
ln pi + ln pj

]
+

∑

{i,j}6∈E

ln(1 − pipj). (1)

Here {i, j} denotes a generic unordered pair.

2. The logarithms ln(1− pipj) are the bothersome terms in the

loglikelihood.

3. We will minorize each of these by exploiting the concavity of

the function ln(1 − x).

16



Example 3: Two Successive Minorizations

1. Using the concavity of ln(1 − x) gives the minorization

ln(1 − pipj) ≥ ln(1 − pnipnj) −
1

1 − pnipnj
(pipj − pnipnj)

and eliminates the logarithm.

2. This minorization is not quite good enough to separate pa-

rameters, however. Separation can be achieved by invoking

the second minorizing inequality

−pipj ≥ −
1

2
(
pnj

pni
p2
i +

pni

pnj
p2
j ).

Note again that equality holds when all pi = pni.

17



Example 3: MM Algorithm

1. It follows that L(p) is minorized by the function

g(p | pn) =
∑

{i,j}∈E

[
ln pi + ln pj

]

+
∑

{i,j}6∈E

[
ln(1 − pnipnj) −

1

1 − pnipnj

1

2
(
pnj

pni
p2
i +

pni

pnj
p2
j )

]
.

2. If we set ∂
∂pi

g(p | pn) = 0 and let di denote the degree of node

i, then the MM update is

pn+1,i =
√

pni




di∑
{i,j}6∈E

pnj
1−pnipnj




1/2

. (2)
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Example 3: Comments on the MM Algorithm

1. If by chance pn+1,i > 1, then it is prudent to set pn+1,i = 1−ε

for ε > 0 very small.

2. When di = 0, the MM algorithm makes the sensible choice

pn+1,i = 0.

3. Step doubling produces an algorithm close to the Chatterjee

and Diaconis algorithm for estimating the propensities.

4. This derivation extends to random directed graphs and gen-

erates MM updates for ingoing and outgoing propensities.
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Example 4: Transmission Tomography

1. In transmission tomography, high energy photons are beamed
from an external source through the body to an external
detector.

2. The plane region of an X-ray slice is divided into small pixels,
and pixel j is assigned attenuation coefficient θj.

3. The number of photons beamed along projection i (line of
flight) is Poisson distributed with mean di. Transmitted
counts yi for different projections are independent.

4. A photon entering pixel j along projection i successfully tra-
verses the pixel with Poisson probability e−lijθj, where lij is
the intersection length of the projection and pixel.
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Example 4: Cartoon of Transmission Tomography
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Example 4: Loglikelihood

1. The probability that a photon transmitted along projection i

is detected is given by the exponentiated line integral e−〈li,θ〉,
where 〈li, θ〉 =

∑
j lijθj.

2. The loglikelihood under the model for transmission tomog-

raphy is

f(θ) =
∑

i

fi(〈li, θ〉) =
∑

i

[
−die

−〈li,θ〉 + yi ln di − yi〈li, θ〉 − ln yi!
]
.

3. Note that the function fi(s) = −die
−s − ys + ci is strictly

concave.
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Example 4: Minorization

1. Now consider the composition of a concave function fi(s)

and a linear function 〈li, θ〉, and set

αn
ij =

lijθ
n
j

〈li, θn〉
.

Because fi(s) is concave,

fi(〈li, θ〉) = fi


∑

j

αn
ij

θj

θn
j

〈li, θn〉


 ≥

∑

j

αn
ijfi


θj

θn
j

〈li, θn〉


 .

with equality when θ = θn.

2. This term-by-term minorization for each projection yields an

overall minorization g(θ | θn) that separates the parameters.
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Example 4: MM Algorithm

1. Maximization of the surrogate function can be accomplished
by applying Newton’s method parameter by parameter.

2. This treatment omits smoothing terms. These also can be
minorized to give a surrogate function with separated param-
eters.

3. The Poisson model accounts for random variation and allows
simultaneous smoothing.

4. The images produced by the Poisson model and the MM al-
gorithm are superior to images produced by standard Fourier
methods using the Radon transform. Thus, patient X-ray
doses can be lowered without compromising image quality.
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Example 5: Machine Learning Discriminant Analysis

1. To discriminate among k+1 categories, choose k+1 vectors

in Rk to form the vertices of a regular tetrahedron. Each

training case i is assigned to a vertex via its indicator ui.

2. For p observed cases, define the regularized risk function

R(A, b) =
p∑

i=1

‖ui − Axi − b‖ε + λ
k∑

j=1

‖aj‖2,

where at
j is the jth row of a k × q matrix A of regression

coefficients, b is a k × 1 column vector of intercepts, and

‖v‖ε = max{‖v‖ − ε, 0} denotes ε-insensitive distance on Rk

for a fixed ε > 0. Estimate A and b by minimizing R(A, b).
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Example 5: Rationale for Risk Function

1. Choosing the vertices of a regular tetrahedron makes all ver-
tices equidistant.

2. Euclidean distance is less sensitive to large residuals than
Euclidean distance squared.

3. In predicting membership, it does not make much difference
how close the linear predictor is to the artificial indicator ui.
Hence, ε-insensitive distance.

4. Unless the number of cases is much larger than the number
of features, estimates of the regression coefficients tend to
be poor. Hence the need for regularization.

26



Example 5: Quadratic Majorization of ‖y‖ε

Repeated application of the Cauchy-Schwarz inequality produces

the majorizer

q(x | y) =





1
2‖y‖‖x‖

2 + 1
2‖y‖ − ε ‖y‖ ≥ 2ε

1
4(ε−‖y‖)‖x − y‖2 ‖y‖ < ε

1
4(ε−‖z‖)‖x − z‖2 ε < ‖y‖ < 2ε

of ‖y‖ε, where in the last case z = cy with the positive contraction

constant c chosen so that ‖z‖ = 2ε−‖y‖. There is no majorization

in the anomalous situation ‖y‖ = ε.
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Example 5: Performance of the Discriminant Method

1. On standard test problems, the machine learning method

performs well compared to other methods of discriminant

analysis.

2. The MM algorithm is much simpler to program then compet-

ing algorithms that solve the dual problem to risk function

minimization. For k+1 categories, each MM update involves

solving k different weighted least squares problems.

3. The MM algorithm is reasonably fast. Step doubling halves

the number of iterations until convergence.
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Error Rates for Examples from the UCI Data Repository

Method Wine Glass Zoo Lymphography
TDA 0 0.2970 0 0.0541
LDA 0.0112 0.4065 NA 0.0878
QDA 0.0169 NA NA NA
KNN 0.0506 0.2991 0.0792 0.1351
OVR 0.0169 0.3458 0.0099 0.0541
MSVM 0.0169 0.3645 NA NA
AltMSVM 0.0169 0.3170 NA NA
CART 0.1404 0.1449 0.1683 0.1351
Random forest 0.0674 0.1589 0.0297 0.0135

1. For the wine and glass data, the error rates are average
misclassification rates based on 10-fold cross validation.

2. The error rates for the zoo and lymphography data refer to
training errors.
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Example 6: Convex Programming

1. In convex programming we minimize a smooth function f(θ)
subject to concave inequality constraints vj(θ) ≥ 0.

2. In view of the supporting hyperplane property,

g(θ | θn) = f(θ) + ω
∑

j

[vj(θ
n) ln

vj(θ
n)

vj(θ)
+ ∇vj(θ

n)t(θ − θn)].

majorizes f(θ). Here ω is any positive constant.

3. The presence of the term ln vj(θ) in g(θ | θn) works as a
barrier to prevent the event vj(θ

(m+1)) ≤ 0 from occurring.

4. The multiplier vj(θ
n) of ln vj(θ) gradually adapts and allows

vj(θ
n+1) to tend to 0 if it is inclined to do so.
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Example 6: Implementation of the MM Algorithm

1. The MM minimization algorithm must start with a point in

the interior of the feasible region. All iterates stay within the

interior region. Inequality constraints are implicit.

2. The minimization step of the MM algorithm can be carried

out approximately by Newton’s method.

3. When there are linear equality constraints Aθ = b in addi-

tion to the inequality constraints vj(θ) ≥ 0, these should be

enforced during the minimization of g(θ | θn). Majorization

disposes of the inequality constraints.
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Example 6: Derivation of the Majorizer

1. Since −vj(θ) is convex,

−vj(θ) + vj(θ
n) ≥ −∇vj(θ

n)t(θ − θn).

2. Because − ln y + ln x ≥ −(y − x)x−1,

vj(θ
n)
[
− ln vj(θ) + ln vj(θ

n)
]

≥ vj(θ
n) − vj(θ).

3. Adding the last two inequalities, we see that

vj(θ
n)
[
− ln vj(θ) + ln vj(θ

n)
]
+ ∇vj(θ

n)t(θ − θn) ≥ 0,

with equality when θ = θn.

4. Summing the last inequality over j and multiplying by the
positive constant ω gives the majorizer.
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Example 6: Geometric Programming

Consider minimizing f(x) = (x1x2x3)
−1 + x2x3 subject to the

constraint v(x) = 4 − 2x1x3 − x1x2 ≥ 0 for positive values of

the xi. Under the change of variables xi = eθi, the program is

convex, and the MM algorithm with ω = 1 gives:

Iteration n f(xn) xn
1 xn

2 xn
3

1 2.0000 1.0000 1.0000 1.0000
2 1.6478 1.5732 1.0157 0.6065
3 1.5817 1.7916 0.9952 0.5340
4 1.5506 1.8713 1.0011 0.5164
5 1.5324 1.9163 1.0035 0.5090
10 1.5040 1.9894 1.0011 0.5008
15 1.5005 1.9986 1.0002 0.5001
20 1.5001 1.9998 1.0000 0.5000
25 1.5000 2.0000 1.0000 0.5000
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Local Convergence of an MM Algorithm

1. The MM map M(θ) gives the unique point M(θn) = θn+1

that optimizes g(θ | θn).

2. At the optimal point θ̂, one can show that M(θ) has differ-
ential

dM(θ̂) = −d2g(θ̂ | θ̂)−1
[
d2f(θ̂) − d2g(θ̂ | θ̂)

]

in the absence of constraints.

3. The linear rate of convergence depends on the largest eigen-
value of the differential. All eigenvalues lie on [0,1).

4. In a practical sense, the rate of convergence depends on how
well the surrogate function g(θ | θn) approximates f(θ).
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Global Convergence of an MM Algorithm

1. If an objective function is strictly convex or concave, then

the MM algorithm will converge to the unique optimal point,

assuming it exists.

2. If convexity or concavity fail, but all stationary points are iso-

lated, then the MM algorithm will converge to one of them.

3. This point can be a local optimum, or in unusual circum-

stances, even a saddle point.

4. There exists methods for accelerating the convergence of

MM and EM algorithms.
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Remaining Challenges

1. Devise new MM algorithms, particularly for high dimensional

problems.

2. Quantify the local rate of convergence of the MM algorithm

in the presence of inequality constraints. When does an MM

algorithm converge at a sublinear rate?

3. Estimate the computational complexity of the convex pro-

gramming and other MM algorithms.

4. Devise better ways of accelerating MM and EM algorithms.
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