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1. Introduction

This is a guide to the mathematical theory of Brownian motion (BM) and re-
lated stochastic processes, with indications of how this theory is related to other
branches of mathematics, most notably the classical theory of partial differential
equations associated with the Laplace and heat operators, and various general-
izations thereof.

As a typical reader, we have in mind a student familiar with the basic concepts
of probability based on measure theory, at the level of the graduate texts of
Billingsley [43] and Durrett [106], and who wants a broader perspective on the
theory of BM and related stochastic processes than can be found in these texts.
The difficulty facing such a student is that there are now too many advanced
texts on BM and related processes. Depending on what aspects or applications
are of interest, one can choose from any of the following texts, each of which
contains excellent treatments of many facets of the theory, but none of which
can be regarded as a definitive or complete treatment of the subject.

General texts on BM and related processes

[139] D. Freedman. Brownian motion and diffusion (1983).
[180] K. Itô and H. P. McKean, Jr. Diffusion processes and their sample paths

(1965).
[179] K. Itô. Lectures on stochastic processes (1984).
[201] O. Kallenberg. Foundations of modern probability (2002).
[211] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus

(1988).
[206] G. Kallianpur and S. P. Gopinath. Stochastic analysis and diffusion pro-

cesses (2014).
[221] F. B. Knight. Essentials of Brownian motion and diffusion (1981).
[313] P. Mörters and Y. Peres. Brownian motion (2010).
[370] D. Revuz and M. Yor. Continuous martingales and Brownian motion

(1999).
[372] and [373] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes

and Martingales, Vols. I and II (1994).

This list does not include more specialized research monographs on subjects
closely related to BM such as stochastic analysis, stochastic differential geom-
etry, and more general theory of Gaussian and Markov processes. Lists of such
monographs classified by subject can be found in following sections.

1.1. History

The physical phenomenon of Brownian motion was discovered by Robert Brown,
a 19th century scientist who observed through a microscope the random swarm-
ing motion of pollen grains in water, now understood to be due to molecular
bombardment. The theory of Brownian motion was developed by Bachelier in
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his 1900 PhD Thesis [8], and independently by Einstein in his 1905 paper [113]
which used Brownian motion to estimate Avogadro’s number and the size of
molecules. The modern mathematical treatment of Brownian motion (abbrevi-
ated to BM), also called the Wiener process is due to Wiener in 1923 [436].
Wiener proved that there exists a version of BM with continuous paths. Lévy
made major contributions to the theory of Brownian paths, especially regarding
the structure of their level sets, their occupation densities, and other fine fea-
tures of their oscillations such as laws of the iterated logarithm. Note that BM is
a Gaussian process, a Markov process, and a martingale. Hence its importance
in the theory of stochastic process. It serves as a basic building block for many
more complicated processes. For further history of Brownian motion and related
processes we cite Meyer [307], Kahane [197], [199] and Yor [455].

1.2. Definitions

This section records the basic definition of a Brownian motion B, along with
some common variations in terminology which we use for some purposes. The
basic definition of B, as a random continuous function with a particular family
of finite-dimensional distributions, is motivated in Section 2 by the appearance
of this process as a limit in distribution of rescaled random walk paths.

Let (Ω,F ,P) be a probability space. A stochastic process (B(t, ω), t ≥ 0, ω ∈
Ω) is a Brownian motion if

(i) For fixed each t, the random variable Bt = B(t, ·) has Gaussian distribu-
tion with mean 0 and variance t.

(ii) The process B has stationary independent increments.
(iii) For each fixed ω ∈ Ω, the path t→ B(t, ω ) is continuous.

The meaning of (ii) is that if 0 ≤ t1 < t2 < ... < tn, then Bt1 , Bt2−Bt1 , ..., Btn−
Btn−1

are independent, and the distribution of Bti − Bti−1
depends only on

ti− ti−1. According to (i), this distribution is normal with mean 0 and variance
ti− ti−1. We say simply that B is continuous to indicate that B has continuous
paths as in (iii). Because of the convolution properties of normal distributions,
the joint distribution of Xt1 , ..., Xtn are consistent for any t1 < ... < tn. By
Kolmogorov’s consistency theorem [43, Sec. 36], given such a consistent family of
finite dimensional distributions, there exists a process ( Xt, t ≥ 0 ) satisfying (i)
and (ii), but the existence of such a process with continuous paths is not obvious.
Many proofs of existence of such a process can be found in the literature. For
the derivation from Kolmogorov’s criterion for sample path continuity, see [370,
§, Theorem (1.8)]. Freedman [139] offers a more elementary approach via the
following steps:

• Step 1: Construct Xt for t ∈ D = {dyadic rationals} = { k2n }.
• Step 2: Show for almost all ω, t → X(t, ω) is uniformly continuous on
D ∩ [0, T ] for any finite T.

• Step 3: For such ω, extend the definition of X(t, ω) to t ∈ [0,∞) by
continuity.
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• Step 4: Check that (i) and (ii) still hold for the process so defined.

Except where otherwise specified, a Brownian motion B is assumed to be one-
dimensional, and to start at B0 = 0, as in the above definition. If βt = x + Bt
for some x ∈ R then β is a Brownian motion started at x. Given a Brownian
motion (Bt, t ≥ 0) starting from 0, the process Xt := x + δt + σBt is called a
Brownian motion started at x with drift parameter δ and variance parameter σ2.
The notation Px for probability or Ex for expectation may be used to indicate
that B is a Brownian motion started at x rather than 0, with δ = 0 and σ2 = 1.
A d-dimensional Brownian motion is a process

(Bt := (B
(1)
t , . . . , B

(d)
t ); t ≥ 0)

where the processes B(i) are d independent one-dimensional Brownian motions.

2. BM as a limit of random walks

Let Sn := X1 + . . .+Xn where the Xi are independent random variables with
mean 0 and variance 1, and let St for real t be defined by linear interpolation
between integer values. Let B be a standard one-dimensional BM. It follows
easily from the central limit theorem [43, Th. 27.1] that

(Snt/
√
n, t ≥ 0)

d→ (Bt, t ≥ 0) as n→∞ (1)

in the sense of weak convergence of finite-dimensional distributions. According
to Donsker’s theorem [44, 106, 370], this convergence holds also in the path
space C[0,∞) equipped with the topology of uniform convergence on compact
intervals. That is to say, for every T > 0, and every functional f of a continuous
path x = (xs, 0 ≤ s ≤ T ) that is bounded and continuous with respect to the
supremum norm on C[0, T ],

E[f(Snt/
√
n, 0 ≤ t ≤ T )]→ E[f(Bt, 0 ≤ t ≤ T )] as n→∞. (2)

Here, for ease of notation, we suppose that the random walk X1, X2, . . . and the
limiting Brownian motion B are defined on the same probability space (Ω,F ,P),
and E denotes expectation with respect to P. One way to do this, which can be
used to prove (1), is to use the Skorokhod embedding technique of constructing
the Xi = BTi − BTi−1 for a suitable increasing sequence of stopping times
0 ≤ T1 ≤ T2 · · · such that the Ti − Ti−1 are independent copies of T1 with
E(T1) = E(X2

1 ). See [106, Th. 8.6.1], [44] or [370] for details, and [327] for a
survey of variations of this construction. To illustrate a consequence of (1),

1√
n

max
1≤k≤n

Sk
d→ sup

0≤t≤1
Bt

d
= |Bt| as n→∞ (3)

where the equality in distribution is due to the well known reflection principle
for Brownian motion. This can be derived via Donsker’s theorem from the cor-
responding principle for a simple random walk with Xi = ±1 discussed in [127],
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or proved directly in continuous time [43][106][139][370]. See also [222], [86] for
various more refined senses in which Brownian motion may be approximated by
random walks.

Many generalizations and variations of Donsker’s theorem are known [44].
The assumption of independent and identically distributed Xi can be weakened
in many ways: with suitable auxilliary hypotheses, the Xi can be stationary,
or independent but not identically distributed, or martingale differences, or
otherwise weakly dependent, with little affect on the conclusion apart from a
scale factor. More interesting variations are obtained by suitable conditioning.
For instance, assuming that the Xi are integer valued, let o(

√
n) denote any

sequence of possible values of Sn with o(
√
n)/
√
n→ 0 as n→∞. Then [108]

(Snt/
√
n, 0 ≤ t ≤ 1 |Sn = o(

√
n))

d→ (Bbr
t , 0 ≤ t ≤ 1) (4)

where Bbr is the standard Brownian bridge, that is, the centered Gaussian pro-
cess with covariance E(Bbr

s B
br
t ) = s(1 − t) and continuous paths which is ob-

tained by conditioning (Bt, 0 ≤ t ≤ 1) on B1 = 0. Some well known descriptions
of the distribution of Bbr are [370, Ch. III, Ex (3.10)]

(Bbr
t , 0 ≤ t ≤ 1)

d
= (Bt − tB1, 0 ≤ t ≤ 1)

d
= ((1− t)Bt/(1−t), 0 ≤ t ≤ 1) (5)

where
d
= denotes equality of distributions on the path space C[0, 1], and the

rightmost process is defined to be 0 for t = 1. See Section 7.1 for further discus-
sion of this process. Let T− := inf{n : Sn < 0}. Then as n→∞

(Snt/
√
n, 0 ≤ t ≤ 1 |T− > n)

d→ (Bme
t , 0 ≤ t ≤ 1) (6)

where Bme is the standard Brownian meander [174, 53], and as n→∞ through
possible values of T−

(Snt/
√
n, 0 ≤ t ≤ 1 |T− = n)

d→ (Bex
t , 0 ≤ t ≤ 1) (7)

where Bex
t is the standard Brownian excursion [200, 85]. Informally,

Bme d
= (B |Bt > 0 for all 0 < t < 1)

Bex d
= (B |Bt > 0 for all 0 < t < 1, B1 = 0)

where
d
= denotes equality in distribution. These definitions of conditioned

Brownian motions have been made rigorous in a number of ways: for instance
by the method of Doob h-transforms [221, 376, 129], and as weak limits as ε ↓ 0
of the distribution of B given suitable events Aε, as in [103, 51], for instance

(B |B(0, 1) > −ε) d→ Bme as ε ↓ 0 (8)

(Bbr |Bbr(0, 1) > −ε) d→ Bex as ε ↓ 0 (9)
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where X(s, t) denotes the infimum of a process X over the interval (s, t). See
Section 7.1 for further treatment of Brownian bridges, excursions and meanders.

The standard Brownian bridge arises also as a weak limit of empirical pro-
cesses: for U1, U2, . . . a sequence of independent uniform [0, 1] variables, and

Hn(t) :=
√
n (

1

n

n∑
i=1

1(Ui ≤ t)− t)

so that
E[Hn(t)] = 0, E[(Hn(t))2] = t(1− t)

it is found that
(Hn(t), 0 ≤ t ≤ 1)

d→ (Bbr
t , 0 ≤ t ≤ 1)

in the sense of convergence of finite-dimensional distributions, and also in the
sense of weak convergence in the function space D[0, 1] of right-continuous paths
with left limits, equipped with the Skorokhod topology. See [391] for the proof
and applications to empirical process theory.

Some further references related to random walk approximations are Lawler
[249], Spitzer [397], Ethier and Kurtz [122], Le Gall [251].

3. BM as a Gaussian process

A Gaussian process with index set I is a collection of random variables (Xt, t ∈
I), defined on a common probability space (Ω,F ,P), such that every finite
linear combination of these variables

∑
i aiXti has a Gaussian distribution. The

finite-dimensional distributions of a Gaussian process (Xt, t ∈ I) are uniquely
determined by the mean function t → E(Xt), which can be arbitrary, and the
covariance function (s, t)→ E(XsXt)−E(Xs)E(Xt), which must be symmetric
and non-negative definite. A Gaussian process is called centered if E(Xt) ≡
0. Immediately from the definition of Brownian motion, there is the following
characterization: a real valued process (Bt, t ≥ 0) is a Brownian motion starting
from 0 iff

(a) (Bt) is a centered Gaussian process with covariance function

E[BsBt] = s ∧ t for all s, t ≥ 0; (10)

(b) with probability one, t→ Bt is continuous.

Note that for a centered process B, formula (10) is equivalent to

B0 = 0 and E[(Bt −Bs)2] = |t− s|. (11)

The existence of Brownian motion can be deduced from Kolmogorov’s general
criterion [372, Theorem (25.2)] for existence of a continuous version of a stochas-
tic process. Specialized to a centered Gaussian process (Xt, t ∈ Rn), this shows
that a sufficient condition for existence of a continuous version is that E(XsXt)
should be locally Hölder continuous [372, Corollary (25.6)].
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3.1. Elementary transformations

This characterization of BM as a Gaussian process is often useful in checking
that a process is a Brownian motion, as in the the following transformations of
a Brownian motion (Bt, t ≥ 0) starting from 0.

Brownian scaling For each fixed c > 0,

(c−1/2Bct, t ≥ 0)
d
= (Bt, t ≥ 0). (12)

Time shift For each fixed T > 0,

(BT+t −BT , t ≥ 0)
d
= (BT , t ≥ 0). (13)

and the shifted process (BT+t −Bt, t ≥ 0) is independent of (Bu, 0 ≤ u ≤
T ). This is a form of the Markov property of Brownian motion, discussed
further in the next section.

Time reversal for each fixed T > 0

(BT−t −BT , 0 ≤ t ≤ T )
d
= (Bt, 0 ≤ t ≤ T ).

Time inversion
(tB1/t, t > 0)

d
= (Bt, t > 0). (14)

3.2. Quadratic variation

Consider a subdivision of [0, t] say

0 = tn,0 < tn,1 < · · · < tn,kn = t

with mesh
max
i

(tn,i+1 − tn,i)→ 0 as n→∞.

Then ∑
i

(Btn,i+1 −Btn,i)
2 → t in L2 (15)

with convergence almost surely if the partitions are nested [201, Th. 13.9]. An
immediate consequence is that the Brownian path has unbounded variation
on every interval almost surely. This means that stochastic integrals such as∫∞
0
f(t)dBt cannot be defined in a naive way as Lebesgue-Stieltjes integrals.

3.3. Paley-Wiener integrals

It follows immediately from (11) that

E

( n∑
i=1

ai(Bti+1
−Bti)

)2
 =

n∑
i=1

a2i (ti+1 − ti) (16)
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and hence that the Gaussian space generated by B is precisely the collection of
Paley-Wiener integrals{∫ ∞

0

f(t)dBt with f ∈ L2(R+, dt)

}
(17)

where the stochastic integral is by definition
∑n
i=1 ai(Bti+1

− Bti) for f(t) =∑n
i=1 ai1(ti < t ≤ ti+1), and the definition is extended to f ∈ L2(R+, dt) by

linearity and isometry, along with the general formula

E

[(∫ ∞
0

f(t)dBt

)2
]

=

∫ ∞
0

f2(t)dt. (18)

See [410, §5.1.1]for background and further discussion. The identity (18) gives
meaning to the intuitive idea of dBt as white noise, whose intensity is the
Lebesgue measure dt. Then Bt may be understood as the total noise in [0, t].
This identity also suggests the well known construction of BM from a sequence
of independent standard Gaussian variables (Gn) as

Bt =

∞∑
n=0

(fn, 1[0,t])Gn (19)

where (fn) is any orthonormal basis of L2(R+, du), and

(fn, 1[0,t]) =

∫ t

0

fn(u)du

is the inner product of fn and the indicator 1[0,t] in the L2 space. Many authors
have their preferred basis: Lévy [270], [271], Knight [223], Ciesielski [81].

Note also that once one BM B has been defined on some probability space,
e.g. via (19), then many other Brownian motions B(k) can be defined on the
same probability space via

B
(k)
t =

∫ ∞
0

k(t, u)dBu

for a bounded kernel k such that
∫∞
0
k2(t, u)du <∞ and∫ ∞

0

(k(t, u)− k(s, u))2du = (t− s) for 0 < s < t.

Such a setup is called a non-canonical representation of Brownian motion. Many
such representations were studied by Lévy; See also Hida and Hitsuda [169],
Jeulin and Yor [192].
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3.4. Brownian bridges

It is useful to define, as explicitly as possible, a family of Brownian bridges
{(Bx,y,Tu , 0 ≤ u ≤ T ), x, y ∈ R} distributed like a Brownian motion (Bu, 0 ≤
u ≤ T ) conditioned on B0 = x and BT = y. To see how to do this, assume first
that x = 0, and write

Bu =
(
Bu −

u

T
BT

)
+
u

T
BT

Observe that each of the random variables Bu − (u/T )BT is orthogonal to
BT , and hence the process (Bu − (u/T )BT , 0 ≤ u ≤ T ) is independent of
BT . It follows that the desired family of bridges can be constructed from an
unconditioned Brownian Motion B with B0 = 0 as

Bx,y,Tu = x+Bu − (u/T )BT + (u/T )(y − x) = x+ u(y − x) +
√
TBbr(u/T )

for 0 ≤ u ≤ T, x, y ∈ R, where Bbr is the standard Brownian bridge as in (4).

3.5. Fine structure of Brownian paths

Regarding finer properties of Brownian paths, such as Lévy’s modulus of conti-
nuity, Kolmogorov’s test, laws of the iterated lograrithm, upper and lower func-
tions, Hausdorff measure of various exceptional sets, see Itô and McKean [181]
for an early account, and Mörters and Peres [313] for a more recent exposition.

3.6. Generalizations

We mention briefly in this section a number of Gaussian processes which gen-
eralize Brownian motion by some extension of either the covariance function or
the index set.

3.6.1. Fractional BM

A natural generalization of Brownian motion is defined by a centered Gaussian
process with (11) generalized to

E
[
(B

(H)
t −B(H)

s )2
]

= |t− s|2H

whereH is called the Hurst parameter. This construction is possible only forH ∈
(0, 1], when such a fractional Brownian motion (B

(H)
t , t ≥ 0) can be constructed

from a standard Brownian motion B as

B
(H)
t = Cα

∫ ∞
0

(uα − (u− t)α+)dBu



J. Pitman and M. Yor/Guide to Brownian motion 11

for α = H − 1/2 and some universal constant Cα. Early work on fractional
Brownian motion was done by Kolmogorov [225], Hurst [173], Mandelbrot and
Van Ness [287]. See also [414] for a historical review. It is known that fractional
BM is not a semimartingale except for H = 1/2 or H = 1. See [35] for an
introduction to white-noise theory and Malliavin calculus for fractional BM.
Other recent texts on fractional BM are [325] [310] [34]. See also the survey
article [279] on fractional Gaussian fields.

3.6.2. Lévy’s BM

This is the centered Gaussian process Y indexed by Rδ such that

Y0 = 0 and E(Yx − Yy)2 = |x− y|.

McKean [298] established the remarkable fact that this process has a spatial
Markov property in odd dimensions, but not in even dimensions. See also [71],
[80], [229].

3.6.3. Brownian sheets

Instead of a white noise governed by Lebesgue measure on the line, consider a
white noise in the positive orthant of RN for some N = 1, 2, . . ., with intensity
Lebesgue measure. Then for t1, . . . , tN ≥ 0 the noise in the box [0, t1] × · · · ×
[0, tN ] is a centered Gaussian variable with variance

∏N
i=1 ti, say Xt1,...,td , and

the covariance function is

E(Xs1,...,sNXt1,...,tN ) =

N∏
i=1

(si ∧ ti)

This N parameter process is known as the standard Brownian sheet. See Khos-
nevisan [218] for a general treatment of multiparameter processes, and Walsh
[427] for an introduction to the related area of stochastic partial differential
equations.

3.7. References

Gaussian processes : general texts
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Ltd., Chichester, 1981. Wiley Series in Probability and Mathematical
Statistics.
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for general Gaussian processes (1990).

[109] H. Dym and H. P. McKean. Gaussian processes, function theory, and the
inverse spectral problem (1976).
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4. BM as a Markov process

4.1. Markov processes and their semigroups

A Markov process X with measurable state space (E, E) is an assembly of math-
ematical objects

X = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Pt)t≥0, {Px}x∈E)

where

• (Ω,F) is a measurable space, often a canonical space of paths in E subject
to appropriate regularity conditions;

• (Ft) is a filtration;
• Xt : Ω → E is an Ft/E measurable random variable, regarded as repre-

senting the state of the process at time t;
• Pt : E × E → [0, 1] is a transition probability kernel on (E, E), meaning

that A → Pt(x,A) is a probability distribution on (E, E), and for each
fixed x ∈ E, and A→ Pt(x,A) is E measurable;

• the Pt satisfy the Chapman-Kolmogorov equation

Ps+t(x,A) =

∫
E

Ps(x, dy)Pt(y,A) (x ∈ E,A ∈ E) (20)

• under the probability law Px on (Ω,F), the process (Xt) is Markovian
relative to (Ft) with transition probability kernels (Pt), meaning that

Ex[f(Xs+t) | Fs] = (Ptf)(Xs) Px a.s. (21)

where the left side is the Px conditional expectation of f(Xs+t) given Fs,
with f an arbitrary bounded or non-negative E measurable function, and
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on the right side Pt is regarded as an operator on such f according to the
formula

(Ptf)(x) =

∫
E

Pt(x, dy)f(y). (22)

All Markov processes discussed here will be such that P0(x,A) = 1(x ∈ A), so
Px(X0 = x) = 1, though this condition is relaxed in the theory of Ray processes
[372]. See [372, 370, 382] for background and treatment of Markov processes at
various levels of generality.

The conditioning formula (21) implies the following description of the finite-
dimensional distributions of X: for 0 ≤ t1 < t2 · · · < tn :

Px(Xti ∈ dxi, 1 ≤ i ≤ n) = Pt1(x, dx1)Pt2−t1(x1, dx2) · · ·Ptn−tn−1(xn−1, dxn)

meaning that for all bounded or non-negative product measurable functions f

Ex[f(Xt1 , . . . , Xtn)] =

∫
E

· · ·
∫
E

f(x1, . . . , xn)Pt1(x, dx1) · · ·Ptn−tn−1
(xn−1, dxn)

where the integration is done first with respect to xn for fixed x1, . . . , xn−1,
then with respect to xn−1, for fixed x1, . . . , xn−2, and so on. Commonly, the
transition kernels Pt are specified by transition probability densities pt(x, y)
relative to some reference measure m(dy) on (E, E), meaning that Pt(x, dy) =
pt(x, y)m(dy). In terms of such densities, the Chapman-Kolmogorov equation
becomes

ps+t(x, z) =

∫
E

m(dy)ps(x, y)pt(y, z) (23)

which in a regular situation is satisfied for all s, t ≥ 0 and all x, z ∈ E. In
terms of the operators Pt defined on bounded or non-negative measurable func-
tions on (E, E) via (22), the Chapman-Kolmogorov equations correspond to the
semigroup property

Ps+t = Ps ◦ Pt s, t ≥ 0. (24)

The general analytic theory of semigroups, in particular the Hille-Yosida the-
orem [372, Theorem III (5.1)] is therefore available as a tool to study Markov
processes.

Let P0 be Wiener measure i.e. the distribution on Ω := C[0,∞) of a standard
Brownian motion starting from 0, where Ω is equipped with the sigma-field F
generated by the coordinate process (Xt, t ≥ 0) defined by Xt(ω) = ω(t). Then
standard Brownian is realized under P0 asBt = Xt. Let Px be the P0 distribution
of (x+Bt, t ≥ 0) on Ω. Then a Markov process with state space E = R, and E
the Borel sigma-field, is obtained from this canonical setup with the Brownian
transition probability density function relative to Lebesgue measure on R

pt(x, y) =
1√
2πt

e−
(y−x)2

2t (25)

which is read from the Gaussian density of Brownian increments. The Chapman-
Kolmogorov identity (23) then reflects how the sum of independent Gaussian
increments is Gaussian.



J. Pitman and M. Yor/Guide to Brownian motion 14

This construction of Brownian motion as a Markov process generalizes straight-
forwardly to Rd instead of R, allowing a Gaussian distribution µt with mean
bt and covariance matrix σσT for some d× d matrix σ with transpose σT . The
semigroup is then specified by

Ptf(x) =

∫
Rd

f(x+ y)µt(dy) (26)

for all bounded or non-negative Borel measurable functions f : Rd → R. The
corresponding Markovian laws Px on the space of continuous paths in Rd can
be defined by letting Px be the law of the process (x + σBt + bt, t ≥ 0) where
B is a standard Brownian motion in Rd, that is a process whose coordinates
are d independent standard one-dimensional Brownian motions. According to
a famous result of Lévy [372, Theorem (28.12)], this construction yields the
most general Markov process X with state space Rd, continuous paths, and
transition operators of the spatially homogenous form (26) corresponding to
stationary independent increments. More general spatially homogeneous Markov
processes X with state space Rd, realized with paths which are right continuous
with left limits, are known as Lévy processes. These correspond via (26) to
convolution semigroups of probability measures (µt, t ≥ 0) generated by an
infinitely divisible distribution µ1 on Rd. See [372, §28], [24], [378] for treatments
of Lévy processes.

Another important generalization of Brownian motion is obtained by con-
sidering Markov processes where the spatial homogeneity assumption (26) is
relaxed, but continuity of paths is retained. Such Markov processes, subject to
some further regularity conditions which vary from one authority to another,
are called diffusion processes. The state space can now be Rd, or a suitable sub-
set of Rd, or a manifold. The notion of infinitesimal generator of a Markovian
semigroup, discussed further in Section 4.3 is essential for the development of
this theory.

4.2. The strong Markov property

If B is an (Ft) Brownian motion then for each fixed time T the process

(BT+s −BT , s ≥ 0) (27)

is a Brownian motion independent of FT . According to the strong Markov prop-
erty of Brownian motion, this is true also for all (Ft) stopping times T , that is
random times T : Ω → R+ ∪ {∞} such that (T ≤ t) ∈ Ft for all t ≥ 0. The
sigma-field FT of events determined by time T is defined as:

FT := {A ∈ F : A ∩ (T ≤ t) ∈ Ft}

and the process (27) is considered only conditionally on the event T < ∞. See
[106], [43] for the proof and numerous applications. More generally, a Markov
process X with filtration (Ft) is said to have the strong Markov property if for
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all (Ft) stopping times T , conditionally given FT on (T < ∞) with XT = x
the process (XT+s, s ≥ 0) is distributed like (Xs, s ≥ 0) given X0 = x. It
is known [372, Th. III (9.4)] that the strong Markov property holds for Lévy
processes, and more generally for the class of Feller-Dynkin processes X defined
by the following regularity conditions: the state space E is locally compact with
countable base, E is the Borel sigma field on E, and the transition probability
operators Pt act in a strongly continuous way on the Banach space C0(E) of
bounded continuous functions on E which vanish at infinity [201, Ch. 19], [370,
III.2], [372, Def. (6.5)].

4.3. Generators

The generator G of a Markovian semigroup (Pt)t≥0 is the operator defined as

Gf := lim
t↓0

Ptf − f
t

(28)

for suitable real-valued functions f , meaning that the limit exists in some sense,
e.g. the sense of convergence of functions in a suitable Banach space, such as
the space C0(E) involved in the definition of Feller-Dynkin processes. Then f
is said to belong to the domain of the generator. From (28) it follows that for f
in the domain of the generator

d

dt
Ptf = GPtf = PtGf (29)

and hence

Ptf − f =

∫ t

0

GPsfds =

∫ t

0

PsGfds (30)

in the sense of strong differentiation and Riemann integration in a Banach space.
In particular, if (Pt) is the semigroup of Brownian motion, then it is easily
verified [372, p. 6] that for f ∈ C0(R) with two bounded continuous derivatives,
the generator of the standard Brownian semigroup is given by

Gf = 1
2f
′′ =

1

2

d2f

dx2
(31)

In this case, the first equality in (29) reduces to Kolmogorov’s backward equation
for the Brownian transition density:

∂

∂t
pt(x, y) =

1

2

∂2

∂x2
pt(x, y).

Similarly, the second equality in (29) yields Kolmogorov’s forward equation for
the Brownian transition density:

∂

∂t
pt(x, y) =

1

2

∂2

∂y2
pt(x, y).
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This partial differential equation is also known as the heat equation, due to its
physical interpretation in terms of heat flow [98]. Thus for each fixed x the
Brownian transition density function pt(x, y) is identified as the fundamental
solution of the heat equation with a pole at x as t ↓ 0. If we consider instead
of standard Brownian motion B a Brownian motion with drift b and diffusion
coefficient σ, we find instead of (31) that the generator acts on smooth functions
of x as

G = b
d

dx
+ 1

2σ
2 d

2

dx2
. (32)

This suggests that given some space-dependent drift and variance coefficients
b(x) and σ2(x) subject to suitable regularity conditions, a Markov process which
behaves when started near x like a Brownian motion with drift b(x) and variance
σ(x) should have as its generator the second order differential operator

G = b(x)
d

dx
+ 1

2σ
2(x)

d2

dx2
(33)

Kolmogorov [224] showed that the semigroups of such Markov processes could
be constructed by establishing the existence of suitable solutions of the Fokker-
Planck-Kolmogorov equations determined by this generator. More recent ap-
proaches to the existence and uniqueness of such diffusion processes involve
martingales in an essential way, as we discuss in the next section.

4.4. Transformations

The theory of Markov processes provides a number of ways of starting from one
Markov process X and transforming it into another Markov process Y by some
operation on the paths or law of X. The semigroup of Y can then typically be
derived quite simply and explicitly from the semigroup of X. Such operations
include suitable transformations of the state-space, time-changes, and killing.
Starting from X = B a Brownian motion in R or Rd, these operations yield
a rich collection of Markov processes whose properties encode some features of
the underlying Brownian motion.

4.4.1. Space transformations

The simplest means of transformation of a Markov process X with state space
(E, E) is to consider the distribution of the process (Φ(Xt), t ≥ 0) for a suitable
measurable Φ : E → E′ for some (E′, E ′). Typically, such a transformation
destroys the Markov property, unless Φ respects some symmetry in the dynamics
of X, as follows [372, I (14.1)]. Suppose that Φ maps E onto E′, and that for
each x ∈ E the Pt(x, ·) distribution of Φ depends only on Φ(x), so that

Px[Φ(Xt) ∈ A′] = Qt(Φ(x), A′) (x ∈ E,A′ ∈ E ′) (34)

for some family of Markov kernels (Qt, t ≥ 0) on (E′, E ′). Assuming for simplicity
that X has continuous paths, that Φ is continuous, and that Px governs X with
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semigroup (Pt) with X0 = x. Then the Px distribution of (Φ(Xt), t ≥ 0) is
that of a Markov process with semigroup (Qt) and initial state Φ(x). Refer to
Dynkin [110], Rogers-Williams [372], Rogers and Pitman [371] Glove and Mitro
[154]. Let Qy for y ∈ E ′ denote the common distribution of this process on
C([0,∞), E′) for all x with Φ(x) = y. Then (Qy, y ∈ E′) defines the collection
of laws on C([0,∞), E′) of the canonical Markov process with semigroup (Qt, t ≥
0). Following is a well known example.

4.4.2. Bessel processes

Let Bt = (B
(i)
t , 1 ≤ i ≤ δ) be a δ-dimensional Brownian motion for some fixed

positive integer δ. Let

R
(δ)
t := |Bt| =

√√√√ δ∑
i=1

(B
(i)
t )2 (35)

be the radial part of (Bt). If (Bt) is started at x ∈ Rδ, and Ox,y is an orthogonal
linear transformation of Rδ which maps x to y, with |Ox,y(z)| = |z| for all
z ∈ Rδ, then (Ox,y(Bt)) is a Brownian motion starting at y whose radial part
is pathwise identical to the radial part of (Bt). It follows immediately from this

observation that (R
(δ)
t , t ≥ 0) given B0 with |B0| = r defines a Markov process,

the δ-dimensional Bessel process, with initial state r and transition semigroup
(Qt) on [0,∞) which can be defined via (64) by integration of the Brownian
transition density function over spheres in Rδ. That gives an explicit formula
for the transition density of the Bessel semigroup in terms of Bessel functions
[370, p. 446]. Since the generator of B acting on smooth functions is the half of
the δ-dimensional Laplacian

1

2

δ∑
i=1

d2

dx2i

it is clear that the generator of the δ-dimensional Bessel process, acting on
smooth functions with domain [0,∞) which vanish in a neighbourhood of 0,
must be half of the radial part of the Laplacian, that is

δ − 1

2r

d

dr
+

1

2

d2

dr2
(36)

In dimensions δ ≥ 2, it is known [370, Ch. XI] that this action of the generator
uniquely determines the Bessel semigroup (Qt), essentially because when started
away from 0 the Bessel process never reaches 0 in finite time, though in two
dimensions it approaches 0 arbitrarily closely at large times.

In dimension one, the process (|Bt|, t ≥ 0) is called reflecting Brownian mo-
tion. It is obvious, and consistent with the vanishing drift term in formula (36)
for δ = 1, that the reflecting Brownian motion started at x > 0 is indistinguish-
able from ordinary Brownian motion up until the random time T0 that the path
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first hits 0. In dimension one, the expression (36) for the infinitesimal genera-
tor must be supplemented by a boundary condition to distinguish the reflecting
motion from various other motions with the same dynamics on (0,∞), but dif-
ferent behaviour once they hit 0. See Harrison [165] for further treatment of
reflecting Brownian motion and its applications to stochastic flow systems. See
also R. Williams [445] regarding semimartingale reflecting Brownian motions in
an orthant, and Harrison [166] for a broader view of Brownian networks.

The theory of Bessel processes is often simplified by consideration of the
squared Bessel process of dimension δ which for δ = 1, 2, . . . is simply the square
of the norm of a δ-dimensional Brownian motion:

X
(δ)
t := (R

(δ)
t )2 := |Bt|2 =

δ∑
i=1

(B
(i)
t )2. (37)

This family of processes enjoys the key additivity property that if X(δ) and
X(δ′) are two independent squared Bessel processes of dimensions δ and δ′,
started at values x, x′ ≥ 0, then X(δ) +X(δ′) is a squared processes of dimension
δ + δ′, started at x+ x′. As shown by Shiga and Watanabe [387], this property
can be used to extend the definition of the squared Bessel process to arbitrary
non-negative real values of the parameter δ. The resulting process is then a
Markovian diffusion on [0,∞) with generator acting on smooth functions of
x > 0 according to

δ
d

dx
+ 4x

1

2

d2

dx2

meaning that the process when at level x behaves like a Brownian motion with
drift δ and variance parameter 4x. See [370] and [458, §3.2] for further details. For
δ = 0 this is the Feller diffusion [126], which is the continuous state branching
process obtained as a scaling limit of critical Galton-Watson branching processes
in discrete time. Similarly, the squared Bessel process of dimension δ ≥ 0 may
be interpreted as a continuous state branching process immigration rate δ. See
[212], [246], [245], [276]. See also [155] for a survey and some generalizations of
Bessel processes, including the Cox-Ingersoll-Ross diffusions which are of interest
in mathematical finance.

4.4.3. The Ornstein-Uhlenbeck process

If (B(t), t ≥ 0) is a standard Brownian motion it is easily shown by Brownian
scaling that the process (e−rB(e2r), r ∈ R) is a two-sided stationary Gaus-
sian Markov process, known as an Ornstein-Uhlenbeck process. See [370, Ex. III
(1.13)] for further discussion.

4.5. Lévy processes

Processes with stationary independent increments, now called Lévy processes,
were introduced by Lévy at the same time as he derived the Lévy - Khintchine
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formula which gives a precise representation of the characteristic functions of
all infinitely divisible distributions. The interpretation of various components of
the Lévy - Khintchine formula shows that Brownian motion with a general drift
vector and covariance matrix is the only kind of Lévy process with continuous
paths. Other Lévy processes can be constructed to have right continuous paths
with left limits, using a Brownian motion for their continuous path component,
and a suitably compensated integral of Poisson processes to create the jumps.
Some of these Lévy processes, called stable processes, share with Brownian mo-
tion a generalization of the Brownian scaling property.
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Subordinators

[28] Jean Bertoin. Subordinators: examples and applications. In Lectures on
probability theory and statistics (Saint-Flour, 1997), volume 1717 of Lec-
ture Notes in Math., pages 1–91. Springer, Berlin, 1999.

Applications

[13] Ole E. Barndorff-Nielsen, Thomas Mikosch, and Sid Resnick, editors. Lévy
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[273] Ming Liao. Lévy processes in Lie groups, volume 162 of Cambridge Tracts
in Mathematics. Cambridge University Press, Cambridge, 2004.

4.6. References for Markov processes

[52] R. M. Blumenthal and R. K. Getoor. Markov processes and potential
theory (1968).

[78] K. L. Chung. Green, Brown, and probability (1995).
[79] K. L. Chung and John Walsh Markov processes, Brownian motion, and

time symmetry (2005).
[110] E. B. Dynkin. Markov Processes, I,II (1965).
[275] T. M. Liggett Continuous time Markov processes (2010).
[305] P.-A. Meyer. Processus de Markov (1967).
[317] M. Nagasawa. Schrödinger equations and diffusion theory (1993).
[316] M. Nagasawa. Time reversions of Markov processes (1964).
[383] M. Sharpe. General theory of Markov processes (1989).
[440] D. Williams. Review of: Multidimensional diffusion processes by D. Stroock,

S.R.S. Varadhan (1980).
[439] D. Williams. Brownian motions and diffusions as Markov processes (1974).
[442] David Williams. Lecture on Brownian motion given in Liverpool (1982).

5. BM as a martingale

Let (Ft, t ≥ 0) be a filtration in a probability space (Ω,F ,P). A process M =
(Mt) is called an (Ft) martingale if

1. Mt is Ft measurable for each t ≥ 0.
2. E(Mt|Fs) = Ms for all 0 ≤ s ≤ t.

Implicitly here, to make sense of the conditional expectation, it is assumed
that E|Mt| < ∞. It is known that if the filtration (Ft) is right continuous, i.e.
F+
t = Ft up to null sets, then every martingale has a version which has right

continuous paths (even with left limits). See [370].
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If B is a standard Brownian motion relative for a filtration (Ft, t ≥ 0),
meaning that Bt+s − Bt is independent of Ft with Gaussian distribution with
mean 0 and variance s, for each s, t ≥ 0, then both (Bt) and (B2

t − t) are (Ft)
martingales. So too is

M
(θ)
t = exp(θBt − θ2t/2)

for each θ real or complex, where a process with values in the complex plane, or
in Rd for d ≥ 2, is called a martingale if each of its one-dimensional components
is a martingale.

Optional Stopping Theorem If (Mt) is a right continuous martingale rel-
ative to a right continuous filtration (Ft), and T is a stopping time for (Ft),
meaning (T ≤ t) ∈ Ft for each t ≥ 0, and T is bounded, i.e., T ≤ C < ∞ for
some constant C, then

EMT = EM0.

Moreover, if an (Ft) adapted process M has this property for all bounded (Ft)
stopping times T , then M is an (Ft) martingale. Variations or corollaries with
same setup: If T is a stopping time (no bound now), then

E(MT∧t|Fs) = MT∧s

so (MT∧t, t ≥ 0) is an (Ft)-martingale. If T is a stopping time of Brownian
motion B with E(T ) <∞, then

E(BT ) = 0 and E(B2
T ) = E(T ).

5.1. Lévy’s characterization

Let
(Bt := (B

(1)
t , . . . , B

(d)
t ); t ≥ 0)

denote a d-dimensional process, and let

(Ft := σ{Bs, 0 ≤ s ≤ t}, t ≥ 0)

denote its filtration. It follows immediately from the property of stationary
independent increments that if (Bt) is a Brownian motion, then

(i) (B
(i)
t ) is an (Ft) martingale with continuous paths, for each i;

(ii) (B
(i)
t B

(j)
t ) is an (Ft) martingale for 1 ≤ i < j ≤ d;

(iii) ((B
(i)
t )2 − t)) is an (Ft) martingale for each 1 ≤ i ≤ d

It is an important result, due to Lévy, that if a d-dimensional process (Bt) has
these three properties relative to the filtration (Ft) that it generates, then (Bt)
is a Brownian motion. Note how a strong conclusion regarding the distribution
of the process is deduced from what appears to be a much weaker collection of
martingale properties. Note also that continuity of paths is essential: if (Bt) is
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any process with stationary independent increments such that E(B1) = 0 and
E(B2

1) = 1, for instance Bt := Nt − t where N is a Poisson process with rate 1,
then both (Bt) and (B2

t − t) are martingales.
More generally, if a process (Bt) has the above three properties relative to

some filtration (Ft) with

Ft ⊇ Bt := σ{Bs, 0 ≤ s ≤ t} (t ≥ 0),

then it can be concluded that (Bt) is an (Ft) Brownian motion, meaning that
(Bt) is a Brownian motion and that for all 0 ≤ s ≤ t the increment Bt − Bs is
independent of Fs.

5.2. Itô’s formula

It is a key observation that if X is a Markov process with semigroup (Pt), and
f and g are bounded Borel functions with Gf = g, then the equality between
the first and last expressions in the Chapman-Kolmogorov equation (30) can be
recast as

Ex[f(XT )]− f(x) = Ex
∫ T

0

ds g(Xs) (T ≥ 0, x ∈ E). (38)

Equivalently, by application of the Markov property,

Mf
t := f(Xt)− f(X0)−

∫ t

0

ds g(Xs), t ≥ 0) is a (Px,Ft) martingale (39)

for all x ∈ E. The optional stopping theorem applied to this martingale yields
Dynkin’s formula, [372, §10], according to which (38) holds also for (Ft) stopping
times T with Ex(T ) < ∞. If X = B is a one-dimensional Brownian motion,
and f ∈ C2

b , meaning that f , f ′ and f ′′ are all bounded and continuous, then
Gf = 1

2f
′′ and (39) reads

f(Bt)− f(B0) = Mf
t + 1

2

∫ t

0

f ′′(Bs)ds. (40)

To identify more explicitly the martingale Mf
t appearing here, consider a sub-

division of [0, t] say

0 = tn,0 < tn,1 < · · · < tn,kn = t

with mesh
max
i

(tn,i+1 − tn,i)→ 0 as n→∞.

By a second order Taylor expansion,

f(Bt)− f(B0) =
∑
i

f ′(Btn,i
)(Btn,i+1

−Btn,i
) + 1

2

∑
i

f ′′(Θn,i)(Btn,i+1
−Btn,i

)2

(41)
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for some Θn,i between Btn,i and Btn,i+1 . Since Θn,i is bounded and (Btn,i+1 −
Btn,i

)2 has mean tn,i+1 − tn,i and variance a constant times (tn,i+1 − tn,i)2, it
is easily verified that as n→∞ there is the following easy extension of the fact
(15) that the quadratic variation of B on [0, t] equals t:∑

i

f ′′(Θn,i)(Btn,i+1
−Btn,i

)2 −
∑
i

f ′′(Θn,i)(tn,i+1 − tn,i)→ 0 in L2 (42)

while the second sum in (42) is a Riemann sum which approximates
∫ t
0
f ′′(Bs)ds

almost surely. Consequently, the first sum must converge to the same limit in
L2, and we learn from (41) that the martingale Mf

t in (40) is

Mf
t =

∫ t

0

f ′(Bs)dBs := lim
n→∞

∑
i

f ′(Btn,i
)(Btn,i+1

−Btn,i
) (43)

where the limit exists in the sense of convergence in probability. Thus we ob-
tain a first version of Itô’s formula: for f which is bounded with two bounded
continuous derivatives:

f(Bt)− f(B0) =

∫ t

0

f ′(Bs)dBs + 1
2

∫ t

0

f ′′(Bs)ds (44)

where the stochastic integral (
∫ t
0
f ′(Bs)dBs, t ≥ 0) is an (Ft)-martingale if B

is an (Ft)-Brownian motion. Itô’s formula (48), along with an accompanying
theory of stochastic integration with respect to Brownian increments dBs, has
been extensively generalized to a theory of stochastic integration with respect
to semi-martingales [370]. The closely related theory of Stratonovich stochastic
integrals is obtained by defining for instance∫ t

0

f ′(Bs) ◦ dBs := lim
n→∞

∑
i

1
2 (f ′(Btn,i

) + f ′(Btn,i+1
))(Btn,i+1

−Btn,i
). (45)

This construction has the advantage that it is better connected to geometric no-
tions of integration, such as integration of a differential form along a continuous
path [176][177][302]and there is the simple formula

f(Bt)− f(B0) =

∫ t

0

f ′(Bs) ◦ dBs. (46)

However, the important martingale property of Itô integrals is hidden by the
Stratonovich construction. See [336, Chapter 3] and [410, Chapter 8] for further
comparison of Itô and Stratonovich integrals.

5.3. Stochastic integration

The theory of stochastic integration defines integration of suitable random inte-
grands f(t, ω) with respect to random “measures” dXt(ω) derived from suitable



J. Pitman and M. Yor/Guide to Brownian motion 24

stochastic processes (Xt). The principal definitions in this theory, of local mar-
tingales and semimartingales, are motivated by a powerful calculus, known as
stochastic or Itô calculus, which allows the representation of various functionals
of such processes as stochastic integrals. For instance, the formula (48) can be
justified for f(x) = x2 to identify the martingale B2

t − t as a stochastic integral:

B2
t −B2

0 − t = 2

∫ t

0

BsdBs. (47)

Similarly, the previous derivation of formula (43) is easily extended to a Brow-
nian motion B in Rδ for δ = 1, 2, 3, . . . to show that for f ∈ C2(Rδ)

f(Bt)− f(B0) =

∫ t

0

(∇f)(Bs) · dBs + 1
2

∫ t

0

(∆f)(Bs)ds (48)

with∇ the gradient operator and ∆ the Laplacian. Again, the stochastic integral
is obtained as a limit in probability of Riemann sums, along with the Itô formula,
and the stochastic integral is a martingale in t.

It is instructive to study carefully what happens in Itô’s formula (48) for
δ ≥ 2 if we take f to be a radial harmonic function with a pole at 0, say

f(x) = log |x| if δ = 2

and
f(x) = |x|2−d if δ ≥ 3

these functions being solutions on Rδ − {0} of Laplace’s equation ∆f = 0, so
the last term in (48) vanishes. Provided B0 = x 6= 0 the remaining stochastic
integral is a well-defined almost sure limit of Riemann sums, and moreover f(Bt)
is integrable, and even square integrable for δ ≥ 3. It is tempting to jump to the
conclusion that (f(Bt), t ≥ 0) is a martingale. But this is not the case. Indeed,
it is quite easy to compute Exf(Bt) in these examples, and to check for example
that this function of t is strictly decreasing for δ ≥ 3. For δ = 3, according to a
relation discussed further in Section 7.1, Ex(1/|Bt|) equals the probability that
a one-dimensional Brownian motion started at |x| has not visited 0 before time
t. The process (f(Bt), t ≥ 0) in these examples is not a martingale but rather a
local martingale.

Let X be a real-valued process, and assume for simplicity that X has con-
tinous paths and X0 = x0 for some fixed x0. Such a process X is called a
local martingale relative to a filtration (Ft) if for each n = 1, 2, . . ., the stopped
process

(Xt∧Tn(ω)(ω), t ≥ 0, ω ∈ Ω) is an (Ft) martingale

for some sequence of stopping times Tn increasing to ∞, which can be taken
without loss of generality to be Tn := inf{t : |Xt| > n}. For any of the processes
(f(Bt), t ≥ 0) considered above for a harmonic function f with a pole at 0, these
processes stopped when they first hit ±n are martingales, by consideration of
Itô’s formula (48) for a C2 function f̂ which agrees with f where f has values



J. Pitman and M. Yor/Guide to Brownian motion 25

in [−n, n], and is modified elsewhere to be C2 on all of Rδ. Consideration of
these martingales obtained by stopping processes is very useful, because by
application of the optional sampling theorem they immediately yield formulae
for hitting probabilities of the radial part of B in Rδ, as discussed in [372, I.18].
A continuous semimartingale X is the sum of a continuous local martingale and
a process with continous paths of locally bounded variation.

Given a filtration (Ft), a process H of the form

Hs(ω) :=

k∑
i=1

Hi(ω)1[Ti(ω) < s ≤ Ti+1(ω)]

for an increasing sequence of stopping times Ti, and Hi an FTi
measurable

random variable, is called an elementary predictable process. If B is an (Ft)
Brownian motion, and H is such an elementary predictable process, one can
define ∫ t

0

HsdBs :=

k∑
i=1

Hi(Bt∧Ti+1 −Bt∧Ti) (49)

and check the identity

E

[(∫ t

0

HsdBs

)2
]

= E
[∫ t

0

H2
sds

]
(50)

which allows the definition (49) to be extended by completion in L2 to any
pointwise limit H of elementary predictable processes such that

E
[∫ t

0

H2
sds

]
<∞ (51)

for each t > 0, and the identity (50) then holds for such a limit process H.
Replacing H(s, ω) by H(s, ω)1(s ≤ T (ω)), it follows that both∫ t

0

HsdBs and

(∫ t

0

HsdBs

)2

−
∫ t

0

H2
sds (52)

define (Ft) martingales.
A similar stochastic integral, with B replaced by an (Ft) martingale or even a

local martingale M , is obtained hand in hand with the existence of an increasing
process 〈M〉 such that

(M2
t − 〈M〉t, t ≥ 0) is an (Ft) martingale

and the above discussion (49) -(50) -(51) -(52) generalizes straightforwardly with
dMs instead of dBs and d〈M〉s instead of ds. In particular, there is then the
formula

M2
t −M2

0 − 〈M〉t = 2

∫ t

0

MsdMs
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of which (53) is the special case for M = B. See e.g. Yor [450] and Lenglart [268]
for details of this approach to Itô’s formula for continuous semimartingales.

Let M be a continuous (Ft) local martingale and A an (Ft) adapted contin-
uous process of locally bounded variation. Then for suitably regular functions
f = f(m, a) there is the following form of Itô’s formula for semimartingales:

f(Mt, At)−f(M0, A0) =

∫ t

0

f ′m(Ms, As)dMs+

∫ t

0

f ′a(Ms, As)dAs+
1

2

∫ t

0

f ′′m,m(Ms, As)d〈M〉s
(53)

where

f ′m(m, a) :=
∂

∂m
f(m, a); f ′a(m, a) :=

∂

∂a
f(m, a); f ′′m,m(m, a) :=

∂

∂m

∂

∂m
f(m, a).

Note that the first integral on the right side of (53) defines a local martingale,
and that the sum of the second and third integrals is a process of locally bounded
variation. It is the third integral, involving the second derivative fm,m, which is
the special feature of Itô calculus.

More generally, for a vector of d local martingales M = (M (i), 1 ≤ i ≤ d),
and a process A of locally bounded variation, Itô’s formula reads

f(Mt, At)− f(M0, A0) =

∫ t

0

∇mf(Ms, As) · dMs +

∫ t

0

∇af(Ms, As) · dAs

+
1

2

∫ t

0

d∑
i,j=1

f ′′mi,mj
(Ms, As)d〈M (i),M (j)〉s

where for two local martingales M (i) and M (j), their bracket 〈M (i),M (j)〉 is the

unique continuous process C with bounded variation such that M
(i)
t M

(j)
t −Ct is

a local martingale. See Section 12.1 for connections between Itô’s formula and
various second order partial differential equations.

5.4. Construction of Markov processes

5.4.1. Stochastic differential equations

One of Itô’s fundamental insights was that the theory of stochastic integration
could be used to construct a diffusion process X in RN as the solution of a
stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt (54)

for σ : RN → MN×N a field of matrices and b : RN → RN a vector field. More
formally, the meaning of (54) with initial condition X0 = x ∈ RN is that

Xt = x+

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds. (55)
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It is known that under the hypothesis that σ and b are Lipschitz, the equation
(55) has a unique strong solution, meaning that for a given Brownian motion
B and initial point x the path of X is uniquely determined almost surely for
all t ≥ 0. Moreover, this solution is obained as the limit of the classical Picard
iteration procedure, the process X is adapted to the filtration (Ft) generated by
B, and the family of laws of X, indexed by the initial point x, defines a Markov
process of Feller-Dynkin type with state space RN . See [370] for details. For
a given Brownian motion B, one can consider the dependence of the solution
Xt in (55) in the initial state x, say Xt = Xt(x). Under suitable regularity
conditions the map x → Xt(x) defines a random diffeomorphism from RN to
RN . This leads to the notion of a Brownian flow of diffeomorphisms as presented
by Kunita [236].

For f ∈ C2
b , Itô’s formula applied to f(Xt) shows that

Mf
t := f(Xt)− f(X0)−

∫ t

0

Gf(Xs)ds is an (Ft) martingale,

where

Gf(x) := 1
2

∑
i,j

aij(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x)(x)
∂f

∂xi
(x) (56)

with a(x) := (σTσ)(x). Thus, the infinitesimal generator of X, restricted to C2
b ,

is the elliptic operator G defined by (56). To see the probabilistic meaning of
the coefficients aij(x), observe that if we write Xt = (Xi

t , 1 ≤ i ≤ N) and M i
t

instead of Mf
t for f(x) = xi, so

M i
t = Xi

t −Xi
0 −

∫ t

0

bi(Xs)ds

then

〈M i,M j〉t =

∫ t

0

aij(Xs)ds

and more generally

〈Mf ,Mg〉t =

∫ t

0

dsΓ(f, g)(Xs)ds

where

Γ(f, g)(x) := ∇f(x) · (a(x)∇g(x)) = G(fg)(x)− f(x)Gg(x)− g(x)Gf(x) (57)

is the square field operator (opérateur carré du champ). In particular, aij(x) =
Γ(xi, xj)(x). For a Markov process X on a more general state space, Kunita [236]
takes a basis of functions (ui) with respect to which he considers an infinitesimal
generator of the form

Gf = 1
2

∑
i,j

Γ(ui, uj)(x)
∂2f

∂ui∂uj
(x) + · · ·

with · · · a sum of drift terms of first order and integral terms related to jumps.
See Bouleau and Hirsch [59] for further developments.
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5.4.2. One-dimensional diffusions

The Bessel processes defined as the radial parts of Brownian motion in Rδ are
examples of one-dimensional diffusions, that is to say strong Markov processes
with continuous paths whose state space is a subinterval of R. Such processes
have been extensively studied by a number of approaches: through their transi-
tion densities as solutions of a suitable parabolic differential equation, by space
and time changes of Brownian motion, and as solutions of stochastic differential
equations. For instance, an Ornstein-Uhlenbeck process X may be defined by
the stochastic differential equation (SDE)

X0 = x; dXt = dBt + λXtdt

for x ∈ R and a constant λ > 0. This SDE is taken to mean

Xt = x+Bt + λ

∫ t

0

Xsds

which is one of the rare SDE’s which can be solved explicitly:

Xt = eλt
(
x+

∫ t

0

e−λsdBs

)
.

The result is a Gaussian Markov process which admits a number of alternative
representations. See Nelson [319] for the physical motivation and background.

Following is a list of texts on one-dimensional diffusions:

[139] D. Freedman. Brownian motion and diffusion (1983).
[181] K. Itô and H. P. McKean, Jr. Diffusion processes and their sample paths

(1965).
[288] P. Mandl. Analytical treatment of one-dimensional Markov processes (1968).
[372] and [373] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes

and Martingales, Vols. 1 and 2 (1994).

See also [57] for an extensive table of Laplace transforms of functionals one-
dimensional diffusions, including Brownian motion, Bessel processes and the
Ornstein-Uhlenbeck process.

5.4.3. Martingale problems

Kunita [233] used (39) to define the extended infinitesimal generator G of a
Markov process X by the correspondence between pairs of bounded Borel func-
tions f and g such that (39) holds. This leads to the idea of defining the family
of probability measures P x governing a Markov process X via the martingale
problem of finding {Px} such that (39) holds whenever Gf = g for some pre-
scribed infinitesimal generator G such as (32). This program was carried out
for diffusion processes by Stroock and Varadhan [411]. See also [372, §III.13],
[370, Chapter VII]. Komatsu [226] and Stroock [402] treat the case of Markov
processes with jumps.
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5.4.4. Dirichlet forms

The square field operator Γ introduced in (57) leads to naturally to consideration
of the Dirichlet form

εµ(f, g) :=

∫
µ(dx)Γ(f, g)(x)

where µ is an invariant measure for the Markov process. In the case of Brownian
motion on RN , the Dirichlet form is∫

d

x∇f(x) · ∇g(x)

where dx is Lebesgue measure. A key point is that this operator on pairs of
functions f and g, which makes sense for f and g which may not be twice
differentiable, can be used to characterize BM. See the following texts for de-
velopment of this idea, and the general notion of a Dirichlet process which can
be built from such an operator.

[145] M. Fukushima, Y. Ōshima, and M. Takeda. Dirichlet forms and symmetric
Markov processes, (1994)

[125] E. Fabes, M. Fukushima, L. Gross, C. Kenig, M. Röckner, and D. W.
Stroock. Dirichlet forms, (1993).

[144] M. Fukushima. Dirichlet forms and Markov processes, (1980).
[59] N. Bouleau and F. Hirsch. Dirichlet forms and analysis on Wiener space,

(1991).
[280] Z. M. Ma, M. Röckner, and J. A. Yan, editors. Dirichlet forms and stochas-

tic processes. (1995).
[281] Z. M. Ma and M. Röckner. Introduction to the theory of (nonsymmetric)

Dirichlet forms (1992).
[194] J. Jost, W. Kendall, U. Mosco, M. Röckner and K.-T. Sturm. New direc-

tions in Dirichlet forms, (1998).

5.5. Brownian martingales

5.5.1. Representation as stochastic integrals

A (local) martingale relative to the natural filtration (Bt, t ≥ 0) of a d-dimensional
Brownian motion

(B
(1)
t , . . . , B

(d)
t ); t ≥ 0)

is called a Brownian (local) martingale . According to an important result of
Itôand Kunita- Watanabe [237], every Brownian local martingale admits a con-
tinuous version (Mt, t ≥ 0) which may be written as

Mt = c+

∫ t

0

ms · dBs (58)
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for some constant c and some Rd-valued predictable process (ms, s ≥ 0) such

that
∫ t
0
|ms|2ds <∞.

In particular, every L2(B∞) random variable Y may be represented as

Y = E(Y ) +

∫ ∞
0

ys · dBs (59)

for some Rd-valued predictable process (ys, s ≥ 0) such that

E
[∫ ∞

0

|ys|2ds
]
<∞. (60)

Such a representing process is unique in L2(Ω × R+,P(B), dP ds). The Clark-
Ocone formula [82] [329] gives some general expression for (ys, s ≥ 0) in terms of
Y . This expression plays an important role in Malliavin calculus. See references
in Section 11.3.

A class of examples of particular interest arises when

E[Y | Bt] = Φ(t, ω;Bt(ω))

for suitably regular Φ(t, ω, x). In particular, if Φ is of bounded variation in t,
and sufficiently smooth in x, one of Kunita’s extensions of Itô’s formula gives

E[Y | Bt] = E(Y ) +

∫ t

0

∇xΦ(s, ω;Bs(ω)) · dBs (61)

where ∇x is the gradient operator with respect to x. So, with the notations (58)
and (59), we get, for the L2-martingale Mt = E[Y | Bt],

ms = ys = ∇xΦ(s, ω;Bs(ω)) (62)

See [389, 157] for some interesting examples of such computations.

5.5.2. Wiener chaos decomposition

These representation results (58) and (59) may also be regarded as corollaries
of the Wiener chaos decomposition of L2(B∞) as

L2(B∞) =

∞⊕
n=0

Cn (63)

where Cn is the subspace of L2(B∞) spanned by nth order multiple integrals of
the form ∫ ∞

0

dB
(i1)
t1

∫ t1

0

dB
(i2)
t2 · · ·

∫ tn−1

0

dB
(in)
tn fn(t1, . . . , tn)

for fn subject to∫
0≤tn≤tn−1≤···≤t1

dt1 · · · dtn f2n(t1, . . . , tn) <∞
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and 1 ≤ ij ≤ d for 1 ≤ j ≤ n. This space Cn, consisting of iterated integrals
obtained from deterministic functions fn, is called the nth Wiener chaos.

To prove the martingale representation (58)-(59), it suffices to establish (59)
for the random variable

Y = exp

{∫ ∞
0

f(u) · dBu − 1
2

∫ ∞
0

|f(u)|2du
}
.

for f ∈ L2(R+ → Rd; du). The formula (59) now follows from Itô’s formula,
with

ys = f(s) exp

{∫ s

0

f(u) · dBu − 1
2

∫ s

0

|f(u)|2du
}
.

Similarly, the Wiener chaos representation (63) follows by consideration of the
generating function

exp(λx− 1
2λ

2u) =

∞∑
n=0

λn

n!
Hn(x, u)

of the Hermite polynomials Hn(x, u), using the consequence of Itô’s formula and
(∂/∂x)Hn = Hn−1 that

Hn

(∫ t

0

f(s) · dBs,
∫ t

0

|f(s)|2ds
)

=

∫ t

0

Hn−1

(∫ s

0

f(u) · dBu,
∫ s

0

|f(u)|2du
)
f(s)·dBs.

We discuss in Section 6.4 some techniques for identifying the distribution of
Brownian functionals in C0

⊕
C2.

It is known that if X ∈
⊕n

k=0 Ck then there exists α > 0 such that

E
[
exp(α|X|2/n)

]
<∞

and also some α0 such that for any β > α0

E
[
exp(α|X|2/n)

]
=∞

assuming that X = X0 + · · · + Xn with Xi ∈ Ci and Xn 6= 0. This gives some
indication of the tail behaviour of distributions of various Brownian functionals
Such results may be found in the book of Ledoux and Talagrand [266]. We do
not know of any exact computation of the law of a non-degenerate element of
C3, or of C0

⊕
C1

⊕
C2

⊕
C3. We regard as “degenerate” a variable such as

(
∫∞
0
f(s)dBs)

3, whose law can be found by simple transformation of the law of
some element of C0

⊕
C1

⊕
C2.

5.6. Transformations of Brownian motion

In this section, we examine how a BM (Bt, t ≥ 0) is affected by the following
sorts of changes:
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Locally absolutely continuous change of probability: The background prob-
ability law P is modified by some density factor Dt on the σ-field Ft of
events determined by B up to time t, to obtain a new probability law Q.

Enlargement of filtration: The background filtration, with respect to which
B is a Brownian motion, is enlarged in some way which affects the de-
scription of B as a semimartingale.

Time change: The time parameter t ≥ 0 is replaced by some increasing family
of stopping times (τu, u ≥ 0).

The scope of this discussion can be expanded in many ways, to include e.g.
the transformation induced by a stochastic differential equation, or space-time
transformations, scale/speed description of a diffusion, reflection, killing, Lévy’s
transformation, and so on. One effect of such transformations is that simple
functionals of the transformed process are just more complex functionals of
BM. This has provided motivation for the study of more and more complex
functionals of BM.

5.6.1. Change of probability

The assumption is that the underlying probability P is replaced by Q defined
on by

Q
∣∣∣∣Ft = Dt · P

∣∣∣∣Ft (64)

meaning that every non negative Ft-measurable trandom variable Xt has Q-
expectation

EQXt := E(DtXt).

This definition is consistent as t-varies, and defines a probability distribution on
the entire path space, if and only if (Dt, t ≥ 0) is an (Ft,P) martingale. Then,
Girsanov’s theorem [370, Ch. VIII] states that

Bt = B̃t +

∫ t

0

d〈D,B〉s
Ds

, (65)

with (B̃t) an ((Ft),Q) Brownian motion. In the first instance, (B̃t) is just iden-
tified as an ((Ft),Q) local martingale. But 〈B̃〉 = 〈B〉t = t, and hence (B̃t) is
an ((Ft),Q) Brownian motion, by Lévy’s theorem.

This application of Girsanov’s theorem has a number of important conse-
quences for Brownian motion. In particular, for each f ∈ L2

loc(R+, ds) the law
Q(f) of the process(

Bt +

∫ t

0

f(s)ds, t ≥ 0

)
d
=

(
B̃t +

∫ t

0

f(s)ds, t ≥ 0

)
is locally equivalent to the law P of BM, with the density relation

Q(f)

∣∣∣∣Ft
= D

(f)
t · P

∣∣∣∣Ft
.
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where the density factor is

D
(f)
t = exp

(∫ t

0

f(s)dBs − 1
2

∫ t

0

f2(s)ds

)
= 1 +

∫ t

0

D(f)
s f(s)dBs.

In other words, the Wiener measure P is quasi-invariant under translations by
functions F in the Cameron-Martin space, that is

F (t) =

∫ t

0

f(s)ds for f ∈ L2
loc(R+, ds).

As a typical application of the general Girsanov formula (65), the law Pλx of the
Ornstein-Uhlenbeck process of Section ?? is found to satisfy

Pλx

∣∣∣∣Ft
= exp

{
λ

2
(B2

t − x2)− λ2

2

∫ t

0

B2
sds

}
· Px

∣∣∣∣Ft

where the formula 1
2 (B2

t − x2) =
∫ t
0
BsdBs has been used.

Girsanov’s formula can also be applied to study the bridge of length T de-
fined by starting a diffusion process X started at some point x at time 0, and
conditioning on arrival at y at time T . Then, more or less by definition [132],
for 0 < s < T

Ex[F (Xu, 0 ≤ u ≤ s) |XT = y] = Ex
[
F (Xu, 0 ≤ u ≤ s)

pT−s(Xs, y)

pT (x, y)

]
(66)

where pt(x, y) is the transition density for the diffusion. In particular, for X
a Brownian bridge of length T from (0, x) to (T, y) we learn from Girsanov’s
formula that

Xs = x+ βs +

∫ s

0

du
(y −Xu)

(T − u)
(67)

This discussion generalizes easily to a d-dimensional Brownian motion, and to
other Markov processes. See e.g. [410, §6.2.2].

5.6.2. Change of filtration

Consider now the description of an (Ft) Brownian motion (Bt) relative to some
larger filtration (Gt), meaning that Gt ⊇ Ft for each t. Provided Gt does not
import too much information relative to Ft, the Brownian motion (Bt), and
more generally every (Ft) martingale, will remain a (Gt) semimartingale, or
at worst a (Gt) Dirichlet process, meaning the sum of a (Gt) martingale and
a process with zero quadratic variation. In particular, such an enlargement of
filtration allows the original Brownian motion B to be decomposed as

Bt = B̃t +At

where (B̃t) is (again by Lévy’s characterization) a (Gt) Brownian motion, and
(At) has zero quadratic variation. As an example, if we enlarge the filtration
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(Ft) generated by (Bt) to Gt generated by Ft and
∫∞
0
f(s)dBs for some f ∈

L2(R+, ds), then

Bt = B̃t +

∫ t

0

ds f(s)
∫∞
s
f(u)dBu∫∞

s
f2(u)du

(68)

where (B̃t) is independent of the sigma-field G0 of events generated by
∫∞
0
f(u)dBu.

The best known example arises when f(s) = 1(0 ≤ s ≤ T ), so Gt is generated
by Ft and BT . Then (68) reduces to

Bt = B̃t +

∫ t∧T

0

ds (BT −Bs)
(T − s)

.

Since (B̃t) and BT are independent, we can condition on BT = y to deduce that
the Brownian bridge (Bbr

t ) of length T from (0, 0) to (T, x) can be related to an
unconditioned Brownian motion B̃ by the equation

Bbr
t = B̃t +

∫ t∧T

0

ds (x−Bbr
s )

(T − s)
.

which can be solved explicitly to give

Bbr
t = (t/T )y + (T − t)

∫ t

0

dB̃s
(T − s)

or again, by time-changing

Bbr
t = (t/T )y + (T − t)βt/(T (T−t))

for another Brownian motion β. Compare with Section 3.4.
Other enlargements (Gt) of the original Brownian filtration (Ft) can be ob-

tained by turning some particular random times L into (Gt) stopping times, so
Gt is the σ-field generated by Ft and the random variable L ∧ t. If L = sup{t :
(t, ω) ∈ A} for some (Ft) predictable set A, then there is the decomposition

Bt = B̃t +

∫ t∧L

0

d〈B,ZL〉s
ZLs

+

∫ t

L

d〈B, 1− ZL〉s
1− ZLs

where ZLt := P(L > t | Ft) and (B̃t) is a (Gt) Brownian motion.
The volume [191] provides many applications of the theory of enlargement of

filtrations, in particular to provide explanations in terms of stochastic calculus
to path decompositions of Brownian motion at last exit times and minimum
times. See also [193]. The article of Jacod [185] treats the problem of initial
enlargement from (Ft) to (Gt) with Gt the σ-field generated by Ft and Z for
some random variable Z whose value is supposed to be known at time 0. See also
[362, Ch. 6], [454, Ch. 12], and [84] for a recent overview. On the other hand,
the theory of progressive enlargements has developed very little since 1985.
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5.6.3. Change of time

If the time parameter t ≥ 0 is replaced by some increasing and right continuous
family of stopping times (τu, u ≥ 0), then according to the general theory of
semimartingales we obtain from Brownian motion B a process (Bτu , u ≥ 0)
which is a semimartingale relative to the filtration (Fτu , u ≥ 0). In particular,
it is follows from the Burkholder-Davis-Gundy inequalities [370, §IV.4] that if
E(
√
τu) <∞ then (Bτu , u ≥ 0) is a martingale. Monroe [312] showed that every

semimartingale can be obtained, in distribution, as (Bτu , u ≥ 0) for a suitable
time change process (τu).

A beautiful application of Lévy’s characterization of BM is the representation
of continuous martingales as time-changed Brownian motions. Here is the pre-
cise statement. Let (Mt, t ≥ 0) be a d-dimensional continuous local martingale
relative to some filtration (Ft), such that

(i) 〈M (i)〉t = At for some increasing process (At) with A∞ =∞, and all i.

(ii) 〈M (i),M (j)〉t ≡ 0, which is to say that the product M
(i)
t M

(j)
t is an (Ft)

local martingale, for all i 6= j.

Let
τt := inf{s : As > t} and Bt := Mτt .

Then the process (Bt) is an (Fτ(t)) Brownian motion, and

Mu = BAu
(u ≥ 0). (69)

Doeblin in 1940 discovered the instance of this result for d = 1 and Mt =
f(Xt) −

∫ t
0
(Lf)(Xs)ds for X a one-dimensional diffusion and f a function in

the domain of the infinitesimal generator L of X. See [62, p. 20]. Dambis [89]
and Dubins-Schwarz [101] gave the general result for d = 1, while Getoor and
Sharpe [151] formulated it for d = 2, as discussed in the next subsection.

As a simple application of (69), we mention the following: if (Mu, u ≥ 0) is a
non-negative local martingale, such that

M0 = a and lim
u→∞

Mu = 0

then

P
(

sup
u≥0

Mu ≥ x
)

= a/x (x ≥ a). (70)

To prove (70), it suffices thanks to (69) to check it for M a Brownian motion
started at a and stopped at its first hitting time of 0. The conclusion (70) can
also be deduced quite easily by optional sampling. See [328] for further results
in this vein.

5.6.4. Knight’s theorem

A more general result on time-changes is obtained by consideration of a d-
dimensional continuous local martingale (Mt, t ≥ 0) relative to some filtration
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(Ft), such that
〈M (i),M (j)〉t ≡ 0

and each of the processes 〈M (i)〉t grows to infinity almost surely, but these
increasing processes are not necessarily identical. Then, Knight’s theorem [370,

Theorem V (1.9)] states that if (B
(i)
u ) denotes the Brownian motion such that

M
(i)
t = B

(i)

〈M(i)〉t
, then the Brownian motions B(1), . . . , B(d) are independent.

As an example, if Γ(i) for 1 ≤ i ≤ d are d disjoint Borel subsets of R, each
with positive Lebesgue measure, then∫ t

0

1(Bs ∈ Γ(i))dBs = B(i)

(∫ t

0

1(Bs ∈ Γ(i))ds

)
for some independent Brownian motions B(i).

5.7. BM as a harness

Another characterization of BM is obtained by considering the conditional ex-
pectation of Bu for some u ∈ [s, t] conditionally given the path of Bv for
v /∈ (s, t). As a consequence of the Markov property of B and exchangeabil-
ity of increments, there is the basic formula

E[Bu |Bv, v /∈ (s, t)] =
t− u
t− s

Bs +
u− s
t− s

Bt (0 ≤ s < u < t) (71)

which just states that given the path of B outside of (s, t), the path of B
on (s, t) is expected to follow the straight line from (s,Bs) to (t, Bt). Following
Hammersley [161] a process B with this property is called a harness. D. Williams
showed around 1980 that every harness with continuous paths parameterized by
[0,∞) may be represented as (σBs+µs, s ≥ 0) for σ and µ two random variables
which are measurable with respect to the germ σ-field

∩0<s<t<∞σ(Bv, v /∈ (s, t)).

See also Jacod-Protter [186] who showed that every integrable Lévy process is
a harness. Further discussion and references can be found in [289].

5.8. Gaussian semi-martingales

In general, to show that a given adapted, right continuous process is, or is not, a
semimartingale, may be quite subtle. This question for Gaussian processes was
studied by Jain and Monrad [187], Stricker [400] [401] and Emery [117]. Inter-
esting examples of Gaussian processes which are not semimartingales are the
fractional Brownian motion, for all values of their Hurst parameter H except 1/2
and 1. Many studies, including the development of adhoc stochastic integration,
have been made for fractional Brownian motions. In particular, P. Cheridito [72]
obtained the beautiful result that the addition of a fractional Brownian motion
with Hurst parameter H > 3/4 and an independent Brownian motion produces
a semimartingale.
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5.9. Generalizations of martingale calculus

Stochastic calculus for processes with jumps: Meyer’s appendix [304], Meyer’s
course [300], the books of Chung-Williams [75] and Protter [356]. Extension of
stochastic calculus to Dirichlet processes, that is sums of a martingale and a
process of vanishing quadratic variation: Bertoin [26]. Anticipative stochastic
calculus of Skorokhod and others: some references are [330] [21] [338].

5.10. References

Martingales Most modern texts on probability and stochastic processes con-
tain an introduction at least to discrete time martingale theory. Some further
references are:

[148] A. M. Garsia. Martingale inequalities: Seminar notes on recent progress.
(1973)

[323] J. Neveu. Martingales à temps discret. (1972).
[444] D. Williams. Probability with martingales. (1991)

Semi-Martingales Pioneering works:

[340] J. Pellaumail. Sur l’intégrale stochastique et la décomposition de Doob-
Meyer (1973).

[241] A. U. Kussmaul. Stochastic integration and generalized martingales (1977).

The following papers present a definitive account of semi-martingales as
“good integrators”

[41] K. Bichteler. Stochastic integrators (1979).
[42] K. Bichteler. Stochastic integration and Lp-theory of semimartingales

(1981).
[94] C. Dellacherie. Un survol de la théorie de l’intégrale stochastique (1980).

Elementary treatments:

[105] R. Durrett. Stochastic calculus: a practical introduction (1996).
[399] J. M. Steele. Stochastic calculus and financial applications. (2001)

Stochastic integration: history Undoubtedly, the inventor of Stochastic
Integration is K. Itô, although there were some predecessors: Paley and Wiener
who integrated deterministic functions against Brownian motion, and Lévy who
tried to develop a stochastic integration framework by randomizing the Darboux
sums, etc... However, K. Itô stochastic integrals, which integrate, say, predictable
processes against Brownian motion proved to provide the right level of gener-
ality to encompass a large number of applications. In particular, it led to the
definition and solution of stochastic differential equations, for which in most
cases, Picard’s iteration procedure works, and thus, probabilists were handed a
pathwise construction of many Markov processes, via Itô construction. To ap-
preciate the scope of Itô achievement, we should compare the general class of
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Markov processes obtained through his method with those which Feller obtained
from Brownian motion via time and space changes of variables. Feller’s method
works extremely well in one dimension, but does not generalize easily to higher
dimensions. Itô’s construction was largely unappreciated until the publication
of McKean’s wonderful book [296] 25 years after Itô’s original paper. In 1967
Paul-André Meyer expounded Séminaire de Probabilités I [299] the very im-
portant paper of Kunita and Watanabe [237] on the application of Stochastic
integration to the study of martingales associated with Markov processes. Itô
theory became better known in France in 1972, following a well attended course
by J. Neveu, which was unfortunately only recorded in handwritten form. The
next step was taken by Paul-André Meyer in his course [306] where he blended
the Itô–Kunita–Watanabe development with the general theory of processes, to
present stochastic integration with respect to general semi martingales. Jacod’s
Lecture Notes [184] built on the Strasbourg theory of predictable and dual pre-
dictable projections, and so forth, aiming at the description of all martingales
with respect to the filtration of a given process, such as a Lévy process. A con-
temporary to Jacod’s lecture notes is the book of D. Stroock and S. Varadhan
[411], where the martingale problem associated with an infinitesimal generator is
used to characterize and construct diffusion processes, thereby extending Lévy’s
characterization of Brownian motion.

[296] H. P. McKean, Jr. Stochastic integrals (1969).
[306] P.-A. Meyer. Martingales and stochastic integrals. I. (1972).
[301] P. A. Meyer. Un cours sur les intégrales stochastiques (1976).
[75] K. L. Chung and R. J. Williams. Introduction to stochastic integration

(1990).
[304] P.-A. Meyer. A short presentation of stochastic calculus (1989).

6. Brownian functionals

6.1. Hitting times and extremes

For x ∈ R, let Tx := inf{t : t ≥ 0, Bt = x}. Then for a, b > 0, by optional
sampling,

P0(Ta < T−b) =
b

a+ b

and hence
P0(Tx <∞) = 1 for all x ∈ R.

Let
Mt := max

0≤s≤t
Bs

and notice that (Tx, x ≥ 0) is the left continuous inverse for (Mt, t ≥ 0). Since
(Mt ≥ x) = (Tx ≤ t), if we know the distribution of Mt for all t > 0 then we
know the distribution of Tx for all x > 0. Define the reflected path,

B̂(t) =

{
B(t) if t ≤ Tx
x− (B(t)− x) if t > Tx
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By the Strong Markov Property and the fact that B and −B are equal in
distribution we can deduce the reflection principle that B̂ and B are equal in

distribution: B̂
d
= B. Rigorous proof of this involves some measurability issues:

see e.g. Freedman [139, §1.3] Durrett [106] for details. Observe that for x, y > 0,

(Mt ≥ x,Bt ≤ x− y) = (B̂t ≥ x+ y)

so
P0(Mt ≥ x,Bt ≤ x− y) = P0(Bt ≥ x+ y)

Taking y = 0 in the previous expression we have

P0(Mt ≥ x,Bt ≤ x) = P0(Bt ≥ x).

But (Bt > x) ⊂ (Mt ≥ x), so

P0(Mt ≥ x,Bt > x) = P0(Bt > x) = P0(Bt ≥ x)

by continuity of the distribution. Adding these two results we find that

P0(Mt ≥ x) = 2P0(Bt ≥ x)

So the distributions of Mt and |Bt| are the same: Mt
d
= |Bt|.

Now recall that P0(Mt ≥ x) = P0(Tx ≤ t) so

P0(Tx ≤ t) = P0(|Bt| ≥ x) = P0(
√
t|B1| ≥ x)

= P0(B2
1 ≥

x2

t
) = P0(

x2

B2
1

≤ t)

So Tx
d
= x2

B2
1
. As a check, this implies Tx

d
= x2T1, which is explained by Brownian

scaling.
The joint distribution of the minimum, maximum and final value of B on an

interval can be obtained by repeated reflections. See e.g. [46] and [40, §4.1] for
related results involving the extremes of Brownian bridge and excursion. See
also [57] for corresponding results up to various random times.

6.2. Occupation times and local times

For f(x) = 1(x ∈ A) for a Borel set A the integral∫ T

0

f(Bs)ds (72)

represents the amount of time that the Brownian path has spent in A up to time
T , which might be either fixed or random. As f varies, this integral functional
defines a random measure on the range of the path of B, the random occupation
measure of B on [0, T ]. A basic technique for finding the distribution of the
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integral functional (72) is provided by the method of Feynman-Kac, which is
discussed in most textbooks on Brownian motion. Few explicit formulas are
known, except in dimension one. A well known application of the Feynman-Kac
formula is Kac’s derivation of Lévy ’s arcsine law for B a BM(R), that is for all
fixed times T

P0

(
1

T

∫ T

0

1(Bs > 0)ds ≤ u

)
=

2

π
arcsin(

√
u) (0 ≤ u ≤ 1). (73)

See for instance [313] for a recent account of this approach, and Watanabe
[430] for various generalizations to one-dimensional diffusion processes and ran-
dom walks. Other generalizations of Lévy’s arcsine law for occupation times
were developed by Lamperti [247] and Barlow, Pitman and Yor [10], [354]. See
also [67] [68]. See Bingham and Doney [48] and Desbois [96] regarding higher-
dimensional analogues of the arc-sine law, and Desbois [95] [18] for occupation
times for Brownian motion on a graph.

It was shown by Trotter [418] that almost surely the random occupation
measure induced by the sample path of a one dimensional Brownian motion
B = (Bt, t ≥ 0) admits a jointly continuous local time process (Lxt (B);x ∈
R, t ≥ 0) satisfying the occupation density formula∫ t

0

f(Bs)ds =

∫ ∞
−∞

Lxt (B)f(x)dx. (74)

See [295, 221, 370] for proofs of this. Immediately from (74) there is the almost
sure approximation

Lxt = lim
ε→0

1

2ε

∫ t

0

1(|Bs − x| ≤ ε) (75)

which was used by Lévy to define the process (Lxt , t ≥ 0) for each fixed x. Other
such approximations, also due to Lévy, are

Lxt = lim
ε→0

εD[x, x+ ε, B, t] (76)

where D[x, x + ε, B, t] is the number of downcrossings of the interval [x, x + ε]
by B up to time t, and

Lxt = lim
ε→0

√
πε

2
N [x, ε, B, t] (77)

where N [x, ε, B, t] is derived from the random closed level set Zx := {s : Bs = x}
as the number component intervals of [0, t] \ Zx whose length exceeds ε. See
[370, Prop. XII.(2.9)]. According to Taylor and Wendel [416] and Perkins [341],
the local time Lxt is also the random Hausdorff `-measure of Zx ∩ [0, t] for
`(v) = (2v| log | log v||)1/2.
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6.2.1. Reflecting Brownian motion

For a one-dimensional BM B, let Bt := inf0≤s≤tBs. Lévy showed that

(B −B,−B)
d
= (|B|, L) (78)

where L := (L0
t , t ≥ 0) is the local time process of B at 0. This basic identity

in law of processes leads a large number of identities in distribution between
various functionals of Brownian motion. For instance if GT is the time of the
last 0 of B on [0, T ], and AT is the time of the last minimum of B on [0, T ],

(or the time of the last maximum), then GT
d
= AT . The distribution of GT /T

and AT /T is the same for all fixed times T , by Brownian scaling, and given
by Lévy’s arcsine law displayed later in (73). For further applications of Lévy’s
identity see [100].

6.2.2. The Ray-Knight theorems

This subsection is an abbreviated form the account of the Ray-Knight theorems
in [349, §8]. Throughout this section let R denote a reflecting Brownian motion
on [0,∞), which according to Lévy’s theorem (78) may be constructed from a
standard Brownian motion B either as R = |B|, or as R = B −B. Note that if
R = |B| then for v ≥ 0 the occupation density of R at level v up to time t is

Lvt (R) = Lvt (B) + L−vt (B) (79)

and in particular L0
t (R) = 2L0

t (B). For ` ≥ 0 let

τ` := inf{t : L0
t (R) > `} = inf{t : L0

t (B) > `/2}. (80)

For 0 ≤ v < w let

D(v, w, t) := number of downcrossings of [v, w] by R before t

Then there is the following basic description of the process counting downcross-
ings of intervals up to an inverse local time [321]. See also [426] for more about
Brownian downcrossings and their relation to the Ray-Knight theorems.

The process
(D(v, v + ε, τ`), v ≥ 0)

is a time-homogeneous Markovian birth and death process on {0, 1, 2 . . .}, with
state 0 absorbing, transition rates

n− 1
n
ε←− n

n
ε−→ n+ 1

for n = 1, 2, . . ., and initial state D(0, ε, τ`) which has Poisson(`/(2ε)) distribu-
tion.

In more detail, the number D(v, v + ε, τ`) is the number of branches at level
v in a critical binary (0, ε) branching process started with a Poisson(`/(2ε))
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number of initial individuals. From the Poisson distribution of D(0, ε, τ`), and
the law of large numbers,

lim
ε↓0

εD(0, ε, τ`) = ` almost surely

and similarly, for each v > 0 and ` > 0, by consideration of excursions of R
away from level v

lim
ε↓0

2εD(v, v + ε, τ`) = Lvτ`(R) almost surely.

This process (2εD(v, v + ε, τ`), v ≥ 0), which serves as an approximation to
(Lvτ`(R), v ≥ 0), is a Markov chain whose state space is the set of integer multi-
ples of 2ε, with transition rates

x− 2ε
x

2ε2←− x
x

2ε2−→ x+ 2ε

for x = 2εn > 0. The generatorGε of this Markov chain acts on smooth functions
f on (0,∞) according to

(Gεf)(x) =
x

2ε2
f(x− 2ε) +

x

2ε2
f(x+ 2ε)− x

ε2
f(x)

= 4x
1

(2ε)2
[
1
2f(x− 2ε) + 1

2f(x+ 2ε)− f(x)
]

→ 4x
1

2

d2

dx2
f as ε→ 0.

Hence, appealing to a suitable approximation of diffusions by Markov chains
[239, 238], we obtain the following Ray-Knight theorem (Ray [365], Knight [220]):

For each fixed ` > 0, and τ` := inf{t : L0
t (R) > `}, where R = |B|,

(Lvτ`(R), v ≥ 0)
d
= (X

(0)
`,v , v ≥ 0) (81)

where (X
(δ)
`,v , v ≥ 0) for δ ≥ 0 denotes a squared Bessel process of dimension

δ started at ` ≥ 0, as in Section 4.4.2. Moreover, if T` := τ2` := inf{t > 0 :
L0
t (B) = `}, the the processes (LvT`

(B), v ≥ 0) and (L−vT`
(B), v ≥ 0) are two

independent copies of (X
(0)
`,v , v ≥ 0). The squared Bessel processes and their

bridges, especially for δ = 0, 2, 4, are involved in the description of the local
time processes of numerous Brownian path fragments [220, 365, 437, 350]. For
instance, if T1 := inf{t : Bt = 1}, then according to Ray and Knight

(LvT1
(B), 0 ≤ v ≤ 1)

d
= (X

(2)
0,1−v, 0 ≤ v ≤ 1). (82)

Many proofs, variations and extensions of these basic Ray-Knight theorems can
be found in the literature. See for instance [212, 370, 348, 426, 190] and papers
cited there. The appearance of squared Bessel processes processes embedded in
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the local times of Brownian motion is best understood in terms of the construc-
tion of these processes as weak limits of Galton-Watson branching processes with
immigration, and their consequent interpretation as continuous state branching
processes with immigration [212]. For instance, there is the following expression
of the Lévy-Itô representation of squared Bessel processes, and its interpreta-
tion in terms of Brownian excursions [350], due to Le Gall-Yor [257]: For R a
reflecting Brownian motion on [0,∞), with R0 = 0, let

Y
(δ)
t := Rt + L0

t (R)/δ (t ≥ 0).

Then for δ > 0 the process of ultimate local times of Y (δ) is a squared Bessel
process of dimension δ started at 0:

(Lv∞(Y (δ)), v ≥ 0)
d
= (X

(δ)
0,v , v ≥ 0). (83)

See [349, §8] for further discussion of these results and their explanation in terms
of random trees embedded in Brownian excursions.

6.3. Additive functionals

A process (Ft, t ≥ 0) derived from the path of a process X is called an additive
functional if for all s, t ≥ 0

Fs+t(Xu, u ≥ 0) = Fs(Xu, u ≥ 0) + Ft(Xs+u, u ≥ 0)

almost surely. Basic additive functionals of any process X are the integrals

Ft =

∫ t

0

f(Xs)ds (84)

for suitable f . For each x ∈ R, the local time process (Lxt , t ≥ 0) is an additive
functional of a one-dimensional Brownian motion B. McKean and Tanaka [297]
showed that for X = B a one-dimensional Brownian motion, every continuous
additive functional of locally bounded variation can be represented as

Ft =

∫
µ(dx)Lxt

for some signed Radon measure µ on R. According to the occupation density
formula (74), the case µ(dx) = f(x)dx reduces to (84) for X = B. For a d-
dimensional Brownian motion with d ≥ 2 there is no such representation in
terms of local times. However each additive functional of bounded variation
can be associated with a signed measures on the state space, called its Revuz
measure [368] [369] [130] [419]. Another kind of additive functional is obtained
from the stochastic integral

Gt =

∫ t

0

g(Bs) · dBs

where the integrand is a function of Bs. Such martingale and local martingale
additive functionals were studied by Ventcel’ [424] for Brownian motion and by
Motoo, Kunita and Watanabe [237] [314] for more general Markov processes.
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6.4. Quadratic functionals

By a quadratic Brownian functional, we mean primarily a functional of the form∫
µ(ds)B2

s

for some positive measure µ(ds) on R+. But it is also of interest to consider the
more general functionals ∫

µ(ds)

(∫ ∞
0

f(s, t)dBt

)2

for µ and f such that ∫
µ(ds)

∫ ∞
0

dt f2(s, t) <∞.

In terms of the Wiener chaos decomposition (63), these functionals belong to
C0

⊕
C2. So in full generality, we use the term quadratic Brownian functional

to mean any functional of the form

c+

∫ ∞
0

dBs

∫ s

0

dBuφ(s, u)

with c ∈ R and
∫∞
0
ds
∫ s
0
duφ2(s, u) < ∞. We note that, with the help of

Kahunen-Loéve expansions, the laws of such functionals may be decribed via
their characteristic functions. These may be expanded as infinite products, which
can sometimes be evaluated explicitly in terms of hyperbolic functions or other
special functions. See e.g. Neveu [322] Hitsuda [170]. Perhaps the most famous
example is Lévy’s stochastic area formula

E
[
exp

(
iλ

∫ t

0

(XsdYs − YsdXs)

)]
= E

[
exp−

(
λ2

2

∫ t

0

ds(X2
s + Y 2

s )

)]
=

1

cosh(λt)
(85)

where X and Y are two independent standard BMs. See Lévy[270] Gaveau [149]
Berthuet [22] Biane-Yor [38] for many variations of this formula, some of which
are reviewed in Yor [453].

A number of noteworthy identities in law between quadratic Brownian func-
tionals are consequences of the following elementary observation:∫ ∞

0

ds

(∫ ∞
0

f(s, t)dBt

)2
d
=

∫ ∞
0

ds

(∫ ∞
0

f(t, s)dBt

)2

for f ∈ L2(R2
+; ds dt). Consequences of this observation include the following

identity, which was discovered by chemists studying the radius of gyration of
random polymers∫ 1

0

ds

(
Bs −

∫ 1

0

duBu

)2
d
=

∫ 1

0

ds (Bs − sB1)2
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where the left side involves centering at mean value of the Brownian path on
[0, 1], while the right side involves a Brownian bridge. The right side is known
in empirical process theory to describe the asymptotic distribution of the von
Mises statistic [391]. More generally Yor [452] explains how the Cieselski-Taylor
identities, which relate the laws of occupation times and hitting times of Brown-
ian motion in various dimensions, may be understood in terms of such identities
in law between two quadratic Brownian functionals. See also [451] and [290, Ch.
4].

6.5. Exponential functionals

Some references on this topic are [456] [292] [293] [163] [457].

7. Path decompositions and excursion theory

A basic technique in the analysis of Brownian functionals, especially additive
functionals, is to decompose the Brownian path into various fragments, and to
express the functional of interest in terms of these path fragments. Application
of this technique demands an adequate description of the joint distribution of
the pre-ρ and post-ρ fragments

(Bt, 0 ≤ t ≤ ρ) and (Bρ+s, 0 ≤ s <∞)

for various random times ρ. If ρ is a stopping time, then according to the strong
Markov property these two fragments are conditionally independent given Bρ,
and the post ρ process is a Brownian motion with random initial state Bρ. But
the strong Markov property says nothing about the distribution of the pre-ρ
fragment. More generally, it is of interest to consider decompositions of the
Brownian path into three or more fragments defined by cutting at two or more
random times.

7.1. Brownian bridge, meander and excursion

To facilitate description of the random path fragment of random length, the
following notation is very convenient. For a process X := (Xt, t ∈ J) parame-
terized by an interval J , and I = [GI , DI ] a random subinterval of J with length
λI := DI − GI > 0, we denote by X[I] or X[GI , DI ] the fragment of X on I,
that is the process

X[I]u := XGI+u (0 ≤ u ≤ λI). (86)

We denote by X∗[I] or X∗[GI , DI ] the standardized fragment of X on I, defined
by the Brownian scaling operation

X∗[I]u :=
XGI+uλI

−XGI√
λI

( 0 ≤ u ≤ 1). (87)
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Note that the fundamental invariance of Brownian motion under Brownian scal-
ing can be stated in this notation as

B∗[0, T ]
d
= B[0, 1]

for each fixed time T > 0. Let GT := sup{s : s ≤ T,Bs = 0} be the last zero
of B before time T and DT := inf{s : s > T,Bs = 0} be the first zero of B
after time T . Let |B| := (|Bt|, t ≥ 0), called reflecting Brownian motion. It is
well known [180, 76, 370] that there are the following identities in distribution
derived by Brownian scaling: for each fixed T > 0

B∗[0, GT ]
d
= Bbr (88)

where Bbr is a standard Brownian bridge,

|B|∗[GT , T ]
d
= Bme (89)

where Bme is a standard Brownian meander, and

|B|∗[GT , DT ]
d
= Bex. (90)

where Bex is a standard Brownian excursion. These identities in distribution
provide a convenient unified definition of the standard bridge, meander and ex-
cursion, which arise also as limits in distribution of conditioned random walks,
as discussed in Section 2. It is also known that Bbr, Bme and Bex can be con-
structed by various other operations on the paths of B, and transformed from
one to another by further operations [25].

The excursion straddling a fixed time For each fixed T > 0, the path
of B on [0, T ] can be reconstructed in an obvious way from the four random
elements

GT , B∗[0, GT ], |B|∗[GT , 1], sign(BT )

which are independent, the first with distribution

P(GT /T ∈ du) =
du

π
√
u(1− u)

(0 < u < 1)

which is one of Lévy’s arc-sine laws, the next a standard bridge, the next a
standard meander, and the last a uniform random sign ± 1

2 . Similarly, the path
of B on [0, DT ] can be reconstructed from the four random elements

(GT , DT ), B∗[0, GT ], |B|∗[GT , DT ], sign(BT )

which are independent, with the joint law of (GT , DT ) given by

P(GT /T ∈ du,DT /T ∈ dv) =
du dv

2πu1/2(v − u)3/2
(0 < u < 1 < v),
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withB∗[0, GT ] a standard bridge, |B|∗[GT , DT ] a standard excursion, and sign(BT )
a uniform random sign ± 1

2 . See [448, Chapter 7].
For 0 < t < ∞ let Bbr,t be a Brownian bridge of length t, which may be

regarded as a random element of C[0, t] or of C[0,∞], as convenient:

Bbr,t(s) :=
√
tBbr((s/t) ∧ 1) (s ≥ 0). (91)

Let Bme,t denote a Brownian meander of length t, and Bex,t be a Brownian
excursion of length t, defined similarly to (91) with Bme or Bex instead of Bbr.

Brownian excursions and the three-dimensional Bessel process There
is a close connection between Brownian excursions and a particular time-homogeneous
diffusion process R3 on [0,∞), commonly known as the three-dimensional Bessel
process BES(3), due to the representation

(R3(t), t ≥ 0)
d
=


√√√√ 3∑

i=1

(Bi(t))2, t ≥ 0

 (92)

where the Bi are three independent standard Brownian motions. It should be un-
derstood however that this particular representation of R3 is a relatively unim-
portant coincidence in distribution. What is more important, and can be under-
stood entirely in terms of the random walk approximations of Brownian motion
and Brownian excursion (1) and (7), is that there exists a time-homogeneous
diffusion process R3 on [0,∞) with R3(0) = 0, which has the same self-similarity
property as B, meaning invariance under Brownian scaling, and which can be
characterized in various ways, including (92), but most importantly as a Doob
h-transform of Brownian motion.

For each fixed t > 0, the Brownian excursion Bex,t of length t is the BES(3)
bridge from 0 to 0 over time t, meaning that

(Bex,t(s), 0 ≤ s ≤ t) d
= (R3(s), 0 ≤ s ≤ t |R3(t) = 0).

Moreover, as t→∞
Bex,t d→ R3, (93)

and R3 can be characterized in two other ways as follows:

(i) [294, 437] The process R3 is a Brownian motion on [0,∞) started at 0
and conditioned never to return to 0, as defined by the Doob h-transform,
for the harmonic function h(x) = x of Brownian motion on [0,∞), with
absorbtion at 0. That is, R3 has continuous paths starting at 0, and for
each 0 < a < b the stretch of R3 between when it first hits a and first hits
b is distributed like B with B0 = a conditioned to hit b before 0.

(ii) [347] There is the identity

R3(t) = B(t)− 2B(t) (t ≥ 0) (94)

where B is a standard Brownian motion with past minimum process

B(t) := B[0, t] = −R3[t,∞).
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The identity in distribution (94) admits numerous variations and conditioned
forms [347, 25, 31]. For instance, by application of Lévy’s identity (78)

(R3(t), t ≥ 0)
d
= (|Bt|+ Lt, t ≥ 0). (95)

where (Lt, t ≥ 0) is the local time process of B at 0.

7.2. The Brownian zero set

Consider the zero set of one-dimensional Brownian motion B:

Z(ω) := {t : Bt(ω) = 0}.

Since B has continuous paths, Z(ω) is closed subset of [0,∞), which depends on
ω through the path of B. Intuitively, Z(ω) is a random closed subset of [0,∞),
and this is made rigorous by putting an appropriate σ-field on the set of all
closed subsets of [0,∞). Some almost sure properties of the Brownian zero are:

• Z(ω) has Lebesgue measure equal to 0;
• Z(ω) has Hausdorff dimension 1/2;
• Z(ω) has no isolated points;
• Z(ω) is the set of points of increase of the local time process at 0.
• Z(ω) is the closure of the range of the inverse local time process, which is

a stable subordinator of index 1/2.

See [355] for a study of the distribution of ranked lengths of component open
intervals of (0, t) \ Z(ω), and generalizations to a stable subordinator of index
α ∈ (0, 1).

7.3. Lévy-Itô theory of Brownian excursions

The Lévy-Itô excursion theory allows the Brownian path to be reconstructed
from its random zero set, an ensemble of independent standard Brownian ex-
cursions, and a collection of independent random signs, one for each excursion.
The zero set can first be created as the closed range of a stable subordinator
(T`, ` ≥ 0) which ends up being the inverse local time process of B. Then for
each ` such that T`− < T` the path of B on [T`−, T`] can be recreated by shifting
and scaling a standard Brownian excursion to start at time T`− and end at time
T`.

Due to (78), the process of excursions of |B| away from 0 is equivalent in
distribution to the process of excursions of B above B. According to the Lévy-
Itô description of this process, if I` := [T`−, T`] for T` := inf{t : B(t) < −`}, the
points

{(`, µ(I`), (B −B)[I`]) : ` > 0, µ(I`) > 0}, (96)

where µ is Lebesgue measure, are the points of a Poisson point process on
R>0 × R>0 × C[0,∞) with intensity

d`
dt√

2π t3/2
P(Bex,t ∈ dω). (97)
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On the other hand, according to Williams [438], if M` := B[I`] − B[I`] is the
maximum height of the excursion of B over B on the interval I`, the points

{(`,M`, (B −B)[I`]) : ` > 0, µ(I`) > 0}, (98)

are the points of a Poisson point process on R>0×R>0×C[0,∞) with intensity

d`
dm

m2
P(Bex |m ∈ dω) (99)

where Bex |m is a Brownian excursion conditioned to have maximum m. That
is to say Bex |m is a process X with X(0) = 0 such that for each m > 0,
and Hx(X) := inf{t : t > 0, X(t) = x}, the processes X[0, Hm(X)] and
m − X[Hm(X), H0(X)] are two independent copies of R3[0, Hm(R3)], and X
is stopped at 0 at time H0(X). Itô’s law of Brownian excursions is the σ-finite
measure ν on C[0,∞) which can be presented in two different ways according
to (97) and (99) as

ν(·) =

∫ ∞
0

dt√
2πt3/2

P(Bex,t ∈ ·) =

∫ ∞
0

dm

m2
P(Bex |m ∈ ·) (100)

where the first expression is a disintegration according to the lifetime of the
excursion, and the second according to its maximum. The identity (100) has a
number of interesting applications and generalizations [36, 351, 356]. See [370,
Ch. XII], [352] and [448] for more detailed accounts of Itô’s excursion theory
and its applications.

Notes and Comments See [371, 252, 23, 370, 160] for different approaches to
the basic path transformation (94) from B to R3, its discrete analogs, and var-
ious extensions. In terms of X := −B and M := X = −B, the transformation
takes X to 2M −X. For a generalization to exponential functionals, see Mat-
sumoto and Yor [291]. This is also discussed in [333], where an alternative proof
is given using reversibility and symmetry arguments, with an application to a
certain directed polymer problem. A multidimensional extension is presented in
[334], where a representation for Brownian motion conditioned never to exit a
(type A) Weyl chamber is obtained using reversibility and symmetry properties
of certain queueing networks. See also [333, 228] and the survey paper [332].
This representation theorem is closely connected to random matrices, Young
tableaux, the Robinson-Schensted-Knuth correspondence, and symmetric func-
tions theory [331, 335]. A similar representation theorem has been obtained in
[58] in a more general symmetric spaces context, using quite different methods.
These multidimensional versions of the transformation from X to 2M −X are
intimately connected with combinatorial representation theory and Littelmann’s
path model [278].
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8. Planar Brownian motion

8.1. Conformal invariance

Lévy showed that if

Zt := B
(1)
t + iB

(2)
t

is a 2-dimensional Brownian motion, regarded here as a C-valued process, and
f : C→ C is a non-constant holomorphic function, then

f(Zt) = Ẑ

(∫ t

0

|f ′(Zs)|2ds
)

(101)

where (Ẑ(u), u ≥ 0) is another C-valued Brownian motion. This is an instance
of the Dambis-Dubins-Schwarz result of Section 5.6.3 in two dimensions. For

f(Zt) = F
(1)
t + iF

(2)
t

for real-valued processes F (1) and F (2) which are two local martingales relative
to the filtration of (Zt), with

〈F (1)〉t = 〈F (2)〉t and 〈F (1), F (2)〉t ≡ 0

as a consequence of Itô’s formula and the Cauchy-Riemann equations for f .
More generally, Getoor and Sharpe [151] defined a conformal martingale to be

any C-valued continuous local martingale (Zt := Xt + iYt, t ≥ 0) for real-valued
X and Y such that

〈X〉t = 〈Y 〉t and 〈X,Y 〉t ≡ 0.

They showed in this setting that

Zt = Ẑ〈X〉t (t ≥ 0)

where (Ẑu, u ≥ 0) is a C-valued Brownian motion. Note that conformal martin-
gales are stable by composition with an entire holomorphic function, and also
by continuous time-changes. See [104], [91] [313] for many applications.

8.2. Polarity of points, and windings

According to Lévy’s theorem,

exp(Zt) = Ẑ

(∫ t

0

ds exp(2Xs)

)
(102)

with (Ẑ(u), u ≥ 0) another planar BM started at 1, and Xs the real part of Zs.

It follows immediately from (102) that Ẑ will never visit 0 almost surely. From
this, it follows easily that for two arbitrary points z0 and z1 with z0 6= z1

Pz0(Zt = z1 for some t ≥ 0) = 0.
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In particular, the winding number process, that is a continuous determination

(θ
(z1)
t , t ≥ 0) of the argument of Zt−z1 along the path of Z, is almost surely well

defined for all t ≥ 0, and so is the corresponding complex logarithm of Zt − z1,
according to the formula

log(|Zt − z1|) + iθ
(z1)
t :=

∫ t

0

dZu
Zu − z1

= Z̃

(∫ t

0

du

|Zu − z1|2

)
(103)

for t ≥ 0, where, by another application of Lévy’s theorem, the process Z̃ is a
complex Brownian motion starting at 0. Moreover, from the trivial identity

Zt − z1 = (z0 − z1) +

∫ t

0

dZu
(Zu − z1)

(Zu − z1)

considered as a linear integral equation in (Zu − z1), we see that

Zt − z1 = (z0 − z1) · exp

(∫ t

0

dZu
(Zu − z1)

)
.

Taking z1 = 0, this yields the skew-product representation of the planar BM Z
started from z0 6= 0:

Zt = |Zt| exp

[
iγ

(∫ t

0

ds

|Zs|2

)]
(104)

for t ≥ 0, where (γ(u), u ≥ 0) is a one dimensional BM, independent of the
radial part (|Zt|, t ≥ 0), which is by definition a 2-dimensional Bessel process.
This skew-product representation reduces a number of problems involving a
planar Brownian motion Z to problems involving just its radial part.

8.3. Asymptotic laws

In 1958, the following two basic asymptotic laws of planar Brownian motion
were discovered independently:

Spitzer’s law [395]
2θt
log t

d→ C1 as t→∞

where θt denotes the winding number of Z around 0, assuming Z0 6= 0, and C1

denotes a standard Cauchy variable.

The Kallianpur-Robbins law [203]

1

(log t)||f ||

∫ t

0

dsf(Zs)
d→ e1 as t→∞



J. Pitman and M. Yor/Guide to Brownian motion 52

for all non-negative measurable functions f with ||f || :=
∫ ∫

f(x+iy)dxdy <∞,
and e1 a standard exponential variable, along with the ratio ergodic theorem∫ t

0
dsf(Zs)∫ t

0
dsg(Zs)

a.s.→ ||f ||
||g||

as t→∞

for two such functions f and g. It was shown in [353] that the skew product
representation of planar BM allows a unified derivation of these asymptotic
laws, along with descriptions of the joint asymptotic behaviour of windings
about several points and an additive functions

1

log t

(
θ
(z1)
t , . . . , θ

(zk)
t ,

∫ t

0

dsf(Zs)

)
.

For a number of extensions of these results, and a review of literature around
this theme, see Yor [453, Ch. 8]. See also Watanabe [431] Franchi [138] Le Gall
and Yor [262] [258] [256] for various extensions of these asymptotic laws: to
more general recurrent diffusion processes in the plane, to Brownian motion on
Riemann surfaces, and to windings of Brownian motion about lines and curves
in higher dimensions. See also [449, Chapter 7] where some asymptotics are
obtained for the self-linking number of BM in R3. Questions about knotting
and entanglement of Brownian paths and random walks are studied in [214]
and [318]. Much more about planar Brownian motion can be found in Le Gall’s
course [259].

8.4. Self-intersections

In a series of remarkable papers in the 1950’s, Dvoretsky, Erdős, Kakutani and
Taylor established among other things the existence of multiple points of ar-
bitary (even infinite) order in planar Brownian paths. It was not until the 1970’s
that any attempt was made to quantify the extent of self-intersection of Brow-
nian paths by consideration of the occupation measure of Brownian increments

ν
(2)
s,t (ω, dx) :=

∫ s

0

du

∫ t

0

dv 1(Bu −Bv ∈ dx). (105)

for a planar Brownian motion B, and x ∈ R2. Wolpert [447] and Rosen [374]
showed that this random measure is almost surely absolutely continuous with
respect to Lebsesgue measure on R2, with a density

α̃(x; s, t), x ∈ R2 − {0}, s, t,≥ 0), (106)

which can be chosen to be jointly continuous in (x, s, t). For fixed x this process
in s, t is called the the process of intersection local times at x. However,

lim
x→0

α̃(x; s, t) =∞ almost surely
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reflecting the accumulation of immediate intersections of the Brownian path
with itself coming from times u, v in (105) with u close to v. A measure of the
extent of such self-intersections is obtained by consideration of

ν
(2)
s,t fn :=

∫
R2

fn(x)ν
(2)
s,t (ω, dx) =

∫ s

0

du

∫ t

0

dvfn(Bu −Bv)

as n → ∞ with fn(x) := n2f(nx) for a continuous non-negative function f
with compact support and planar Lebesgue integral equal to 1. Varadhan [422]
showed that

ν
(2)
s,t fn − E(ν

(2)
s,t fn)→ γs,t as n→∞

in every Lp space for some limit γs,t which is independent of f . Indeed,

α̃(x; s, t)− E[α̃(x; s, t)]→ γs,t as x→ 0

in L2. The limit process (γs,t, s, t ≥ 0) is known to admit a continuous version
in (s, t), called the renormalized self-intersection local time of planar Brownian
motion. Rosen [375] obtained variants of Tanaka’s formula for these local times
of intersection.

These results have been extended in a number of ways. In particular, for each
k > 2 the occupation measure of Brownian increments of order k − 1∫ s1

0

du1 · · ·
∫ sk

0

duk

k∏
i=2

(Bui
−Bui−1

∈ dxi)

is absolutely continuous with respect to the Lebesgue measure dx2 · · · dxk, and
Varadhan’s renormalization result extends as follows: the multiple integrals∫

· · ·
∫
0≤s1<···<sk≤t

ds1 · · · dsk
k∏
i=2

fn(Bui
−Bui−1

),

where X := X − E(X), converge in Lp for every p ≥ 1 as n → ∞, to define
a kth order renormalized intersection local time. Amongst a number of deep
applications of these intersection local times, we mention the asymptotic series
expansion of the area of the Wiener sausage

Sε(t) := {y : |y −Bs| ≤ ε for some 0 ≤ s ≤ t},

according to which for each fixed n = 1, 2, . . ., as ε→ 0

m(Sε(t)) =

n∑
k=1

γk(t)

(log(1/ε))k
+ o

(
1

(log(1/ε))n

)
where γk(t) is the kth order normalized intersection local time. These results,
and much more in the same vein, can be found in the course of Le Gall [263].
Subsequent open problems were collected in [102].
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Questions about self-intersection of planar Brownian paths are closely related
to questions about intersections of two or more independent Brownian paths.

Such questions are easier, because a process L
(1,2)
t,s of local time of intersection

at 0 between two independent Brownian paths (B
(1)
u , 0 ≤ u ≤ t) and (B

(2)
v , 0 ≤

v ≤ s) is well-defined and finite. Le Gall’s proof of Varadhan’s renormalization
uses the convergence of a centered sequence of such local times of intersection
L(1,2).

8.5. Exponents of non-intersection

Another circle of questions involves estimates of the probability of non-intersection

of independent planar BM’s B(1) and B(2). If Z
(i)
R is the range of the path of

B
(i)
t for 0 ≤ t ≤ inf{t : |Bt| = R}, and B

(i)
0 is uniformly distributed on the unit

circle, then there exist two universal constants c1 and c2 such that

c1R
−5/4 ≤ P(Z

(1)
R ∩ Z

(2)
R = ∅) ≤ c2R−5/4. (107)

More generally, for p independent BM’s, there is a corresponding exponent

ξp = (4p2 − 1)/12

instead of 5/4, so that

c1,pR
−ξp ≤ P

(
∩pi=1Z

(i)
R = ∅

)
≤ c2,pR−ξp

Another interesting family of exponents, the non-disconnection exponents ηp are
defined by

c′1,pR
−ξp ≤ P

(
D(∪pi=1Z

(i)
R )
)
≤ c′2,pR−ξp

where D(Γ) is the event that the random set Γ does not disconnect 0 from ∞.
It is known that these exponents exist, and are given by the formula

ηp =
(
√

24p+ 1− 1)2 − 4

48
.

In particular, η1 = 1/4. For an account of these results, see Werner [434, p.
165, Theorem 8.5]. These results are the keys to computation of the Hausdorff
dimension dH(Γ) of a number of interesting random sets Γ derived from a planar
Brownian path, in particular

• the set C of cut points Bt for t such that B[0, t] ∩B[t, 1] = ∅ :

dH(C) = 2− ξ1 = 3/4

• the set F of frontier points Bt for t such that D(B[0, 1]−Bt) :

dH(F ) = 2− η2 = 4/3
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• the set P of pioneer points Bt such that D(B[0, t]−Bt) :

dH(P ) = 2− η1 = 7/4.

In particular, the second of these evaluations established a famous conjecture of
Mandelbrot. For introductions to these ideas and the closely related theory of
Schramm-Loewner evolutions driven by Brownian motion, see Le Gall’s review
[261] of the work of Kenyon, Lawler and Werner on critical exponents for random
walks and Brownian motion, the appendix of [313] by Schramm and Werner,
and the monograph of Lawler [250] on conformally invariant processes in the
plane,

9. Multidimensional BM

9.1. Skew product representation

The skew product representation (104) of planar Brownian motion can be gen-
eralized as follows to a BM B in Rd for d ≥ 2:

Bt = |Bt|θ(
∫ t
0
ds/|Bs|2), t ≥ 0 (108)

where the radial process (|Bt|, t ≥ 0) is a d-dimensional Bessel process, as dis-
cussed in Section 4.4.2, and the angular Brownian motion (θu = θ(u), u ≥ 0) is
a BM on the sphere Sd−1, independent of the radial process. This is a particu-
lar case of BM on a manifold, as discussed further in Section 10. For now, we
just indicate Stroock’s representation of the angular motion (θu, u ≥ 0) as the
solution of the Stratonovich differential equation

θiu = θi0 +

d∑
j=1

∫ u

0

(δij − θisθjs) ◦ dW j
s , (1 ≤ i ≤ d) (109)

where (Ws) is a d-dimensional BM independent of (|Bs|). This representation
(109) may be obtained by application of Itô’s formula to f(x) = x/|x| and
Knight’s theorem of Section 5.6.4 on orthogonal martingales.

9.2. Transience

The BM in Rd is transient for d ≥ 3, and the study of its rate of escape to ∞
relies largely on the application of one-dimensional diffusion theory to the radial
process. See for instance Shiga and Watanabe [387]. According to the theory of
last exit decompositions, the escape process

Sr := sup{t, |Bt| = r}, r ≥ 0

is a process with independent increments, whose distribution can be described
quite explicitly [150]. In the special case d = 3 this process is the stable process
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of index 1
2 , with stationary independent increments, and is identical in law to

(Tr, r ≥ 0) where Tr is the first hitting time of r by a one-dimensional Brown-
ian motion B. This and other coincidences involving one-dimensional Brownian
motion and the three-dimensional Bessel process BES(3) are explained by the
fact that BES(3) is the Doob h-transform of BM on (0,∞) with killing at 0.

9.3. Other geometric aspects

Studies of stochastic integrals such as∫ t

0

(BisdB
j
s −BjsdBis), i 6= j

arise naturally in various contexts, such as Brownian motion on the Heisenberg
group. See e.g. Gaveau [149] and Berthuet [22].

9.3.1. Self-intersections

Dvoretsky, Erdős and Kakutani [107] showed that two independent BM’s in R3

intersect almost surely, even if started apart. Consequently, a single Brownian
path in R3 has self-intersections almost surely. An occupation measure of Brow-

nian increments ν
(3)
s,t can be defined exactly as in (105), for B with values in R3

instead of R2, and this measure admits a density α̃(x; s, t), x ∈ R3−{0}, s, t,≥ 0
which may be chosen jointly continuous in (x, s, t). Again limx→0 α̃(x; s, t) =∞
almost surely, but now Varadhan’s renormalization phenomenon does not oc-
cur. Rather, there is a weaker result. In agreement with Symanzik’s program
for quantum field theory, Westwater [435] showed weak convergence as n→∞
of the measures

exp
(
−gν(3)s,t (fn)

)
Zgn(s, t)

·W (3) (110)

where g > 0, W (3) is the Wiener measure,

ν
(3)
s,t (fn) =

∫
R3

fn(x)ν
(3)
s,t (ω; dx) =

∫ s

0

du

∫ t

0

dvfn(Bu −Bv)

where fn(x) := n3f(nx) for a continuous non-negative function f with compact
support and Lebesgue integral equal to 1. Westwater showed that as g varies
the weak limits W (3,g)s,t are mutually singular, and that under each W (3,g)s,t

the new process, while no longer a BM, still has self-intersections.
For δ ≥ 4, two independent BM’s in Rδ do not intersect, and consequently

BM(Rδ) has no self-intersections. The analog of (110) can nonetheless be stud-
ied, with the result that these measures still have weak limits. Some references
are [54] [60] [64] [178].
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9.4. Multidimensional diffusions

Basic references on this subject are:

[411] D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion pro-
cesses (1979).

[408] D. W. Stroock. Lectures on stochastic analysis: diffusion theory (1987).
[423] S. R. S. Varadhan. Diffusion processes (2001).
[432] S. Watanabe. Itô’s stochastic calculus and its applications (2001).

See also [210, Chapter 5], [336][15]. Basic notions are weak and strong so-
lutions of stochastic differential equations, and martingale problems. We refer
to Platen [358] for a survey of literature on numerical methods for SDE’s, in-
cluding Euler approximations, stochastic Taylor expansions, multiple Itô and
Stratonovich integrals, strong and weak approximation methods, Monte Carlo
simulations and variance reduction techniques for functionals of diffusion pro-
cesses. An earlier text in this area is Kloeden and Platen [219].

9.5. Matrix-valued diffusions

Another interesting example of BM in higher dimensional spaces is provided
by matrix-valued BM’s, which are of increasing interest in the theory of ran-
dom matrices. See for instance O’Connell’s survey [332]. Cépa and Lépingle
[70] interpret Dyson’s model for the eigenvalues of N ×N unitary random ran-
dom matrices as a system of N Brownian interacting Brownian particles on the
circle with electrostatic repulsion. They discuss more general particle systems
allowing collisions between particles, and measure-valued limits of such systems
as N → ∞. This relates to the asymptotic theory of random matrices, which
concerns asymptotic features as N → ∞ of various statistics of N ×N matrix
ensembles. See also [63]. Another interesting development from random matrix
theory is the theory of Dyson’s Brownian motions [398] [428].

9.6. Boundaries

9.6.1. Absorbtion

It is natural in many contexts to consider Brownian motion and diffusions in
some connected open subset D of RN . The simplest such process is obtained
absorbing B when it first reaches the boundary at time TD = inf{t ≥ 0 :
Bt /∈ D}. This gives a Markov process X, with state space the closure of D,
defined by Xt = Bt∧TD

. A key connection with classical analysis is provided by
considering the density of the mean occupation measure of the killed BM: for
all non-negative Borel measurable functions f vanishing off D

Ex
∫ ∞
0

f(Xt)dt = Ex
∫ TD

0

f(Bt)dt =

∫
D

f(y)gD(x, y)dy (111)
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where gD(x, y) is the classical Green function associated with the domain D.
A classical fact, not particularly obvious from (111), is that gD is a symmetric
function of (x, y). See Mörters and Peres [313, §3.3] and Chung [77] for further
discussion.

9.6.2. Reflection

If H is the half-space of RN on one side of a hyperplane, there is an obvious way
to create a process R with continuous paths in the closure of H by reflection
through the hyperplane of a Brownian motion in RN . By Skorokhod’s analysis of
reflecting Brownian motion on [0,∞) in the one-dimensional case, this reflecting
Brownian motionR inH can be described as a semi-martingale, which is the sum
of a Brownian motion and process of bounded variation which adds a push only
when R is on the boundary hyperplane, in a direction normal to the hyperplane,
and of precisely the right magnitude to keep R on one side of the hyperplane.
This semi-martingale description has been generalized to characterize reflecting
BM in a convex polytope bounded by any finite number of hyperplanes, and
further to domains with smooth boundaries. See for instance [277] [446] [209]
[393] [65, Ch. 5] A basic property of such reflecting Brownian motions R is that
in great generality Lebesgue measure on the domain is the unique invariant
measure. In particular, if D is compact, as t → ∞ the limiting distribution
of Rt is uniform on D. More complex boundary behaviour is possible, and of
interest in applications of reflecting BM to queuing theory [446] and the study
of Schramm-Loewner evolutions [250, Appendix C].

9.6.3. Other boundary conditions

See Ikeda-Watanabe [175] for a general discussion of boundary conditions for
diffusions, with references to the large Japanese literature of papers by Sato,
Ueno, Motoo and others dating back to the 60’s.

10. Brownian motion on manifolds

10.1. Constructions

A Riemannian manifold M is a manifold equipped with a Riemannian met-
ric. Starting from this structure, there are various expressions for the Laplace-
Beltrami operator ∆, and the Levi-Civita connection. Closely associated with
the Laplace-Beltrami operator is the fundamental solution of the heat equation
on M derived from 1

2∆. This defines a semigroup of transition probability op-
erators from which one can construct a Brownian motion on M . Alternatively,
the Brownian motion on M with generator 1

2∆ can be constructed by solving a
martingale problem associated with 1

2∆. Note that in general the possibility of
explosion must be allowed: the M -valued Brownian motion B may be defined
only up to some random explosion time e(B).
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At least two other constructions of Brownian motion onM may be considered,
one known as extrinsic, the other as intrinsic. Some examples of the extrinsic
construction appear in the work of Lewis and van den Berg [272] [420]. In
general, this construction relies on Nash’s embedding of M as a submanifold of
R`, with the induced metric. Following Hsu [171, Ch. 3], let {ξα, 1 ≤ α ≤ `} be
the standard orthonormal basis in R`, let Pα be the orthogonal projection of ξα
onto TxM , the tangent space at x ∈ M . Then Pα is a vector field on M , and
the Laplace-Beltrami operator ∆ can be written as

∆ =
∑̀
α=1

P 2
α

and the Brownian motion started at x ∈M may be constructed as the solution
of the Stratonovich SDE

dXt =
∑
α

Pα(Xt) ◦ dWα
t , X0 = x ∈M.

where (Wα, 1 ≤ α ≤ `) is a BM in R`. See also Rogers and Williams [373] and
Stroock [409, Ch. 4] for further development of the extrinsic approach.

The intrinsic approach to construction of BM on a manifold involves a lot
more differential geometry. See Stroock [409, Chapters 7 and 8] and other texts
listed in the references, which include the theory of semimartingales on mani-
folds, as developed by L. Schwartz, P. A. Meyer and M. Emery.

10.2. Radial processes

Pick a point o ∈M , a Riemannian manifold of dimension 2 or more, and with the
help of the exponential map based at o, define polar coordinates (r, θ) and hence
processes r(Bt) and θ(Bt) where B is Brownian motion on M . The cutlocus of
o, denoted Co, is a subset of M such that r is smooth on M −{o}−Co, the set
M −Co is a dense open subset of M , and the distance from o to Co is positive.
Kendall [215] showed that there exists a one-dimensional Brownian motion β
and a non-decreasing process L, the local time process at the cutlocus, which
increases only when Bt ∈ Co such that

r(Xt)− r(X0) = βt + 1
2

∫ t

0

∆ r(Bs)ds− Lt t < e(B).

See also [216], [171, Th. 3.5.1] and [339]. Hsu [171, §4.2], shows how this rep-
resentation of the radial process allows a comparison with a one-dimensional
diffusion process to conclude that a growth condition on the lower bound of the
Ricci curvature provides a sufficient condition for the BM not to explode. The
condition is also necessary under a further regularity condition on M .

10.3. References

We refer to the following monographs and survey articles for further study of
Brownian motion and diffusions on manifolds.
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Monographs

[115] K. D. Elworthy. Stochastic differential equations on manifolds (1982).
[114] David Elworthy. Geometric aspects of diffusions on manifolds (1988).
[116] K. D. Elworthy, Y. Le Jan, and Xue-Mei Li. On the geometry of diffusion

operators and stochastic flows (1999).
[118] M. Émery. Stochastic calculus in manifolds (1989).
[171] Elton P. Hsu. Stochastic analysis on manifolds (2002).
[175] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion

processes (1989).
[283] Paul Malliavin. Géométrie différentielle stochastique (1978).
[303] P.-A. Meyer Géometrie différentielle stochastique. II (1982).
[373] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Mar-

tingales, Vol. II: Itô Calculus (1987).
[380] L. Schwartz. Géométrie différentielle du 2ème ordre, semi-martingales et

équations différentielles stochastiques sur une variété différentielle. (1982).
[381] L. Schwartz. Semimartingales and their stochastic calculus on manifolds

(1984).
[409] D. W. Stroock. An introduction to the analysis of paths on a Riemannian

manifold (2000).

Survey articles

[311] S. A. Molčanov. Diffusion processes, and Riemannian geometry ( 1975).
[302] P.-A. Meyer. A differential geometric formalism for the Itô calculus (1981)

11. Infinite dimensional diffusions

[207] G. Kallianpur and J. Xiong Stochastic differential equations in infinite-
dimensional spaces (1995).

11.1. Filtering theory

We refer to the textbook treatments of [336, Ch. VI] and [373, Ch. VI] Rogers-
Williams and the monographs

[204] G. Kallianpur Stochastic filtering theory (1980).
[202] G. Kallianpur and R. L. Karandikar White noise theory of prediction,

filtering and smoothing (1988)

See also the survey papers by Kunita [234] [235].

11.2. Measure-valued diffusions and Brownian superprocesses

Some monographs are

[93] D.A. Dawson. Measure-valued Markov processes (1994).
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[111] E. B. Dynkin. Diffusions, superdiffusions and partial differential equations
(2002).

[121] A. M. Etheridge An introduction to superprocesses (2000).
[253] J.-F. Le Gall. Spatial branching processes, random snakes and partial

differential equations (1999).
[315] B. Mselati. Classification and probabilistic representation of the positive

solutions of a semilinear elliptic equation (2004).

These studies are related to the non-linear PDE ∆u = u2. See also Dynkin
[112] who treats the equation ∆u = uα for 1 < α ≤ 2 and Le Gall [254].

11.3. Malliavin calculus

The term Malliavin calculus, formerly called stochastic calculus of variations,
refers to the study of infinite-dimensional, Gaussian probability spaces inspired
by P. Malliavin’s paper [284]. The calculus is designed to study the probability
densities of functionals of Gaussian processes, hypoellipticity of partial differen-
tial operators, and the theory of non-adapted stochastic integrals. The following
account is quoted from Ocone’s review of Nualart’s text [326] in Math. Reviews:

A partial differential operator A is hypoelliptic if u is C∞ on those open sets
where Au is C∞. Hörmander’s famous hypoellipticity theorem states that if
A = X0 +

∑d
1 X2

i , where X0, · · · , Xd are smooth vector fields, and if the Lie
algebra generated by X0, · · · , Xd is full rank at all points, then A is hypoellip-
tic. Now, second-order operators such as A appear as infinitesimal generators of
diffusion processes solving stochastic differential equations driven by Brownian
motion. Thus the study of A can be linked to the theory of stochastic differen-
tial equations (SDEs). In particular, hypoellipticity of the generator is connected
to the existence of smooth densities for the probability laws of the solution. If
the Fokker-Planck operator is hypoelliptic, the solutions of the Fokker-Planck
equation are smooth functions providing transition probability densities for the
corresponding diffusion. Conversely, it is possible to work back from the existence
of smooth densities to hypoellipticity. Because solutions of SDEs are functionals
of the driving Brownian motion, the question of hypoellipticity of the generator
is then an aspect of a much more general problem. Given an Rn-valued func-
tional G(W ) of a Gaussian process W , when does the probability distribution
of G(W ) admit a density with respect to Lebesgue measure and how regular is
it? Malliavin realized how to approach this question using a differential calculus
for Wiener functionals. His original work contained two major achievements: a
general criterion for the existence and regularity of probability densities for func-
tionals of a Gaussian process, and its application to solutions of SDEs, leading
to a fully stochastic proof of Hörmander’s theorem.
Malliavin’s paper was tremendously influential, because it provided stochastic
analysts with a genuinely new tool. Of the major lines of investigation that en-
sued, let us mention the following, in only the roughest manner, as background to
Nualart’s new text. First is the continued study of existence and representation
of densities of Wiener functionals, its application to hypoellipticity, short-time
asymptotics, index theorems, etc. of solutions to second-order operator equations,
and its application to solutions of infinite-dimensional stochastic evolution equa-
tions, such as stochastic PDE, interacting particle systems, or delay equations.
The seminal work here is due to Stroock, Kusuoka, Watanabe, and Bismut. Sec-
ond, Wiener space calculus has found application to the quite different problem
of analysis of non-adapted Brownian functionals, following a paper of Nualart
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and Pardoux, who derived a calculus for non-adapted stochastic integrals, using
heavily the Sobolev spaces defined in Wiener space analysis. This made possible
a new study of stochastic evolution systems in which anticipation of the driv-
ing noise occurs or in which there is no flow of information given by a filtration.
Finally, we mention that the Malliavin calculus has led to new progress and appli-
cations of the problem of quasi-invariance of Wiener processes under translation
by nonlinear operators, a non-adapted version of the Girsanov problem.

General references

[17] D. R. Bell. The Malliavin calculus (1987).
[49] J.-M. Bismut. Large deviations and the Malliavin calculus (1984).

[175] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion
Processes (1989).

[285] P. Malliavin. Stochastic analysis (1997).
[324] J. Norris. Simplified Malliavin calculus (1986).
[326] D. Nualart. The Malliavin calculus and related topics (1995).
[405] and
[406] . D. W. Stroock. The Malliavin calculus and its application to second order

parabolic differential equations, I and II (1981). See also [404] and [407]].
[429] S. Watanabe Lectures on stochastic differential equations and Malli-
avin calculus (1984).

[441] D. Williams. To begin at the beginning: . . . (1981).

Applications to mathematical finance

[88] Conference on Applications of Malliavin Calculus in Finance (2003)
[286] P. Malliavin and A. Thalmaier. Stochastic calculus of variations in math-

ematical finance (2006).

12. Connections with analysis

Kahane [197] provides a historical review of a century of interplay between
Taylor series, Fourier series and Brownian motion.

12.1. Partial differential equations

For general background on PDE, we refer to L. C. Evans [123]. The texts of
Katazas and Shreve [210, Chapter 4], Freidlin [140] and Durrett [Ch. 8][104] all
contain material on connections between BM and PDE. Other sources are Bass
[14] and Doob [99], especially for parabolic equations, and Glover [153].

12.1.1. Laplace’s equation: harmonic functions

We begin by considering Laplace’s equation:

∆u = 0.
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where ∆u :=
∑n
i=1 uxi,xi . A harmonic function is a C2 function u which solves

Laplace’s equation.
Let D(x, r) := {y : |y − x| < r} and let D be a domain, that is a connected

open subset of Rn. Let τD := inf{t : Bt ∈ Dc}. Since each component of a
Brownian motion B in Rn is a.s. unbounded, P (τD <∞) = 1 for any bounded
domain D. If u is harmonic in D, then

u(x) =

∫
∂D(x,r)

u(y)S(dy) (112)

for every x ∈ D and r > 0 such that D(x, r) ⊂ D, where S is the uniform
probability distribution on ∂D(x, r) which is invariant under orthogonal trans-
formations. To see this, observe that by Itô’s formula,

u(Bt∧τD(x,r)
) = u(x) +

n∑
i=1

∫ t∧τD(x,r)

0

uxi(Bs)dBs +
1

2

∫ t∧τD(x,r)

0

∆u(Bs)ds

= u(x) +

n∑
i=1

∫ t∧τD(x,r)

0

uxi
(Bs)dBs

which is a continuous local martingale. But since u(Bt∧τD(x,r)
)−u(x) is uniformly

bounded, it is a true martingale with mean 0. Taking expectation and using
P (τD(x,r) <∞) = 1 gives

u(x) = Ex
(
u(BτD(x,r)

)
)

=

∫
∂D(x,r)

u(y)dS.

where the last equality is by the symmetry of Brownian motion with respect
to orthogonal transformations. Conversely, if u : D → R has this mean value
property, then u is C∞ and harmonic. (Gauss’s theorem).

12.1.2. The Dirichlet problem

Some references are [210, §4.2], [14], [104], [313]. Consider the equation

∆u = 0, in D and u = f on ∂D (113)

where Ex (|f(BτD )|) <∞. Then u(x) := Ex (f(BτD )) has ∆u = 0 in D. because

u(x) = Exf(BτD ) = Ex
(
Ex
(
f(BτD )|FτD(x,r)

))
= Exu(BτD(x,r)

) by strong Markov property

=

∫
∂D(x,r)

u(y)dS

So in order to have a solution to the partial differential equation (113), we need:

lim
x→a

Ex (f(BτD )) = f(a), a ∈ ∂D.
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This is true under a natural condition on the boundary. It should be regular:

if σD = inf{t > 0 : Bt ∈ Dc}, then Px(σD = 0) = 1, ∀x ∈ ∂D.

See [175] for a more refined discussion, treating irregular boundaries.

12.1.3. Parabolic equations

Following is a list of PDE’s of parabolic type related to BM(Rδ). For u : [0,∞)×
Rδ → R, write u = u(t, x), let ut := ∂u/∂t, and let ∆ denote the Laplacian, and
∇ the gradient, acting on the variable x. Assume the initial boundary condition
u(0, x) = f(x). Then

ut = 1
2∆u (114)

is solved by
u(t, x) = Ex[f(Bt)].

ut = 1
2∆u+ g (115)

for g : [0,∞)× Rδ → R is solved by

u(t, x) = Ex
[
f(Bt) +

∫ t

0

g(t− s,Bs)ds
]
.

ut = 1
2∆u+ cu (116)

where c = c(x) ∈ R is solved by

u(t, x) = Ex
[
f(Bt) exp

(∫ t

0

c(Bs)ds

)]
. (117)

ut = 1
2∆u+ b ·∆u (118)

for b = b(x) ∈ R is solved by

u(t, x) = Ex
[
f(Bt) exp

(∫ t

0

b(Bs) · dBs − 1
2

∫ t

0

|b(Bs)|2ds
)]

. (119)

Equation (114) is the classical heat equation, discussed already in Section 4.3.
See [210, §4.3] for the one-dimensional case, and Doob [99] for a more extensive
discussion.

Equation (118) is the variant when Brownian motion B is replaced by a BM
with drift b, which may be realized as the solution of the SDE

Xt = x+Bt +

∫ t

0

b(Xs)ds. (120)

It is a nice result, due to Zvonkin [459], for dimension δ = 1 and Veretennikov-
Krylov [425] for δ = 2, 3, . . ., that for b Borel bounded, equation (120) has
a unique strong solution; that the solution is unique in law is a consequence
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of Girsanov’s theorem. The right side of (119) equals Ex[f(Xt)] for (Xt) the
solution of (120).

The expression on the right side of (117) is the celebrated Feynman-Kac
formula. See [217] for a historical review, and [189] for further discussion of the
case δ = 1 using Brownian excursion theory to analyse∫ ∞

0

dte−λtEx
[
f(Bt) exp

(∫ t

0

c(Bs)ds

)]
.

A well known application of the Feynman-Kac formula is Kac’s derivation of
Lévy’s arcsine law for the distribution of

∫ t
0

1(Bs > 0)ds for B a BM(R). Kac

also studied the law of
∫ t
0
|Bs|ds by the same method. See Biane-Yor [37] and

[342] for related results. Extensions of the Feynman-Kac formula to more general
Markov processes are discussed in [372] [357] [131].

12.1.4. The Neumann problem

Just as the distribution of B stopped when it first hits ∂D solves the Dirichlet
boundary value problem, for suitably regular domains D the transition function
p(t, x, y) of B reflected in ∂D is the fundamental solution of the Neumann
boundary value problem:(

∂

∂t
− 1

2
∆x

)
p(t, x, y) = 0 (t > 0, x, y ∈ D) (121)

with the Neumann boundary condition

∂

∂nx
p(t, x, y) = 0 (t > 0, x ∈ D, y ∈ D) (122)

where nx is the inner normal at the point x ∈ ∂D, and initial condition

lim
t↓0

p(t, x, y) = δy(x) (x, y ∈ D). (123)

See Fukushima [143], Davies [90], Ikeda-Watanabe [175], Hsu [172] and Burdzy
[65]. See [16] for treatment of related problems for irregular domains.

12.1.5. Non-linear problems

Le Gall’s monograph [260] treats spatial branching processes and random snakes
derived from Brownian motion, and their relation to non-linear partial differen-
tial equations such as ∆u = u2.
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12.2. Stochastic differential Equations

In order to consider more general PDEs, we need to introduce the notion of
a stochastic differential equations (SDEs). We say that the semimartingale X
solves the SDE

dXt = σ(Xt)dBt + b(Xt)dt

if

Xt = X0 +

∫ t

o

σ(Xs)dBs +

∫ t

0

b(Xs)ds (124)

Solutions to three equations exist in particular when σ and b are bounded and
Lipschitz. The proof is based on Picard’s iteration.

Claim 1. If Xt solves (124), then

Mf
t = f(Xt)− f(X0)−

∫ t

0

Af(X)ds, t ≥ 0, f ∈ C2

where

Af(x) = 1/2

n∑
i,j=1

aij(x)fxixj
(x) +

n∑
i=1

bi(x)fxi
(x)

and a = σσT , is a martingale.

Proof.

< Xi, Xj > =

n∑
k,l=1

< σik(X).Bk, σjl(X).Bl >t

=

n∑
k,l=1

σikσjl. < Bk, Bl >t

=

∫ t

0

aij < Xs > ds.

So by Itô’s formula,

f(Xt) = f(X0) +

n∑
i=1

∫ t

0

fXi(X)dXi + 1/2

n∑
i,j=1

∫ t

0

fxixj (Xs)d < Xi, Xj >s

= f(X0) +

n∑
i,j=1

∫ t

0

σij(Xs)fxi(Xs)dB
j
s +

∫ t

0

Af(X)ds

Now assume that u ∈ C2(D) ∩ C(D) is a solution of

−Au(X) = f(X) in D, and u = 0 on ∂D.
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Then u(x) = Ex
(∫ τD

0
f(Xs)ds

)
. By Itô,

u(Xt∧τD )− u(x) = Mf
t∧τD +

∫ t∧τD

0

Au(Xs)ds

= Mf
t∧τD −

∫ t∧τD

0

f(Xs)ds

Now taking expectation and limit as t→∞,

Exu(XτD )− u(x) = −Ex
∫ τD

0

f(Xs)ds

and so

u(x) = Ex
∫ τD

0

f(Xs)ds.

12.2.1. Dynamic Equations

We consider dynamic equations of the form

ut = Au− cu in (0,∞)× Rn

u(0, x) = f(X)

We show that the C2 solutions of this equation are of the form

u(t, x) = Ex
(
f(Xt)exp

∫ t

0

c(Xs)ds

)
The first step is to show that u(t−s,Xs)exp

(
−
∫ t
0
c(Xs)ds

)
is a local martingale

on [0, t).
If c, u is bounded, then Ms above is a bounded martingale. The martingale

convergence theorem implies that as s ↗ t, Ms → Mt. Since u is continuous
and u(0, x) = f(x), we must have

lims↗tMs = f(Bt)exp

(
−
∫ t

0

c(Xs)ds

)
.

So we have

Exf(Xt)exp

(
−
∫ t

0

c(Xs)ds

)
= u(t, x)

We have seen that the solution to

−∆u = f in D

u = 0 on ∂D
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is

u(x) = Ex
∫ τD

0

f(Bs)ds.

So if f = 1, we have Ex(τD) is the solution of

−∆u = f in D

u = 0 on ∂D

For example, if D = B(0, 1), then the solution is (1− |x|2)/n, ⇒ Ex(τD(x,1)) =
(1− |x|2)/n.

12.3. Potential theory

The probabilistic theory of Brownian motion is closely related to the classical
potential theory of the Laplace operator and the parabolic potential theory of
the heat operator.

Analytic treatments of potential theory

[213] O. D. Kellogg. Foundations of potential theory (1929).
[167] L. L. Helms. Introduction to potential theory (1969).

[6] D. H. Armitage and S. J. Gardiner Classical potential theory (2001).
[433] N. A. Watson. Introduction to heat potential theory (2012).

Relations between Brownian motion and potential theory

[196] M. Kac. Aspects probabilistes de la théorie du potentiel (1970).
[195] M. Kac. Integration in function spaces and some of its applications (1980).
[359] S. C. Port and C. J. Stone. Brownian motion and classical potential theory

(1978).
[364] M. Rao. Brownian motion and classical potential theory (1977).
[396] F. Spitzer. Electrostatic capacity, heat flow, and Brownian motion (1964).
[394] R. Durrett and H. Kesten, editors. Random walks, Brownian motion, and

interacting particle systems (1991).
[99] J. L. Doob. Classical potential theory and its probabilistic counterpart

(1984).

12.4. BM and harmonic functions

Some references are:

[14] R. F. Bass. Probabilistic techniques in analysis (1995).
[15] R. F. Bass. Diffusions and elliptic operators (1998).
[66] D. L. Burkholder. Brownian motion and classical analysis (1977). . In

Probability (Proc. Sympos. Pure Math., Vol. XXXI, Univ. Illinois, Urbana,
Ill., 1976), pages 5–14. Amer. Math. Soc., Providence, R.I., 1977.
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[92] B. Davis. Brownian motion and analytic functions (1979).
[104] R. Durrett. Brownian motion and martingales in analysis (1984).
[159] R. F. Gundy. Some topics in probability and analysis (1989).
[198] J.-P. Kahane. Brownian motion and classical analysis (1976).
[344] K. E. Petersen. Brownian motion, Hardy spaces and bounded mean os-

cillation (1977).

12.5. Hypercontractive inequalities

Hypercontractive estimates show that some semigroup (Pt) acting on a proba-
bility space is a contraction form Lp to Lq with p < q, and some t > 0. Neveu
[320] used stochastic integration with respect to Brownian motion to establish a
hypercontractive estimate due to Nelson for conditional expectations of Gaus-
sian variables. Bakry and Émery [9] treat hypercontractive diffusions and their
relation to the logarithmic Sobolev inequalities of Gross [158]. See also Stroock
[403], Bañuelos and Davis [7]. Saloff-Coste [377] relates Poincaré, Sobolev, and
Harnack inequalities in the setting of a second order partial differential opera-
tor on a manifold. Ledoux [264] [265] offers overviews of the broader domain of
isoperimetry and Gaussian analysis.

13. Connections with number theory

According to the central limit theorem of Erdös–Kac [120] in the theory of addi-
tive number theoretic functions, if ω(n) is the number of distinct prime factors
of n, then for n picked uniformly at random from the integers from 1 to N ,
as N → ∞ the limit distribution of (ω(n) − log log n)/

√
log log n is standard

normal. Billingsley [45] showed how Brownian motion appears as the limit dis-
tribution of a random path created by a natural extension of this construction.
See also Philipp [346] and Tennenbaum [417].

The articles of Williams [443] and Biane, Pitman and Yor [40] study var-
ious Brownian functionals whose probability densities involve Jacobi’s theta
functions, and whose Mellin transforms involve the Riemann zeta function and
other zeta functions that arise in analytic number theory. In particular, the well
known functional equation satisfied by the Riemann zeta function involves mo-
ments of the common distribution of the range of a Brownian bridge and the
maximum of a Brownian excursion. See also [363] regarding other probability
distributions related to the Riemann zeta function, and further references.

14. Connections with enumerative combinatorics

There are several contexts in which Brownian motion, or some conditioned frag-
ment of Brownian motion like Brownian bridge or Brownian excursion, arises in
a natural way as the limit distribution of a random path created from a random
combinatorial object of size n as n → ∞. In the first instance, as in Section 2,
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these limit processes are obtained from a path with uniform distribution on 2n

paths of length n with increments of ±, or on a suitable subset of such paths.
Less obviously, Brownian excursion also arises as the limit distribution of a path
encoding the structure of any one of a number of natural combinatorial models
of random trees. Harris [164] may have been the first to recognize the branching
structure encoded in a random walk. This structure was exploited by Knight
[220] in his analysis of the local time process of Brownian motion defined by
limits of occupation times of random walks. Aldous [3] developed the concept
of the Brownian continuum random tree, now understood as a particular kind
of random real tree [124] that is naturally encoded in the path of a Brownian
excursion. Aldous showed how Brownian excursion arises as the weak limit of
a height profile process derived derived from a Galton-Watson tree conditioned
to have n vertices, as n→∞, for any offspring distribution with finite variance.
This includes a number of natural combinatorial models for trees with n ver-
tices. See [349] and [124] for reviews of the work of Aldous and others on this
topic.

For a uniformly distributed random mapping from an n element set to itself,
Aldous and Pitman [4] showed how encoding trees in the digraph of the mapping
as excursions of a random walk leads to a functional limit theorem in which a
reflecting Brownian bridge is obtained as the limit. This yields a large number
of limit theorems for attributes of the random mapping such as height of the
tallest tree in the mapping digraph. See [349, §9] and [124] for an overview
and further references, and [349, §6.4] for a brief account of Aldous’s theory of
critical random graphs and the multiplicative coalescent.

Much richer limiting continuum structures related to the Brownian contin-
uum tree have been derived in the last decade in the analysis of limit distri-
butions for random planar maps and related processes. Some recent articles on
this topic are

[308] G. Miermont Random maps and continuum random 2-dimensional geome-
tries (2013).

[255] J.-F. Le Gall The Brownian map: a universal limit for random planar
maps (2014).

[87] N. Curien and J.-F. Le Gall Scaling limits for the peeling process on ran-
dom maps (2017).

[30] J. Bertoin, and N. Curien and I. Kortchemski. Random planar maps and
growth-fragmentations (2018).

14.1. Brownian motion on fractals

Some articles are

[11] M. T. Barlow and R. F. Bass. Brownian motion and harmonic analysis
on Sierpinski carpets (1999).

[12] M. T. Barlow, R. F. Bass, T. Kumagai and A. Teplyaev. Uniqueness of
Brownian motion on Sierpiński carpets (2010).
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[231] T. Kumagai Estimates of transition densities for Brownian motion on
nested fractals (1993)

[232] T. Kumagai. Brownian motion penetrating fractals: an application of the
trace theorem of Besov spaces (2000).

14.2. Analysis of fractals

Lalley [243] relates Brownian motion in the plane to the equilibrium measure
on the Julia set of a rational mapping. For analytic treatment of related results
about harmonic measure for domains with complicated boundaries, including
Makarov’s theorem on harmonic measure [282], see Garnett and Marchall [147].

14.3. Free probability

Some references are:

[39] Ph. Biane Free Brownian motion, free stochastic calculus and random ma-
trices (1997).

[309] J. A. Mingo and R. Speicher Free probability and random matrices (2017).

15. Applications

15.1. Economics and finance

Some historical sources are Bachelier’s thesis [8], Black and Scholes [50]. Some
textbooks:

[137] J.-P. Fouque, G. Papanicolaou and K. R. Sircar. Derivatives in financial
markets with stochastic volatility, (2000).

[244] D. Lamberton and B. Lapeyre. Introduction to stochastic calculus applied
to finance (2008).

[286] P. Malliavin and A. Thalmaier. Stochastic calculus of variations in math-
ematical finance (2006).

[399] J. M. Steele. Stochastic calculus and financial applications (2001).
[205] G. Kallianpur and R. K. Karandikar. Introduction to option pricing theory

(2000).

See also Karatzas-Shreve [210, §5.8].
The theory of optimal stopping in continuous time is developed by Øksendal

[336, Ch. X]. Two monographs on this topic are:

[388] A. N. Shiryaev Optimal stopping rules (1978).
[343] G. Peskir and A. Shiryaev Optimal stopping and free-boundary problems

(2006).
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15.2. Statistics

The application of Brownian motion to the theory of empirical processes is
treated in [391] and [33]. Siegmund [392] treats Brownian motion approximations
of the sequential probability ratio test. This kind of application has motivated
many studies of boundary crossing probabilities for Brownian motion, such as
[269].

Some texts on statistical inference for diffusion processes and fractional Brow-
nian motions are [32] [142] [361] [242] [360].

15.3. Physics

Some basic references are Einstein’s 1905 paper [113], and Nelson’s book [319].
See also the translation [267] of Paul Langevins 1908 paper [248] on Brownian
motion. Redner [366] provides a physical perspective on first-passage processes.
Hammond [162] offers a recent review of Smoluchowski’s theory of coagulation
and diffusion. Sme general texts on applications of stochastic processes in phys-
ical sciences are

[421] N. G. van Kampen Stochastic processes in physics and chemistry (1981).
[146] C. Gardiner. Stochastic methods: A handbook for the natural and social

sciences (2009).

Brownian motion has played an important role in the development of various
models of physical processes involving random environments and random media.
The Brownian map mentioned in Section 14 may be regarded as providing a
random two-dimensional geometry. Closely related studies are the theory of the
Gaussian free field and Liouville quantum gravity. Some monographs in this
vein are

[412] A.-S. Sznitman. Brownian motion, obstacles and random media (1998).
[55] E. Bolthausen and A.-S. Sznitman. Ten lectures on random media (2002).

[136] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna. Wave propaga-
tion and time reversal in randomly layered media (2007).

[413] A.-S. Sznitman. Topics in occupation times and Gaussian free fields (2012).
[458] L. Zambotti. Random obstacle problems (2017).

Other themes related to diffusions in random environments are treated in:

[119] J. Engländer Spatial branching in random environments and with interac-
tion (2015).

[367] P. Révész Random walk in random and nonrandom environments (1990).
[227] T. Komorowski, C. Landim and S. Olla Fluctuations in Markov processes

(2012).
[386] Z. Shi Sinai’s walk via stochastic calculus, (2001).
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15.4. Fluid mechanics

Systems of interacting Brownian motions have been used as a computational
tool in fluid mechanics. The Navier-Stokes equations and the Prandtl boundary
layer equations of fluid mechanics can be interepreted as Fokker-Planck (or Kol-
mogorov) equations for interacting particles which diffuse by Brownian motion
and carry vorticity (=rotation). At high Reynolds numbers it is computation-
ally more efficient to model and sample the Brownian motions than to solve the
original equations. To satisfy the boundary conditions particles have to be cre-
ated at solid walls by a branching construction. This idea was introduced in A.
Chorin in [73] and [74] for the Prandtl equations. A good theoretical treatment
can be found in the paper of Goodman [156]See also the book of Cottet and
Koumoutsakos [83]for a fairly comprehensive account of the theory and practice
of these methods.

15.5. Control of diffusions

An introduction is provided by Øksendal [336, Ch. XI]. We thank Vivek Borkar
for providing the following list of monographs on this topic:

[152] Gihman and Skorohod, Controlled stochastic processes (1979)
[134] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal

control (1975).
[135] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity

solutions (1993)).
[56] V. Borkar, Optimal control of diffusion processes (1989)).
[19] A. Bensoussan, Stochastic control by functional analysis methods (1982).
[20] A. Bensoussan, Stochastic control of partially observable systems (1992).

[230] A. Krylov, Controlled diffusion processes (1980)

More recent activity is in applications to finance. See for instance [133] [69]
[345] [337]. See [240] regarding numerical methods for stochastic control prob-
lems in continuous time.
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[26] Jean Bertoin. Temps locaux et intégration stochastique pour les processus
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1984.

[50] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. J. Polit. Econ., 81(3):637–654, 1973.

[51] R. M. Blumenthal. Weak convergence to Brownian excursion. Ann.
Probab., 11:798–800, 1983.

[52] R. M. Blumenthal and R. K. Getoor. Markov processes and potential
theory. Pure and Applied Mathematics, Vol. 29. Academic Press, New
York, 1968.

[53] E. Bolthausen. On a functional central limit theorem for random walks
conditioned to stay positive. Ann. Probab., 4:480–485, 1976.

[54] Erwin Bolthausen. On the construction of the three-dimensional polymer
measure. Probab. Theory Related Fields, 97(1-2):81–101, 1993.

[55] Erwin Bolthausen and Alain-Sol Sznitman. Ten lectures on random media,
volume 32 of DMV Seminar. Birkhäuser Verlag, Basel, 2002.
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[85] E. Csáki and G. Mohanty. Excursion and meander in random walk. Canad.
J. Statist., 9:57–70, 1981.
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[89] K. È. Dambis. On decomposition of continuous submartingales. Theor.
Probability Appl., 10:401–410, 1965.

[90] E. B. Davies. Heat kernels and spectral theory, volume 92 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 1989.

[91] Burgess Davis. Applications of the conformal invariance of Brownian
motion. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure
Math., Williams Coll., Williamstown, Mass., 1978), Part 2, Proc. Sym-



J. Pitman and M. Yor/Guide to Brownian motion 79

pos. Pure Math., XXXV, Part, pages 303–310. Amer. Math. Soc., Provi-
dence, R.I., 1979.

[92] Burgess Davis. Brownian motion and analytic functions. Ann. Probab.,
7(6):913–932, 1979.

[93] Donald A. Dawson. Measure-valued Markov processes. In École d’Été de
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Birkhäuser, Boston, 1993.

[130] P. J. Fitzsimmons and R. K. Getoor. Revuz measures and time changes.
Math. Z., 199(2):233–256, 1988.

[131] P. J. Fitzsimmons and Jim Pitman. Kac’s moment formula and the
Feynman-Kac formula for additive functionals of a Markov process.
Stochastic Process. Appl., 79(1):117–134, 1999.

[132] Pat Fitzsimmons, Jim Pitman, and Marc Yor. Markovian bridges: con-
struction, Palm interpretation, and splicing. In Seminar on Stochastic
Processes, 1992 (Seattle, WA, 1992), volume 33 of Progr. Probab., pages
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[145] Masatoshi Fukushima, Yōichi Ōshima, and Masayoshi Takeda. Dirichlet
forms and symmetric Markov processes, volume 19 of de Gruyter Studies
in Mathematics. Walter de Gruyter &amp; Co., Berlin, 1994.

[146] Crispin Gardiner. Stochastic methods: A handbook for the natural and
social sciences. Springer, Berlin, fourth edition, 2009.

[147] John B. Garnett and Donald E. Marshall. Harmonic measure, volume 2 of
New Mathematical Monographs. Cambridge University Press, Cambridge,
2005.

[148] Adriano M. Garsia. Martingale inequalities: Seminar notes on recent
progress. W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam,
1973. Mathematics Lecture Notes Series.

[149] Bernard Gaveau. Principe de moindre action, propagation de la chaleur
et estimées sous elliptiques sur certains groupes nilpotents. Acta Math.,
139(1-2):95–153, 1977.

[150] R. K. Getoor. The Brownian escape process. Ann. Probab., 7:864–867,
1979.

[151] R. K. Getoor and M. J. Sharpe. Conformal martingales. Invent. Math.,
16:271–308, 1972.
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[181] Kiyoshi Itô and Henry P. McKean, Jr. Diffusion processes and their sample
paths. Die Grundlehren der Mathematischen Wissenschaften, Band 125.
Academic Press Inc., Publishers, New York, 1965.

[182] N. Jacob. Pseudo differential operators and Markov processes. Vol. I.
Imperial College Press, London, 2001. Fourier analysis and semigroups.

[183] N. Jacob. Pseudo differential operators and Markov processes. Vol. II.
Imperial College Press, London, 2002. Generators and their potential
theory.

[184] Jean Jacod. Calcul stochastique et problèmes de martingales, volume 714
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Soc. Math. France, Paris, 1998.

[200] W. D. Kaigh. An invariance principle for random walk conditioned by a
late return to zero. Ann. Probab., 4:115 – 121, 1976.

[201] O. Kallenberg. Foundations of modern probability. Springer-Verlag, New
York, second edition, 2002.

[202] G. Kallianpur and R. L. Karandikar. White noise theory of prediction,
filtering and smoothing, volume 3 of Stochastics Monographs. Gordon &
Breach Science Publishers, New York, 1988.

[203] G. Kallianpur and H. Robbins. Ergodic property of the Brownian motion
process. Proc. Nat. Acad. Sci. U. S. A., 39:525–533, 1953.

[204] Gopinath Kallianpur. Stochastic filtering theory, volume 13 of Applications
of Mathematics. Springer-Verlag, New York-Berlin, 1980.

[205] Gopinath Kallianpur and Rajeeva L. Karandikar. Introduction to option
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[271] Paul Lévy. Processus stochastiques et mouvement brownien. Les Grands
Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions
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[280] Z. M. Ma, M. Röckner, and J. A. Yan, editors. Dirichlet forms and stochas-



J. Pitman and M. Yor/Guide to Brownian motion 90

tic processes. Walter de Gruyter &amp; Co., Berlin, 1995. Papers from
the International Conference held in Beijing, October 25–31, 1993, and
the School on Dirichlet Forms, held in Beijing, October 18–24, 1993.
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de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques,
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[327] Jan Ob lój. The Skorokhod embedding problem and its offspring. Probab.
Surv., 1:321–390, 2004.
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ematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. Some special func-
tionals.

[454] Marc Yor. Some aspects of Brownian motion. Part II. Lectures in Math-
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