
STATISTICS 205A Spring 1999. David Aldous.
Lecture 1.

(i) Constructing random variables.
(ii) Radon-Nikodym densities.

A r.v. X with values in a measurable space (S,S) has a distribution ν:

ν(A) = P (X ∈ A), A ∈ S.

Question: given a p.m. ν, does there exist a r.v. X whose distribution is ν?
Uninteresting answer: Yes, because we can take Ω = S and X = identity.

To get something more interesting, recall undergraduate result.

Lemma 1 Let µ be a probability measure on R, let F (x) = µ(−∞, x] be its
distribution function, let

F−1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1

be the inverse distribution function. Then

F−1(U) has distribution µ

where U has U(0, 1) distribution.

Now consider S-valued r.v.’s of the form h(U), where h : [0, 1] → S is
measurable.

Lemma 2 Let ν be a p.m. on a nice (= Standard Borel: p. 33) space.
Then there exists measurable h : [0, 1] → S such that h(U) has distribution
ν.

Proof. Easy: use Lemma 1 and definition of nice: there exists 1 − 1 map
φ : S → R with φ and φ−1 measurable.

To apply we need (Theorem 1.4.12): any complete separable metric space
is nice.

Corollary 3 (Counter-intuitive?). Let X1, X2, . . . be R-valued. Then there
exist measurable h1, h2, . . . such that (h1(U), h2(U), . . .) has the same (joint)
distribution as (X1, X2, . . .).
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Proof. Use idea: consider X = (X1, X2, . . .) as a single R∞-valued r.v.
Here’s a more constructive approach. Consider the binary representation

of reals in (0, 1)

U =
∞∑

i=1

Bi2−i.

The B’s are independent Bernoulli (1/2). For each k ≥ 1 let I(k) =
(ik1, ik2, . . .) be an infinite sequence of integers, the sequences disjoint in
k. Use the B’s from I(k) to define Uk:

Uk =
∞∑

j=1

Bikj2
−j.

Then the U ’s are independent U(0, 1). Apply Lemma 1:

Corollary 4 Let θ1, θ2, . . . be p.m.’s on R. Then there exist independent
r.v.’s X1, X2, . . . such that Xi has distribution θi for each i.

Note this does not use Kolmogorov extension – later we will give a “con-
structive” proof of the Kolmogorov extension theorem.

Radon-Nikodym densities.
If you haven’t seen this stuff in a measure theory course, read Appendix

8 and try the exercises.
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Lecture 2.
Want to formalize the idea “conditional distribution of X2 given X1 = s1.

We could write
Q(s1, B) = P (X2 ∈ B|X1 = s1).

What sort of object is Q?
Measure-theory set-up. (S1,S1) and (S2,S2) are measure spaces, and

(S1×S2,S1×S2) is their product space. A kernel Q from S1 to S2 is a map
Q : S1 × S2 → R such that
(a) B → Q(s1, B) is a p.m. on (S2,S2) for each fixed s1 ∈ S1

(b) s1 → Q(s1, B) is a measurable function S1 → R for each fixed B ∈ S2.
If S1 and S2 are countable then kernels correspond to stochastic matrices.
In undergraduate course, continuous r.v.’s (X, Y ) have a joint density

f(x, y), a marginal density f(x) for X, and a conditional density f(y|x) for
Y given X = x: these are related by

f(x, y) = f(x)f(y|x).

Proposition 5 Given a p.m. µ on S1 × S2, a p.m. µ1 on S1 and a kernel
Q from S1 to S2, the following are equivalent.

µ(A × B) =
∫

A
Q(s, B)µ1(ds); A ∈ S1, B ∈ S2. (1)

µ(D) =
∫

S1

Q(s1, Ds1)µ(ds1); D ∈ S1 × S2 (2)

where Ds1 = {s2 : (s1, s2) ∈ D}.
∫

S1×S2

h(s1, s2)µ(ds) =
∫

S1

(∫

S2

h(s1, s2)Q(s1, ds2)
)

µ1(ds1) (3)

for all measurable h : S1×S2 → R for which either h ≥ 0 or h is µ-integrable.

Note: part of assertion of (2,3) is that integrands are measurable.
Jargon: I call Q the conditional probability kernel for µ, but this isn’t

standard.

Lemma 6 For each D ∈ S1 × S2

(i) Ds1 ∈ S2 for all s1 ∈ S1

(ii) the map s1 → Q(s1, Ds1) is measurable.
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Proof. Apply π−λ theorem (1.4.2) to class D of sets D for which assertions
are true.
Proof of Proposition 5. (1) → (2). Lemma 6 says (2) is meaningful: consider
class of D’s where it is true. True for D = A×B by (1). Apply π−λ theorem.

(2) → (3). Conclusion is meaningful and true for h = 1D, and hence for
simple h. General h ≥ 0 is increasing limit of simple hn defined by

hn(·) = min(n, 2−n(h(·)2n))

so by monotone convergence, result holds for h ≥ 0. For general h write
h = h+ − h−.

Theorem 7 [easy part] Let µ1 be a p.m. on S1 and let Q be a kernel from
S1 to S2. Then there exists a unique p.m. µ on S1 × S2 such that the
relations of Proposition 5 hold.

Conversely, let µ be a p.m. on S1×S2. Define µ1 by: µ1(A) = µ(A×S2).
Then [hard part: 4.1.6] provided S2 is nice, there exists a kernel Q from S1

to S2 such that the relations of Proposition 5 hold.

Proof. [easy part] Use (2) to define µ(D): this makes sense because of
Lemma 6. Need to verify µ is a p.m. Issue is countable additivity. If
Dn ↑ D then Dn

s1
↑ Ds1 , so Q(s1, Dn

s1
) ↑ Q(s1, Ds1), so µ(Dn) ↑ µ(D).

[hard part] As with Lemma 2 we can reduce to the case S2 = R. Write
S1 = S. Let r denote a rational. We shall use easy analysis fact. Let F (r)
be a real-valued function defined on the rationals and such that

F (r) is non-decreasing. (4)
F is right-continuous on rationals (5)

lim
r→−∞

F (r) = 0, lim
r→∞

F (r) = 1. (6)

Then F extends to a distribution function, by setting

F (x) = lim
r↓x

F (r).

For each r let νr be the (sub-probability) measure on S defined by

νr(A) = µ(A × (−∞, r]).

So νr(A) ≤ µ1(A). Let F (s, r) be the Radon-Nikodym density of νr with
respect to µ1. That is to say

s → F (s, r) is measurable
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µ(A × (−∞, r])) =
∫

A
F (s, r)µ1(ds) for all A.

We now modify F on µ1-null sets so that, for each s, the maps r → F (s, r)
will satisfy (4 - 6). For r1 < r2,

∫

A
(F (s, r2) − F (s, r1))µ1(ds) = µ(A × (r1, r2]) ≥ 0 for all A

and so the integrand is a.e. non-negative. Modify to make it everywhere
non-negative. Similarly, consider rn ↓ r. Then µ(A × (r, rn]) ↓ 0 and so
F (s, rn) ↓ F (s, r) µ1-a.e., and the null set depends only on r. So we can
modify to make F (s, ·) right-continuous on rationals, for all s. Finally, easy
to modify to get

lim
r→−∞

F (s, r) = 0, lim
r→∞

F (s, r) = 1 for all s.

So by analysis fact, F (s, ·) extends to a distribution function. Define Q(s, ·)
to be the p.m. whose distribution function is F (s, ·). To finish the proof,
we must show: for each B ⊂ R

s → Q(s, B) is measurable

µ(A × B) =
∫

A
Q(s, B)µ1(ds); all A ⊂ S.

By construction these hold for B = (−∞, r]. Apply the π − λ theorem.
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Lecture 3.
Topics: Uses of Fubini’s theorem, Kolmogorov extension theorem.

Given p.m.’s µ1 on S1 and µ2 on S2 we can define the product measure
µ = µ1×µ2 on S1×S2, which has properties (7 - 9) below. These properties
follow from Theorem 7, putting Q(s1, ·) = µ2(·).

µ(A × B) = µ1(A)µ2(B); A ⊂ S1, B ⊂ S2 (7)

µ(D) =
∫

S1

µ2(Ds1) µ1(ds1); D ⊂ S1 × S2 (8)

For measurable h : S1 × S2 → R with either h ≥ 0 or h is µ-integrable,
∫

S1×S2

h(s)µ(ds) =
∫

S1

(∫

S2

h(s1, s2)µ2(ds2)
)

µ1(ds1) (9)

=
∫

S2

(∫

S1

h(s1, s2)µ1(ds1)
)

µ2(ds2)

The final equalities are Fubini’s Theorem. These results also hold for σ-
finite measures. See Appendix 6 for examples illustrating the necessity of
the hypotheses. Here are some more “practical” examples. Here X, Y denote
real-valued r.v.’s with distributions µ, ν, and λ is Lebesgue measure on the
line.

Example. If X ≥ 0 then EX =
∫ ∞
0 P (X > t)dt.

Proof. Apply Fubini’s theorem to the set D = {(x, t) : x ≥ t} ⊂ [0,∞)×
[0,∞) and the product measure µ × λ.

Example. Parseval’s identity. Let X have characteristic function φ(t) =
E exp(itX) and Y have characteristic function φ̂(t). Then

∫
φ(t)ν(dt) =∫

φ̂(t)µ(dt).
Proof. Compute E exp(iXY ).
Example. Suppose X and Y are independent, and set S = X + Y . In

undergraduate course we see the convolution formula for densities:

fS(s) =
∫

fY (s − x)fX(x)dx

which assumes densities fY and fX exist. A completely general version can
be stated in terms of distribution functions as

FS(s) =
∫

FY (s − x)µ(dx).
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In the case where Y does have a density fY

fS(s) =
∫

fY (s − x)µ(dx)

Example. Conditional densities. We used these to motivate kernels;
now we can prove the following. Suppose (X, Y ) has joint density f(x, y).
Define f(y|x) = f(x, y)/fX(x) where fX(x) > 0. Define Q(x, ·) to be the
distribution with density f(·|x). Then Q is the conditional probability kernel
for Y given X.

Proof. Use Fubini’s theorem to verify (1):

P (X ∈ A, Y ∈ B) =
∫

A
Q(x, B)µ(dx).

I will give the “probabilistic” proof of the (countable) Kolmogorov ex-
tension theorem. Appendix 7 gives the measure theory proof. Some texts
give a version for uncountable families, but this has no practical use.

We start with a “random variable” version of Theorem 7.

Corollary 8 Let (X, U) be independent r.v.’s such that U is uniform on
[0, 1], and X takes values in S and has distribution µ1. Let µ be a p.m. on
S × R with marginal µ1. Then there exists measurable f : S × [0, 1] → R
such that

µ = dist(X, Y ), for Y = f(X, U).

Proof. Let Q be the conditional probability kernel from S to R associated
with µ (Theorem 7). For each x ∈ S let f(x, ·) be the inverse distribution
function for the p.m. Q(x, ·). Lemma 1 says f(x, U) has distribution Q(x, ·).
In terms of measures, this is:

λ{u : f(x, u) ∈ B} = Q(x, B), B ⊂ R.

We have to verify: for A ⊂ S, B ⊂ R

P (X ∈ A, Y ∈ B) = µ(A × B).

Easy.
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Theorem 9 (Kolmogorov extension) Let (µn; 1 ≤ n < ∞) be p.m.’s on
Rn. Suppose they are consistent in the following sense. For each n, regard
µn+1 as a measure on Rn ×R: then the marginal of µn+1 is µn. Then there
exists a unique p.m. µ∞ on R∞ such that, writing R∞ = Rn × R∞, the
marginal of µ∞ is µn.

Proof. Let (U1, U2, . . .) be independent U(0, 1), which exist by Corollary
4. Define X1 = F−1

µ1
(U1). Inductively, suppose we have defined Xn =

(X1, . . . , Xn) as a measurable function of (U1, . . . , Un) so that dist(Xn) =
µn. We shall define Xn+1 as a measurable function of (Xn, Un+1). Then
the induction goes through, and we can define a infinite sequence of r.v.’s
(Xn; 1 ≤ n < ∞). Clearly µ∞ = dist(Xn; 1 ≤ n < ∞) satisfies the conclu-
sion of the Theorem.

To do the inductive step, just apply Corollary 8 with X = Xn, U = Un+1

and µ = µn+1 regarded as a measure on Rn × R.

Lecture 4.
Conditional expectation. Read section 4.1.
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Lecture 5.
Topics. Conditional expectations, conditional probabilities and regular

conditional distributions (r.c.d.’s). Conditioning and independence. Condi-
tional independence (see homework for definition).

Let’s record two lemmas.

Lemma 10 If E(X|G) is a.s. equal to some D-measurable r.v., and if D ⊂
G, then E(X|D) = E(X|G).

Lemma 11 If X and Y are conditionally independent given G, and if V is
G-measurable, then X and (Y, V ) are conditionally independent given G.

Also record basic property of r.c.d.’s. If Q is a r.c.d. for Z given U then

E(h(Z)|U)(ω) =
∫

h(z)Q(ω, dz).

Lecture 6. Measure-theory set-up for Markov chains.
This material is presented somewhat differently in Durrett 5.1 and 5.2.

I want to emphasize the conditional independence aspects. The first result
(I call it the splice lemma) gives the “conditionally independent” analog of
product measure.

Lemma 12 Let S1, S2, S3 be nice spaces. Let µ12 be a p.m. on S1 × S2

and µ23 be a p.m. on S2 ×S3 such that the marginals on S2 coincide. Then
there exists a unique probability measure µ on S1×S2×S3 such that, writing
µ = dist(X1, X2, X3),

(i) dist(X1, X2) = µ12 and dist(X2, X3) = µ23

(ii) X1 and X3 are conditionally independent given X2.

Proof. We can specify µ on S1 × S2 × S3 by specifying a marginal p.m. on
S1 × S2 and a kernel Q from S1 × S2 to S3. So let the marginal be µ12 and
let the kernel be

Q((s1, s2), ·) = Q23(s2, ·)

where Q23 is the kernel from S2 to S3 associated with µ23. Property (i) is
easy. For (ii),

E(h(X3)|X1, X2) =
∫

h(x)Q((X1, X2), dx)
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