STATISTICS 205A Spring 1999. David Aldous.
Lecture 1.
(i) Constructing random variables.
(ii) Radon-Nikodym densities.

A r.v. X with values in a measurable space (S, \mathcal{S}) has a distribution ν :

$$
\nu(A)=P(X \in A), A \in \mathcal{S}
$$

Question: given a p.m. ν, does there exist a r.v. X whose distribution is ν ? Uninteresting answer: Yes, because we can take $\Omega=S$ and $X=$ identity.

To get something more interesting, recall undergraduate result.
Lemma 1 Let μ be a probability measure on R, let $F(x)=\mu(-\infty, x]$ be its distribution function, let

$$
F^{-1}(u)=\inf \{x: F(x) \geq u\}, 0 \leq u \leq 1
$$

be the inverse distribution function. Then

$$
F^{-1}(U) \text { has distribution } \mu
$$

where U has $U(0,1)$ distribution.
Now consider S-valued r.v.'s of the form $h(U)$, where $h:[0,1] \rightarrow S$ is measurable.
 Then there exists measurable $h:[0,1] \rightarrow S$ such that $h(U)$ has distribution ν.

Proof. Easy: use Lemma 1 and definition of nice: there exists $1-1$ map $\phi: S \rightarrow R$ with ϕ and ϕ^{-1} measurable.

To apply we need (Theorem 1.4.12): any complete separable metric space is nice.

Corollary 3 (Counter-intuitive?). Let X_{1}, X_{2}, \ldots be R-valued. Then there exist measurable h_{1}, h_{2}, \ldots such that $\left(h_{1}(U), h_{2}(U), \ldots\right)$ has the same (joint) distribution as $\left(X_{1}, X_{2}, \ldots\right)$.

Proof. Use idea: consider $\mathbf{X}=\left(X_{1}, X_{2}, \ldots\right)$ as a single R^{∞}-valued r.v.
Here's a more constructive approach. Consider the binary representation of reals in $(0,1)$

$$
U=\sum_{i=1}^{\infty} B_{i} 2^{-i}
$$

The B 's are independent Bernoulli (1/2). For each $k \geq 1$ let $I^{(k)}=$ $\left(i_{k 1}, i_{k 2}, \ldots\right)$ be an infinite sequence of integers, the sequences disjoint in k. Use the B 's from $I^{(k)}$ to define U_{k} :

$$
U_{k}=\sum_{j=1}^{\infty} B_{i_{k j}} 2^{-j}
$$

Then the U 's are independent $U(0,1)$. Apply Lemma 1:
Corollary 4 Let $\theta_{1}, \theta_{2}, \ldots$ be p.m.'s on R. Then there exist independent r.v.'s X_{1}, X_{2}, \ldots such that X_{i} has distribution θ_{i} for each i.

Note this does not use Kolmogorov extension - later we will give a "constructive" proof of the Kolmogorov extension theorem.

Radon-Nikodym densities.

If you haven't seen this stuff in a measure theory course, read Appendix 8 and try the exercises.

Lecture 2.

Want to formalize the idea "conditional distribution of X_{2} given $X_{1}=s_{1}$. We could write

$$
Q\left(s_{1}, B\right)=P\left(X_{2} \in B \mid X_{1}=s_{1}\right)
$$

What sort of object is Q ?
Measure-theory set-up. $\left(S_{1}, \mathcal{S}_{1}\right)$ and $\left(S_{2}, \mathcal{S}_{2}\right)$ are measure spaces, and $\left(S_{1} \times S_{2}, \mathcal{S}_{1} \times \mathcal{S}_{2}\right)$ is their product space. A kernel Q from S_{1} to S_{2} is a map $Q: S_{1} \times \mathcal{S}_{2} \rightarrow R$ such that
(a) $B \rightarrow Q\left(s_{1}, B\right)$ is a p.m. on $\left(S_{2}, \mathcal{S}_{2}\right)$ for each fixed $s_{1} \in S_{1}$
(b) $s_{1} \rightarrow Q\left(s_{1}, B\right)$ is a measurable function $S_{1} \rightarrow R$ for each fixed $B \in \mathcal{S}_{2}$. If S_{1} and S_{2} are countable then kernels correspond to stochastic matrices.
In undergraduate course, continuous r.v.'s (X, Y) have a joint density $f(x, y)$, a marginal density $f(x)$ for X, and a conditional density $f(y \mid x)$ for Y given $X=x$: these are related by

$$
f(x, y)=f(x) f(y \mid x)
$$

Proposition 5 Given a p.m. μ on $S_{1} \times S_{2}$, a p.m. μ_{1} on S_{1} and a kernel Q from S_{1} to S_{2}, the following are equivalent.

$$
\begin{gather*}
\mu(A \times B)=\int_{A} Q(s, B) \mu_{1}(d s) ; A \in \mathcal{S}_{1}, B \in \mathcal{S}_{2} \tag{1}\\
\mu(D)=\int_{S_{1}} Q\left(s_{1}, D_{s_{1}}\right) \mu\left(d s_{1}\right) ; D \in \mathcal{S}_{1} \times \mathcal{S}_{2} \tag{2}
\end{gather*}
$$

where $D_{s_{1}}=\left\{s_{2}:\left(s_{1}, s_{2}\right) \in D\right\}$.

$$
\begin{equation*}
\int_{S_{1} \times S_{2}} h\left(s_{1}, s_{2}\right) \mu(d \mathbf{s})=\int_{S_{1}}\left(\int_{S_{2}} h\left(s_{1}, s_{2}\right) Q\left(s_{1}, d s_{2}\right)\right) \mu_{1}\left(d s_{1}\right) \tag{3}
\end{equation*}
$$

for all measurable $h: S_{1} \times S_{2} \rightarrow R$ for which either $h \geq 0$ or h is μ-integrable.
Note: part of assertion of $(2,3)$ is that integrands are measurable.
Jargon: I call Q the conditional probability kernel for μ, but this isn't standard.

Lemma 6 For each $D \in \mathcal{S}_{1} \times \mathcal{S}_{2}$
(i) $D_{s_{1}} \in \mathcal{S}_{2}$ for all $s_{1} \in S_{1}$
(ii) the map $s_{1} \rightarrow Q\left(s_{1}, D_{s_{1}}\right)$ is measurable.

Proof. Apply $\pi-\lambda$ theorem (1.4.2) to class \mathcal{D} of sets D for which assertions are true.
Proof of Proposition 5. (1) \rightarrow (2). Lemma 6 says (2) is meaningful: consider class of D 's where it is true. True for $D=A \times B$ by (1). Apply $\pi-\lambda$ theorem.
$(2) \rightarrow(3)$. Conclusion is meaningful and true for $h=1_{D}$, and hence for simple h. General $h \geq 0$ is increasing limit of simple h_{n} defined by

$$
h_{n}(\cdot)=\min \left(n, 2^{-n}\left\lfloor h(\cdot) 2^{n}\right\rfloor\right)
$$

so by monotone convergence, result holds for $h \geq 0$. For general h write $h=h^{+}-h^{-}$.

Theorem 7 [easy part] Let μ_{1} be a p.m. on \mathcal{S}_{1} and let Q be a kernel from S_{1} to S_{2}. Then there exists a unique p.m. μ on $S_{1} \times S_{2}$ such that the relations of Proposition 5 hold.

Conversely, let μ be a p.m. on $S_{1} \times S_{2}$. Define μ_{1} by: $\mu_{1}(A)=\mu\left(A \times S_{2}\right)$. Then [hard part: 4.1.6] provided S_{2} is nice, there exists a kernel Q from S_{1} to S_{2} such that the relations of Proposition 5 hold.

Proof. [easy part] Use (2) to define $\mu(D)$: this makes sense because of Lemma 6. Need to verify μ is a p.m. Issue is countable additivity. If $D^{n} \uparrow D$ then $D_{s_{1}}^{n} \uparrow D_{s_{1}}$, so $Q\left(s_{1}, D_{s_{1}}^{n}\right) \uparrow Q\left(s_{1}, D_{s_{1}}\right)$, so $\mu\left(D^{n}\right) \uparrow \mu(D)$.
[hard part] As with Lemma 2 we can reduce to the case $S_{2}=R$. Write $S_{1}=S$. Let r denote a rational. We shall use easy analysis fact. Let $F(r)$ be a real-valued function defined on the rationals and such that

$$
\begin{equation*}
F(r) \text { is non-decreasing. } \tag{4}
\end{equation*}
$$

F is right-continuous on rationals

$$
\begin{equation*}
\lim _{r \rightarrow-\infty} F(r)=0, \lim _{r \rightarrow \infty} F(r)=1 \tag{5}
\end{equation*}
$$

Then F extends to a distribution function, by setting

$$
F(x)=\lim _{r \downarrow x} F(r) .
$$

For each r let ν_{r} be the (sub-probability) measure on S defined by

$$
\nu_{r}(A)=\mu(A \times(-\infty, r])
$$

So $\nu_{r}(A) \leq \mu_{1}(A)$. Let $F(s, r)$ be the Radon-Nikodym density of ν_{r} with respect to μ_{1}. That is to say

$$
s \rightarrow F(s, r) \text { is measurable }
$$

$$
\mu(A \times(-\infty, r]))=\int_{A} F(s, r) \mu_{1}(d s) \text { for all } A
$$

We now modify F on μ_{1}-null sets so that, for each s, the maps $r \rightarrow F(s, r)$ will satisfy (4-6). For $r_{1}<r_{2}$,

$$
\int_{A}\left(F\left(s, r_{2}\right)-F\left(s, r_{1}\right)\right) \mu_{1}(d s)=\mu\left(A \times\left(r_{1}, r_{2}\right]\right) \geq 0 \text { for all } A
$$

and so the integrand is a.e. non-negative. Modify to make it everywhere non-negative. Similarly, consider $r_{n} \downarrow r$. Then $\mu\left(A \times\left(r, r_{n}\right]\right) \downarrow 0$ and so $F\left(s, r_{n}\right) \downarrow F(s, r) \mu_{1}$-a.e., and the null set depends only on r. So we can modify to make $F(s, \cdot)$ right-continuous on rationals, for all s. Finally, easy to modify to get

$$
\lim _{r \rightarrow-\infty} F(s, r)=0, \quad \lim _{r \rightarrow \infty} F(s, r)=1 \text { for all } s
$$

So by analysis fact, $F(s, \cdot)$ extends to a distribution function. Define $Q(s, \cdot)$ to be the p.m. whose distribution function is $F(s, \cdot)$. To finish the proof, we must show: for each $B \subset R$

$$
\begin{gathered}
s \rightarrow Q(s, B) \text { is measurable } \\
\mu(A \times B)=\int_{A} Q(s, B) \mu_{1}(d s) ; \text { all } A \subset S .
\end{gathered}
$$

By construction these hold for $B=(-\infty, r]$. Apply the $\pi-\lambda$ theorem.

Lecture 3.

Topics: Uses of Fubini's theorem, Kolmogorov extension theorem.
Given p.m.'s μ_{1} on S_{1} and μ_{2} on S_{2} we can define the product measure $\mu=\mu_{1} \times \mu_{2}$ on $S_{1} \times S_{2}$, which has properties $(7-9)$ below. These properties follow from Theorem 7 , putting $Q\left(s_{1}, \cdot\right)=\mu_{2}(\cdot)$.

$$
\begin{align*}
& \mu(A \times B)=\mu_{1}(A) \mu_{2}(B) ; A \subset S_{1}, B \subset S_{2} \tag{7}\\
& \mu(D)=\int_{S_{1}} \mu_{2}\left(D_{s_{1}}\right) \mu_{1}\left(d s_{1}\right) ; D \subset S_{1} \times S_{2} \tag{8}
\end{align*}
$$

For measurable $h: S_{1} \times S_{2} \rightarrow R$ with either $h \geq 0$ or h is μ-integrable,

$$
\begin{gather*}
\int_{S_{1} \times S_{2}} h(\mathbf{s}) \mu(d \mathbf{s})=\int_{S_{1}}\left(\int_{S_{2}} h\left(s_{1}, s_{2}\right) \mu_{2}\left(d s_{2}\right)\right) \mu_{1}\left(d s_{1}\right) \tag{9}\\
=\int_{S_{2}}\left(\int_{S_{1}} h\left(s_{1}, s_{2}\right) \mu_{1}\left(d s_{1}\right)\right) \mu_{2}\left(d s_{2}\right)
\end{gather*}
$$

The final equalities are Fubini's Theorem. These results also hold for σ finite measures. See Appendix 6 for examples illustrating the necessity of the hypotheses. Here are some more "practical" examples. Here X, Y denote real-valued r.v.'s with distributions μ, ν, and λ is Lebesgue measure on the line.

Example. If $X \geq 0$ then $E X=\int_{0}^{\infty} P(X>t) d t$.
Proof. Apply Fubini's theorem to the set $D=\{(x, t): x \geq t\} \subset[0, \infty) \times$ $[0, \infty)$ and the product measure $\mu \times \lambda$.

Example. Parseval's identity. Let X have characteristic function $\phi(t)=$ $E \exp (i t X)$ and Y have characteristic function $\hat{\phi}(t)$. Then $\int \phi(t) \nu(d t)=$ $\int \hat{\phi}(t) \mu(d t)$.

Proof. Compute $E \exp (i X Y)$.
Example. Suppose X and Y are independent, and set $S=X+Y$. In undergraduate course we see the convolution formula for densities:

$$
f_{S}(s)=\int f_{Y}(s-x) f_{X}(x) d x
$$

which assumes densities f_{Y} and f_{X} exist. A completely general version can be stated in terms of distribution functions as

$$
F_{S}(s)=\int F_{Y}(s-x) \mu(d x)
$$

In the case where Y does have a density f_{Y}

$$
f_{S}(s)=\int f_{Y}(s-x) \mu(d x)
$$

Example. Conditional densities. We used these to motivate kernels; now we can prove the following. Suppose (X, Y) has joint density $f(x, y)$. Define $f(y \mid x)=f(x, y) / f_{X}(x)$ where $f_{X}(x)>0$. Define $Q(x, \cdot)$ to be the distribution with density $f(\cdot \mid x)$. Then Q is the conditional probability kernel for Y given X.

Proof. Use Fubini's theorem to verify (1):

$$
P(X \in A, Y \in B)=\int_{A} Q(x, B) \mu(d x) .
$$

I will give the "probabilistic" proof of the (countable) Kolmogorov extension theorem. Appendix 7 gives the measure theory proof. Some texts give a version for uncountable families, but this has no practical use.

We start with a "random variable" version of Theorem 7.
Corollary 8 Let (X, U) be independent r.v.'s such that U is uniform on $[0,1]$, and X takes values in S and has distribution μ_{1}. Let μ be a p.m. on $S \times R$ with marginal μ_{1}. Then there exists measurable $f: S \times[0,1] \rightarrow R$ such that

$$
\mu=\operatorname{dist}(X, Y), \quad \text { for } Y=f(X, U)
$$

Proof. Let Q be the conditional probability kernel from S to R associated with μ (Theorem 7). For each $x \in S$ let $f(x, \cdot)$ be the inverse distribution function for the p.m. $Q(x, \cdot)$. Lemma 1 says $f(x, U)$ has distribution $Q(x, \cdot)$. In terms of measures, this is:

$$
\lambda\{u: f(x, u) \in B\}=Q(x, B), B \subset R .
$$

We have to verify: for $A \subset S, B \subset R$

$$
P(X \in A, Y \in B)=\mu(A \times B)
$$

Easy.

Theorem 9 (Kolmogorov extension) Let $\left(\mu_{n} ; 1 \leq n<\infty\right)$ be p.m.'s on R^{n}. Suppose they are consistent in the following sense. For each n, regard μ_{n+1} as a measure on $R^{n} \times R$: then the marginal of μ_{n+1} is μ_{n}. Then there exists a unique p.m. μ_{∞} on R^{∞} such that, writing $R^{\infty}=R^{n} \times R^{\infty}$, the marginal of μ_{∞} is μ_{n}.

Proof. Let $\left(U_{1}, U_{2}, \ldots\right)$ be independent $U(0,1)$, which exist by Corollary 4. Define $X_{1}=F_{\mu_{1}}^{-1}\left(U_{1}\right)$. Inductively, suppose we have defined $\mathbf{X}_{n}=$ $\left(X_{1}, \ldots, X_{n}\right)$ as a measurable function of $\left(U_{1}, \ldots, U_{n}\right)$ so that $\operatorname{dist}\left(\mathbf{X}_{n}\right)=$ μ_{n}. We shall define \mathbf{X}_{n+1} as a measurable function of $\left(\mathbf{X}_{n}, U_{n+1}\right)$. Then the induction goes through, and we can define a infinite sequence of r.v.'s $\left(X_{n} ; 1 \leq n<\infty\right)$. Clearly $\mu_{\infty}=\operatorname{dist}\left(X_{n} ; 1 \leq n<\infty\right)$ satisfies the conclusion of the Theorem.

To do the inductive step, just apply Corollary 8 with $X=\mathbf{X}_{n}, U=U_{n+1}$ and $\mu=\mu_{n+1}$ regarded as a measure on $R^{n} \times R$.

Lecture 4.

Conditional expectation. Read section 4.1.

Lecture 5.

Topics. Conditional expectations, conditional probabilities and regular conditional distributions (r.c.d.'s). Conditioning and independence. Conditional independence (see homework for definition).

Let's record two lemmas.
Lemma 10 If $E(X \mid \mathcal{G})$ is a.s. equal to some \mathcal{D}-measurable r.v., and if $\mathcal{D} \subset$ \mathcal{G}, then $E(X \mid \mathcal{D})=E(X \mid \mathcal{G})$.

Lemma 11 If X and Y are conditionally independent given \mathcal{G}, and if V is \mathcal{G}-measurable, then X and (Y, V) are conditionally independent given \mathcal{G}.

Also record basic property of r.c.d.'s. If Q is a r.c.d. for Z given U then

$$
E(h(Z) \mid U)(\omega)=\int h(z) Q(\omega, d z) .
$$

Lecture 6. Measure-theory set-up for Markov chains.
This material is presented somewhat differently in Durrett 5.1 and 5.2. I want to emphasize the conditional independence aspects. The first result (I call it the splice lemma) gives the "conditionally independent" analog of product measure.

Lemma 12 Let S_{1}, S_{2}, S_{3} be nice spaces. Let μ_{12} be a p.m. on $S_{1} \times S_{2}$ and μ_{23} be a p.m. on $S_{2} \times S_{3}$ such that the marginals on S_{2} coincide. Then there exists a unique probability measure μ on $S_{1} \times S_{2} \times S_{3}$ such that, writing $\mu=\operatorname{dist}\left(X_{1}, X_{2}, X_{3}\right)$,
(i) $\operatorname{dist}\left(X_{1}, X_{2}\right)=\mu_{12}$ and $\operatorname{dist}\left(X_{2}, X_{3}\right)=\mu_{23}$
(ii) X_{1} and X_{3} are conditionally independent given X_{2}.

Proof. We can specify μ on $S_{1} \times S_{2} \times S_{3}$ by specifying a marginal p.m. on $S_{1} \times S_{2}$ and a kernel Q from $S_{1} \times S_{2}$ to S_{3}. So let the marginal be μ_{12} and let the kernel be

$$
Q\left(\left(s_{1}, s_{2}\right), \cdot\right)=Q_{23}\left(s_{2}, \cdot\right)
$$

where Q_{23} is the kernel from S_{2} to S_{3} associated with μ_{23}. Property (i) is easy. For (ii),

$$
E\left(h\left(X_{3}\right) \mid X_{1}, X_{2}\right)=\int h(x) Q\left(\left(X_{1}, X_{2}\right), d x\right)
$$

