
205A Homework #1, due Tuesday 6 September.

1. [Bill. 2.4] Let Fn be classes of subsets of S. Suppose each Fn is a field,
and Fn ⊂ Fn+1 for n = 1, 2, . . .. Define F = ∪∞n=1Fn. Show that F is a
field. Give an example to show that, if each Fn is a σ-field, then F need not
be a σ-field.

2. [Bill. 2.5(b)] Given a non-empty collection A of sets, we defined F(A)
as the intersection of all fields containing A. Show that F(A) is the class
of sets of the form ∪mi=1 ∩

ni
j=1 Aij , where for each i and j either Ai,j ∈ A or

Acij ∈ A, and where the m sets ∩ni
j=1Aij , 1 ≤ i ≤ m are disjoint.

3. [Bill. 2.8] Suppose B ∈ σ(A), for some collection A of subsets. Show
there exists a countable subcollection AB of A such that B ∈ σ(AB).

4. Show that the Borel σ-field on Rd is the smallest σ-field that makes all
continuous functions f : Rd → R measurable.

5. [Durr. 1.3.5] A function f : Rd → R is lower semicontinuous (l.s.c.) if
lim infy→x f(y) ≥ f(x) for all x. A function is upper semicontinuous (u.s.c.)
if lim supy→x f(y) ≤ f(x) for all x. Show that, if f is l.s.c. or u.s.c., then f
is measurable.

1



205A Homework #2, due Tuesday 13 September.

1. [similar Bill. 2.15] Let B be the Borel subsets of R. For B ∈ B define

µ(B) = 1 if (0, ε) ⊂ B for some ε > 0

= 0 if not

(a) Show that µ is not finitely additive on B.
(b) Show that µ is finitely additive but not countably additive on the

field B0 of finite disjoint unions of intervals (a, b].

2. Show that, in the definition of “a probability measure µ on a measurable
space (S,S)”, we may replace “countably additive” by “finitely additive,
and satisfies

if An ↓ φ then µ(An)→ 0 . ”

3. [similar Durr. A.1.1] Give an example of a measurable space (S,S), a
collection A and probability measures µ and ν such that
(i) µ(A) = ν(A) for all A ∈ A
(ii) S = σ(A)
(iii) µ 6= ν.
Note: this can be done with S = {1, 2, 3, 4}

4. [similar Durr. Lemma A.2.1] Let µ be a probability measure on (S,S),
where S = σ(F) for a field F . Show that for each B ∈ S and ε > 0 there
exists A ∈ F such that µ(B∆A) < ε.

5. Let g : [0, 1] → R be integrable w.r.t. Lebesgue measure. Let ε >
0. Show that there exists a continuous function f : [0, 1] → R such that∫
|f(x)− g(x)| dx ≤ ε.
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205A Homework #3, due Tuesday 20 September.

1. Use the monotone convergence theorem to prove the following.
(i) If Xn ≥ 0, Xn ↓ X a.s. and EXn <∞ for some n then EXn → EX.
(ii) If E|X| <∞ then E|X|1(|X|>n) → 0 as n→∞.
(iii) If E|X1| < ∞ and Xn ↑ X a.s. then either EXn ↑ EX < ∞ or else
EXn ↑ ∞ and E|X| =∞.
(iv) If X takes values in the non-negative integers then

EX =
∞∑
n=1

P (X ≥ n).

2. (i) For a counting r.v. X =
∑n

i=1 1Ai , give a formula for the variance of
X in terms of the probabilities P (Ai) and P (Ai ∩Aj), i 6= j.

(ii) If k balls are put at random into n boxes, what is the variance of
X = number of empty boxes?

3. (i) Suppose EX = 0 and var(X) = σ2 <∞. Prove

P (X ≥ a) ≤ σ2

σ2 + a2
, a > 0.

(ii) Suppose X ≥ 0 and EX2 <∞. Prove

P (X > 0) ≥ (EX)2

EX2
.

4. Chebyshev’s other inequality.
Let f : R → R and g : R → R be bounded and increasing functions.

Prove that, for any r.v. X,

E(f(X)g(X)) ≥ (Ef(X))(Eg(X)).

[In other words, f(X) and g(X) are positively correlated. This is intuitively
obvious, but a little tricky to prove. Hint: consider an independent copy
Y of X. For this and the next question you may need the product rule for
expectations of independent r.v.s]

5. Let X have Poisson(λ) distribution and let Y have Poisson(2λ) distribu-
tion.

(i) Prove P (X ≥ Y ) ≤ exp(−(3−
√

8)λ) if X and Y are independent.
(ii) Find constants A <∞, c > 0, not depending on λ, such that, without

assuming independence, P (X ≥ Y ) ≤ A exp(−cλ).
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205A Homework #4, due Tuesday 27 September.

1. Monte Carlo integration [cf. Durr. 2.2.3] Let f : [0, 1] → R be such
that

∫ 1
0 f

2(x) dx <∞. Let (Ui) be i.i.d. Uniform(0, 1). Let

Dn := n−1
n∑
i=1

f(Ui) −
∫ 1

0
f(x) dx.

(i) Use Chebyshev’s inequality to bound P (|Dn| > ε).
(ii) Show this bound remains true if the (Ui) are only pairwise independent.

2. Let X ≥ 0 and Y ≥ 0 be independent r.v.’s with densities f and g.
Calculate the densities of XY and of X/Y .

Note: this is just to remind you of “undergraduate” results.

3. [Durr. 2.2.2.] Let (Xi) be r.v.’s with EXi = 0 and EXiXj ≤ r(j−i), 1 ≤
i ≤ j <∞, where r(n) is a deterministic sequence with r(n)→ 0 as n→∞.
Prove that n−1

∑n
i=1Xi → 0 in probability.

4. [Durr. 2.3.11] Suppose events An satisfy P (An)→ 0 and

∞∑
n=1

P (Acn ∩An+1) <∞.

Prove that
P (An occurs infinitely often ) = 0.

5. (a) Let Z have standard Normal distribution. Show

P (Z > z) ∼ z−1(2π)−1/2 exp(−z2/2) as z →∞.

(b) Let (Z1, Z2, . . .) be independent with standard Normal distribution.
Find constants cn →∞ such that

lim sup
n

Zn/cn = 1 a.s.
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205A Homework #5, due Tuesday 4 October.

1. Let (Xn) be i.i.d. with E|X1| <∞. Let Mn = max(X1, . . . , Xn). Prove
that n−1Mn → 0 a.s.

2. [Durr. 2.3.2] Let 0 ≤ X1 ≤ X2 ≤ . . . be r.v.’s such that EXn ∼ anα and
var(Xn) ≤ Bnβ, where 0 < a,B < ∞ and 0 < β < 2α < ∞. Prove that
n−αXn → a a.s.

3. Prove that the following are equivalent.
(i) Xn → X in probability.
(ii) There exist εn ↓ 0 such that P (|Xn −X| > εn) ≤ εn.
(iii) Emin(|Xn −X|, 1)→ 0.

4. Durr. exercise 2.4.4 (An Investment Problem).

5. Prove the deterministic lemma we used in the proof of the Glivenko-
Cantelli Theorem.

Lemma. If F1, F2, . . . , F are distribution functions and
(i) Fn(x)→ F (x) for each rational x
(ii) Fn(x)→ F (x) and Fn(x−)→ F (x−) for each atom x of F
then supx |Fn(x)− F (x)| → 0.
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205A Homework #6, due Tuesday 11 October.

1. [Durr. 2.5.9] Let (Xi) be independent, Sn =
∑n

i=1Xi, S
∗
n = maxi≤n |Si|.

Prove that

P (S∗n > 2a) ≤ P (|Sn| > a)

minj≤n P (|Sn − Sj | ≤ a)
, a > 0.

[Hint. If |Sj | > 2a and |Sn − Sj | ≤ a then |Sn| > a.]

2. [Durr. 2.5.10 and 11] In the setting of the previous question, prove
(i) if limn→∞ Sn exists in probability then the limit exists a.s.
(ii) if the (Xi) are identically distributed and if n−1Sn → 0 in probability
then n−1 maxm≤n Sm → 0 in probability.

3. [cf. Durr 2.2.8] Let (Xi) be i.i.d. taking values in {−1, 1, 3, 7, 15, . . .},
such that

P (X1 = 2k − 1) =
1

k(k + 1)2k
, k ≥ 1

(which implicitly specifies P (X1 = −1)).
(a) Show EX1 = 0.
(b) Show that for all α < 1,

P

(
Sn < −

αn

log2 n

)
→ 1.

Comment. This is sometimes described as “an unfair, fair game”. It
shows that the conclusions of the SLLN and the “recurrence of sums” the-
orem can’t be strengthened much.
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205A Homework #7, due Tuesday 18 October.

1. Suppose S and T are stopping times. Are the following necessarily
stopping times? Give proof or counter-example.

(a) min(S, T )
(b) max(S, T )
(c) S + T .

2. Let (Xi) be i.i.d. with EX2
i < ∞. Let Sn =

∑n
i=1Xi. Let T be a

bounded stopping time. Is it true in general that

var(ST ) = (var(X1))(ET )?

If not, is it true in the special case EX1 = 0?

3. Let (Xi) be a sequence of random variables, and let T be its tail σ-field.
Let Sn =

∑n
i=1Xi. Let bn ↑ ∞ be constants. Which of the following events

must be in T ? Give proof or counter-example.
(i) {Xn → 0}
(ii) {Sn converges }
(iii) {Xn > bn infinitely often }
(iv) {Sn > bn infinitely often }
(v) {

√∑n
i=1X

2
i

Sn
→ 0}.

4. Let Sn =
∑n

i=1Xi, where (Xi) are i.i.d. with exponential(1) distribution.
Use the large deviation theorem to get explicit limits for
n−1 logP (n−1Sn ≥ a), a > 1 and n−1 logP (n−1Sn ≤ a), a < 1.

5. Oriented first passage percolation. Consider the lattice quadrant
{(i, j) : i, j ≥ 0} with directed edges (i, j)→ (i+ 1, j) and (i, j)→ (i, j+ 1).
Associate to each edge e an exponential(1) r.v. Xe, independent for different
edges. For each directed path π of length d started at (0, 0), let Sπ =∑

edges e in pathXe. Let Hd be the minimum of Sπ over all such paths π

of length d. It can be shown that d−1Hd → c a.s., for some constant c. Give
explicit upper and lower bounds on c.

[Hint: use result of previous question for lower bound.]
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205A Homework #8, due Tuesday 1 November.

[Theorem 7 and Corollary 8 refer to the notes linked from the “week 8”
row of the schedule.]
1. Suppose probability measures satisfy π � ν � µ. Show that

dπ

dµ
=
dπ

dν
× dν

dµ
.

2. In the setting of Theorem 7 [hard part], where S2 is nice, show that Q is
unique in the following sense. If Q∗ is another conditional probability kernel
for µ, then

µ1{x : Q∗(x,B) = Q(x,B) for all B ∈ S2} = 1.

3. Let F be a distribution function. Let c > 0. Find a simple formula for∫ ∞
−∞

(F (x+ c)− F (x)) dx.

4. In the proof of Corollary 8 we used the inverse distribution function

f(x, u) = inf{y : u ≤ Q(x, (−∞, y])}

associated with the kernel Q. Show that f is product measurable.

5. Given a triple (X1, X2, X3), we can define 3 p.m.’s µ12, µ13, µ23 on R2 by

µij is the distribution of (Xi, Xj). (1)

These p.m.’s satisfy a consistency condition:

the marginal distribution µ1 obtained from µ12 must coincide

with the marginal obtained from µ13, and similarly for µ2 and µ3. (2)

Give an example to show that the converse is false. That is, give an example
of µ12, µ13, µ23 satisfying (2) but for which there does not exist a triple
(X1, X2, X3) satisfying (1).
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205A Homework #9, due Tuesday 8 November

1. Let X,Y be random variables, and suppose Y is measurable with respect
to some sub-σ-field G. Let µ(ω, ·) be a regular conditional distribution for
X given G. Prove that, for bounded measurable h,

E(h(X,Y )|G)(ω) =

∫
h(x, Y (ω))µ(ω, dx) a.s.

2. For i = 1, 2 let Xi be a r.v. defined on (Ω,F , P ) taking values in (Si,Si).
Let G be a sub-σ-field of F . Prove that assertions (a),(b) and (c) below
are equivalent. When these assertions hold, we say call X1 and X2 are
conditionally independent given G.

(a) P (X1 ∈ A1, X2 ∈ A2|G) = P (X1 ∈ A2|G)P (X2 ∈ A2|G) for all
Ai ∈ Si.

(b) E(h1(X1)h2(X2)|G) = E(h1(X1)|G) E(h2(X2)|G) for all bounded
measurable hi : Si → R.

(c) E(h1(X1)|G, X2) = E(h1(X1)|G) for all bounded measurable h1 :
S1 → R.

3. Suppose X and Y are conditionally independent given Z. Suppose X
and Z are conditionally independent given F , where F ⊆ σ(Z). Prove that
X and Y are conditionally independent given F .

4. Let (Xn) and (Yn) be submartingales w.r.t. (Fn). Show that (Xn + Yn)
and that (max(Xn, Yn)) are also submartingales w.r.t. (Fn).

5. Give an example where
(Xn) is a submartingale w.r.t. (Fn)
(Yn) is a submartingale w.r.t. (Gn)
(Xn + Yn) is not a submartingale w.r.t. any filtration.
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205A Homework #10, due Tuesday 15 November.

1. Let Sn =
∑n

i=1 ξi, where the (ξi) are independent, Eξi = 0 and var ξi <
∞. Let s2n =

∑n
i=1 var ξi. So we know that (S2

n − s2n) is a martingale.
Suppose also that |ξi| ≤ K for some constant K. Show that

P

(
max
m≤n
|Sm| < x

)
≤ s−2n (K + x)2, x > 0.

2. Let (Xn) be a martingale with X0 = 0 and EX2
n < ∞. Using the fact

that (Xn + c)2 is a submartingale, show that

P

(
max
m≤n

Xm ≥ x
)
≤ EX2

n

x2 + EX2
n

, x > 0.

3. Let (Xn) and (Yn) be martingales w.r.t. the same filtration with E(X2
n+

Y 2
n ) <∞. Show that

EXnYn − EX0Y0 =
n∑

m=1

E(Xm −Xm−1)(Ym − Ym−1).

4. Let (Xn,Fn), n ≥ 0 be a positive submartingale with X0 = 0. Let Vn be
random variables such that
(i) Vn ∈ Fn−1, n ≥ 1
(ii) B ≥ V1 ≥ V2 ≥ . . . ≥ 0, for some constant B.

Prove that for λ > 0

P ( max
1≤j≤n

VjXj > λ) ≤ λ−1
n∑
j=1

E[Vj(Xj −Xj−1)].

5. Prove Dubins’ inequality. If (Xn) is a positive martingale then the
number U of upcrossings of [a, b] satisfies

P (U ≥ k) ≤ (a/b)kEmin(X0/a, 1).

[if you follow sketch in Durrett then prove the quoted exercise]
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205A Homework #11, due Tuesday 22 November.

In each question, there is some fixed filtration (Fn) with respect to which
martingales are defined.

1. Let (Xn) be a submartingale such that supnXn <∞ a.s. and E supn(Xn−
Xn−1)

+ <∞. Show that Xn converges a.s.

2. For a sequence (An) of events, show that

∞∑
n=2

P (An| ∩n−1m=1 A
c
m) =∞ implies P (∪∞m=1Am) = 1.

3. Let (Xn) be a martingale and write ∆n = Xn − Xn−1, Suppose that
bm ↑ ∞ and

∑∞
m=1 b

−2
m E∆2

m <∞. Prove that Xn/bn → 0 a.s.

4. Let (Xn) be a martingale with supnE|Xn| < ∞. Show that there
is a representation Xn = Yn − Zn where (Yn) and (Zn) are non-negative
martingales such that supnEYn <∞ and supnEZn <∞.

5. Let (Xn) be adapted to (Fn) with 0 ≤ Xn ≤ 1. Let α, β > 0 with
α+ β = 1. Suppose X0 = x0 and

P (Xn+1 = α+ βXn|Fn) = Xn, P (Xn+1 = βXn|Fn) = 1−Xn.

Show that Xn → X∞ a.s., where P (X∞ = 1) = x0 and P (X∞ = 0) = 1−x0.

6. Suppose Fn ↑ F∞ and Yn → Y∞ in L1. Show that E(Yn|Fn) →
E(Y∞|F∞) in L1.

7. Let Sn be the total assets of an insurance company at the end of year n.
Suppose that in year n the company receives premiums of c and pays claims
totaling ξn, where ξn are independent with Normal(µ, σ2) distribution, where
0 < µ < c. The company is ruined if its assets fall to 0 or below. Show

P (ruin) ≤ exp(−2(c− µ)S0/σ
2).
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