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1. Introduction

What is the chance that an earthquake of magnitude 6.7 or greater will
occur before the year 2030 in the San Francisco Bay Area? The U.S. Geo-
logical Survey estimated the chance to be 0.7 ± 0.1 (USGS, 1999). In this
paper, we try to interpret such probabilities.

Making sense of earthquake forecasts is surprisingly difficult. In part,
this is because the forecasts are based on a complicated mixture of ge-
ological maps, rules of thumb, expert opinion, physical models, stochastic
models, numerical simulations, as well as geodetic, seismic, and paleoseismic
data. Even the concept of probability is hard to define in this context.
We examine the problems in applying standard definitions of probability
to earthquakes, taking the USGS forecast—the product of a particularly
careful and ambitious study—as our lead example. The issues are general,
and concern the interpretation more than the numerical values. Despite the
work involved in the USGS forecast, their probability estimate is shaky, as
is the uncertainty estimate.

2. Interpreting probability

Probability has two aspects. There is a formal mathematical theory, ax-
iomatized by Kolmogorov (1956). And there is an informal theory that
connects the mathematics to the world, i.e., defines what ‘probability’
means when applied to real events. It helps to start by thinking about
simple cases. For example, consider tossing a coin. What does it mean to
say that the chance of heads is 1/2? In this section, we sketch some of the
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interpretations—symmetry, relative frequency, and strength of belief.1 We
examine whether the interpretation of weather forecasts can be adapted
for earthquakes. Finally, we present Kolmogorov’s axioms and discuss a
model-based interpretation of probability, which seems the most promising.

2.1. SYMMETRY AND EQUALLY LIKELY OUTCOMES

Perhaps the earliest interpretation of probability is in terms of ‘equally
likely outcomes’, an approach that comes from the study of gambling. If
the n possible outcomes of a chance experiment are judged equally likely—
for instance, on the basis of symmetry—each must have probability 1/n.
For example, if a coin is tossed, n = 2; the chance of heads is 1/2, as is
the chance of tails. Similarly, when a fair die is thrown, the six possible
outcomes are equally likely. However, if the die is loaded, this argument
does not apply. There are also more subtle difficulties. For example, if two
dice are thrown, the total number of spots can be anything from 2 through
12—but these eleven outcomes are far from equally likely. In earthquake
forecasting, there is no obvious symmetry to exploit. We therefore need a
different theory of probability to make sense of earthquake forecasts.

2.2. THE FREQUENTIST APPROACH

The probability of an event is often defined as the limit of the relative
frequency with which the event occurs, in repeated trials under the same
conditions. According to frequentists, if we toss a coin repeatedly under the
same conditions,2 the fraction of tosses that result in heads will converge
to 1/2: that is why the chance of heads is 1/2. The frequentist approach is
inadequate for interpreting earthquake forecasts. Indeed, to interpret the
USGS forecast for the Bay Area using the frequency theory, we would need
to imagine repeating the years 2000–2030 over and over again—a tall order,
even for the most gifted imagination.

2.3. THE BAYESIAN APPROACH

According to Bayesians, probability means degree of belief. This is mea-
sured on a scale running from 0 to 1. An impossible event has probability
0; the probability of an event that is sure to happen equals 1. Different
observers need not have the same beliefs, and differences among observers
do not imply that anyone is wrong.

The Bayesian approach, despite its virtues, changes the topic. For Bayes-
ians, probability is a summary of an opinion, not something inherent in the
system being studied.3 If the USGS says ‘there is chance 0.7 of at least one
earthquake with magnitude 6.7 or greater in the Bay Area between 2000
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and 2030’, the USGS is merely reporting its corporate state of mind, and
may not be saying anything about tectonics and seismicity. More generally,
it is not clear why one observer should care about the opinion of another.
The Bayesian approach therefore seems to be inadequate for interpreting
earthquake forecasts. For a more general discussion of the Bayesian and
frequentist approaches, see Freedman (1995).

2.4. THE PRINCIPLE OF INSUFFICIENT REASON

Bayesians—and frequentists who should know better—often make proba-
bility assignments using Laplace’s principle of insufficient reason (Hartigan,
1983, p. 2): if there is no reason to believe that outcomes are not equally
likely, take them to be equally likely. However, not believed to be unequal
is one thing; known to be equal is another. Moreover, all outcomes cannot
be equally likely, so Laplace’s prescription is ambiguous.

An example from thermodynamics illustrates the problem (Feller, 1968;
Reif, 1965). Consider a gas that consists of n particles, each of which can
be in any of r quantum states.4 The state of the gas is defined by a ‘state
vector’. We describe three conventional models for such a gas, which differ
only in the way the state vector is defined. Each model takes all possible
values of the state vector—as defined in that model—to be equally likely.

1. Maxwell-Boltzman. The state vector specifies the quantum state of
each particle; there are

rn

possible values of the state vector.
2. Bose-Einstein. The state vector specifies the number of particles in

each quantum state. There are
(

n + r − 1

n

)

possible values of the state vector.5

3. Fermi-Dirac. As with Bose-Einstein statistics, the state vector spec-
ifies the number of particles in each quantum state, but no two particles
can be in the same state. There are

(

r

n

)

possible values of the state vector.6

Maxwell-Boltzman statistics are widely applicable in probability theory,7

but describe no known gas. Bose-Einstein statistics describe the thermody-
namic behavior of bosons—particles whose spin angular momentum is an
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integer multiple of ~, Planck’s constant h divided by 2π. Photons and He4

atoms are bosons. Fermi-Dirac statistics describe the behavior of fermions,
particles whose spin angular momentum is a half-integer multiple of ~.
Electrons and He3 atoms are fermions.8

Bose-Einstein condensates—very low temperature gases in which all
the atoms are in the same quantum state—were first observed experimen-
tally by Anderson et al. (1995). Such condensates occur for bosons, not
fermions—compelling evidence for the difference in thermodynamic statis-
tics. The principle of insufficient reason is not a sufficient basis for physics:
it does not tell us when to use one model rather than another. Generally,
the outcomes of an experiment can be defined in quite different ways, and it
will seldom be clear a priori which set of outcomes—if any—obeys Laplace’s
dictum of equal likelihood.

2.5. EARTHQUAKE FORECASTS AND WEATHER FORECASTS

Earthquake forecasts look similar in many ways to weather forecasts, so we
might look to meteorology for guidance. How do meteorologists interpret
statements like ‘the chance of rain tomorrow is 0.7’? The standard inter-
pretation applies frequentist ideas to forecasts. In this view, the chance of
rain tomorrow is 0.7 means that 70% of such forecasts are followed by rain
the next day.

Whatever the merits of this view, meteorology differs from earthquake
prediction in a critical respect. Large regional earthquakes are rare; they
have recurrence times on the order of hundreds of years.9 Weather forecast-
ers have a much shorter time horizon. Therefore, weather prediction does
not seem like a good analogue for earthquake prediction.

2.6. MATHEMATICAL PROBABILITY: KOLMOGOROV’S AXIOMS

For most statisticians, Kolmogorov’s axioms are the basis for probability
theory—no matter how the probabilities are to be interpreted. Let Σ be
a σ-algebra10 of subsets of a set S. Let P be a real-valued function on Σ.
Then P is a probability if it satisfies the following axioms:

• P (A) ≥ 0 for every A ∈ Σ;
• P (S) = 1;
• if Aj ∈ Σ for j = 1, 2, . . . , and Aj ∩ Ak = ∅ whenever j 6= k, then

P





∞
⋃

j=1

Aj



 =
∞
∑

j=1

P (Aj). (1)

The first axiom says that probability is nonnegative. The second defines
the scale: probability 1 means certainty. The third says that if A1, A2, . . .
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are pairwise disjoint, the probability that at least one Aj occurs is the sum
of their probabilities.

2.7. PROBABILITY MODELS

Another interpretation of probability seems more useful for making sense
of earthquake predictions: probability is just a property of a mathematical
model intended to describe some features of the natural world. For the
model to be useful, it must be shown to be in good correspondence with
the system it describes. That is where the science comes in.

Here is a description of coin-tossing that illustrates the model-based
approach. A coin will be tossed n times. There are 2n possible sequences of
heads and tails. In the mathematical model, those sequences are taken to
be equally likely: each has probability 1/2n, corresponding to probability
1/2 of heads on each toss and independence among the tosses.

This model has observational consequences that can be used to test its
validity. For example, the probability distribution of the total number X
of heads in n tosses is binomial:

P (X = k) =

(

n

k

)

1

2n
.

If the model is correct, when n is at all large we should see around n/2 heads,
with an error on the order of

√
n. Similarly, the model gives probability

distributions for the number of runs, their lengths, and so forth, which
can be checked against data. The predictions hold quite well for real coins
when the number of tosses is a few thousand. For hundreds of thousands of
tosses, real coins do not behave exactly as the model predicts: differences
are statistically significant.

This interpretation—that probability is a property of a mathematical
model and has meaning for the world only by analogy—seems the most
appropriate for earthquake prediction. To apply the interpretation, one
posits a stochastic model for earthquakes in a given region, and interprets
a number calculated from the model to be the probability of an earthquake
in some time interval. The problem in earthquake forecasts is that the
models—unlike the models for coin-tossing—have not been tested against
relevant data. Indeed, the models cannot be tested on a human time scale,
so there is little reason to believe the probability estimates. As we shall
see in the next section, although some parts of the earthquake models are
constrained by the laws of physics, many steps involve extrapolating rules
of thumb far beyond the data they summarize; other steps rely on expert
judgment separate from any data; still other steps rely on ad hoc decisions
made as much for convenience as for scientific relevance.
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6 D.A. FREEDMAN AND P.B. STARK

3. The USGS Earthquake Forecast

We turn to the USGS forecast for the San Francisco Bay Area (USGS , 1999).
The forecast was constructed in two stages. The first stage built a collection
of 2,000 models for linked fault segments, consistent with regional tectonic
slip constraints, in order to estimate seismicity rates. The models were
drawn by Monte Carlo from a probability distribution defined using data
and expert opinion.11 We had trouble understanding the details, but believe
that the models differed in the geometry and dimensions of fault segments,
the fraction of slip released aseismically on each fault segment, the relative
frequencies with which different combinations of fault segments rupture
together, the relationship between fault area and earthquake size, and so
forth.

Each model generated by the Monte Carlo was used to predict the
regional rate of tectonic deformation; if the predicted deformation was
not close enough to the measured rate of deformation, the model was
discarded.12 This was repeated until 2,000 models met the constraints.
That set of models was used to estimate the long-term recurrence rate
of earthquakes of different sizes, and to estimate the uncertainties of those
rate estimates, for use in the second stage.

The second stage of the procedure created three generic stochastic mod-
els for fault segment ruptures, estimating parameters in those models from
the long-term recurrence rates developed in the first stage. The stochastic
models were then used to estimate the probability that there will be at
least one magnitude 6.7 or greater earthquake by 2030.

We shall try to enumerate the major steps in the first stage—the con-
struction of the 2,000 models—to indicate the complexity.

1. Determine regional constraints on aggregate fault motions from geode-
tic measurements.

2. Map faults and fault segments; identify fault segments with slip rates
of at least 1 mm/y. Estimate the slip on each fault segment principally
from paleoseismic data, occasionally augmented by geodetic and other
data. Determine (by expert opinion) for each segment a ‘slip factor’,
the extent to which long-term slip on the segment is accommodated
aseismically. Represent uncertainty in fault segment lengths, widths,
and slip factors as independent Gaussian random variables with mean
0.13 Draw a set of fault segment dimensions and slip factors at random
from that probability distribution.

3. Identify (by expert opinion) ways in which segments of each fault can
rupture separately and together.14 Each such combination of segments
is a ‘seismic source’.
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4. Determine (by expert opinion) the extent to which long-term fault slip
is accommodated by rupture of each combination of segments for each
fault.

5. Choose at random (with probabilities of 0.2, 0.2, and 0.6 respectively)
one of three generic relationships between fault area and moment release
to characterize magnitudes of events that each combination of fault seg-
ments supports. Represent the uncertainty in the generic relationship
as Gaussian with zero mean and standard deviation 0.12, independent
of fault area.15

6. Using the chosen relationship and the assumed probability distribution
for its parameters, determine a mean event magnitude for each seismic
source by Monte Carlo simulation.

7. Combine seismic sources along each fault ‘in such a way as to honor
their relative likelihood as specified by the expert groups’ (USGS , 1999,
p. 10); adjust the relative frequencies of events on each source so that
every fault segment matches its geologic slip rate—as estimated previ-
ously from paleoseismic and geodetic data. Discard the combination of
sources if it violates a regional slip constraint.

8. Repeat the previous steps until 2,000 regional models meet the slip
constraint. Treat the 2,000 models as equally likely for the purpose of
estimating magnitudes, rates, and uncertainties.

9. Steps 1-8 model events on seven identified fault systems, but there
are background events not associated with those faults. Estimate the
background rate of seismicity as follows. Use an (unspecified) Bayesian
procedure to categorize historical events from three catalogs either as
associated or not associated with the seven fault systems. Fit a generic
Gutenberg-Richter magnitude-frequency relation N(M) = 10a−bM to
the events deemed not to be associated with the seven fault systems.
Model this background seismicity as a marked Poisson process. Extrap-
olate the Poisson model to M ≥ 6.7, which gives a probability of 0.09
of at least one event.16

This first stage in the USGS procedure generates 2,000 models and
estimates long-term seismicity rates as a function of magnitude for each
seismic source. We now describe the second stage—the earthquake forecast
itself. Our description is sketchy because we had trouble understanding
the details from the USGS report. The second stage fits three types of
stochastic models for earthquake recurrence—Poisson, Brownian passage
time (Ellsworth et al., 1998), and ‘time-predictable’—to the long-term seis-
micity rates estimated in the first stage.17 Ultimately, those stochastic
models are combined to estimate the probability of a large earthquake.

The Poisson and Brownian passage time models were used to estimate
the probability that an earthquake will rupture each fault segment. Some
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parameters of the Brownian passage time model were fitted to the data,
and some were set more arbitrarily; for example, aperiodicity (standard
deviation of recurrence time, divided by expected recurrence time) was set
to three different values, 0.3, 0.5, and 0.7. The Poisson model does not
require an estimate of the date of last rupture of each segment, but the
Brownian passage time model does; those dates were estimated from the
historical record. Redistribution of stress by large earthquakes was modeled;
predictions were made with and without adjustments for stress redistribu-
tion. Predictions for each segment were combined into predictions for each
fault using expert opinion about the relative likelihoods of different rupture
sources.

A ‘time-predictable model’ (stress from tectonic loading needs to reach
the level at which the segment ruptured in the previous event for the
segment to initiate a new event) was used to estimate the probability
that an earthquake will originate on each fault segment. Estimating the
state of stress before the last event requires knowing the date of the last
event and the slip during the last event. Those data are available only for
the 1906 earthquake on the San Andreas Fault and the 1868 earthquake
on the southern segment of the Hayward Fault (USGS , 1999, p. 17), so
the time-predictable model could not be used for many Bay Area fault
segments.

The calculations also require estimating the loading of the fault over
time, which in turn relies on viscoelastic models of regional geological
structure. Stress drops and loading rates were modeled probabilistically
(USGS , 1999, p. 17); the form of the probability models is not given. The
loading of the San Andreas fault by the 1989 Loma Prieta earthquake and
the loading of the Hayward fault by the 1906 earthquake were modeled.
The probabilities estimated using the time-predictable model were con-
verted into forecasts using expert opinion about the relative likelihoods
that an event initiating on one segment will stop or will propagate to other
segments. The outputs of the three types of stochastic models for each
fault segment were weighted according to the opinions of a panel of fifteen
experts. When results from the time-predictable model were not available,
the weights on its output were in effect set to zero.

There is no straightforward interpretation of the USGS probability
forecast. Many steps involve models that are largely untestable; modeling
choices often seem arbitrary. Frequencies are equated with probabilities,
fiducial distributions are used, outcomes are assumed to be equally likely,
and subjective probabilities are used in ways that violate Bayes rule.18
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3.1. WHAT DOES THE UNCERTAINTY ESTIMATE MEAN?

The USGS forecast is 0.7±0.1, where 0.1 is an uncertainty estimate (USGS ,
1999). The 2,000 regional models produced in stage 1 give an estimate of
the long-term seismicity rate for each source (linked fault segments), and
an estimate of the uncertainty in each rate. By a process we do not under-
stand, those uncertainties were propagated through stage 2 to estimate the
uncertainty of the estimated probability of a large earthquake. If this view
is correct, 0.1 is a gross underestimate of the uncertainty. Many sources of
error have been overlooked, some of which are listed below.

1. Errors in the fault maps and the identification of fault segments.19

2. Errors in geodetic measurements, in paleoseismic data, and in the vis-
coelastic models used to estimate fault loading and sub-surface slip from
surface data.

3. Errors in the estimated fraction of stress relieved aseismically through
creep in each fault segment and errors in the relative amount of slip
assumed to be accommodated by each seismic source.

4. Errors in the estimated magnitudes, moments, and locations of histor-
ical earthquakes.

5. Errors in the relationships between fault area and seismic moment.
6. Errors in the models for fault loading.
7. Errors in the models for fault interactions.
8. Errors in the generic Gutenberg-Richter relationships, not only in the

parameter values but also in the functional form.
9. Errors in the estimated probability of an earthquake not associated

with any of the faults included in the model.
10. Errors in the form of the probability models for earthquake recurrence

and in the estimated parameters of those models.

4. A view from the past

Littlewood (1953) wrote:

Mathematics (by which I shall mean pure mathematics) has no grip on
the real world; if probability is to deal with the real world it must contain
elements outside mathematics; the meaning of ‘probability’ must relate to
the real world, and there must be one or more ‘primitive’ propositions
about the real world, from which we can then proceed deductively (i.e.
mathematically). We will suppose (as we may by lumping several primitive
propositions together) that there is just one primitive proposition, the
‘probability axiom,’ and we will call it A for short. Although it has got
to be true, A is by the nature of the case incapable of deductive proof, for
the sufficient reason that it is about the real world . . . .
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There are 2 schools. One, which I will call mathematical, stays inside
mathematics, with results that I shall consider later. We will begin with the
other school, which I will call philosophical. This attacks directly the ‘real’
probability problem; what are the axiom A and the meaning of ‘probability’
to be, and how can we justify A? It will be instructive to consider the
attempt called the ‘frequency theory’. It is natural to believe that if (with
the natural reservations) an act like throwing a die is repeated n times the
proportion of 6’s will, with certainty , tend to a limit, p say, as n → ∞.
(Attempts are made to sublimate the limit into some Pickwickian sense—
‘limit’ in inverted commas. But either you mean the ordinary limit, or else
you have the problem of explaining how ‘limit’ behaves, and you are no
further. You do not make an illegitimate conception legitimate by putting
it into inverted commas.) If we take this proposition as ‘A’ we can at least
settle off-hand the other problem, of the meaning of probability; we define
its measure for the event in question to be the number p. But for the rest
this A takes us nowhere. Suppose we throw 1000 times and wish to know
what to expect. Is 1000 large enough for the convergence to have got under
way, and how far? A does not say. We have, then, to add to it something
about the rate of convergence. Now an A cannot assert a certainty about a
particular number n of throws, such as ‘the proportion of 6’s will certainly
be within p ± ε for large enough n (the largeness depending on ε)’. It can
only say ‘the proportion will lie between p ± ε with at least such and such
probability (depending on ε and n0) whenever n > n0’. The vicious circle is
apparent. We have not merely failed to justify a workable A; we have failed
even to state one which would work if its truth were granted. It is generally
agreed that the frequency theory won’t work. But whatever the theory it is
clear that the vicious circle is very deep-seated: certainty being impossible,
whatever A is made to state can be stated only in terms of ‘probability’.

5. Conclusions

Making sense of earthquake forecasts is difficult, in part because standard
interpretations of probability are inadequate. A model-based interpretation
is better, but lacks empirical justification. Furthermore, probability models
are only part of the forecasting machinery. For example, the USGS San
Francisco Bay Area forecast for 2000–2030 involves geological mapping,
geodetic mapping, viscoelastic loading calculations, paleoseismic observa-
tions, extrapolating rules of thumb across geography and magnitude, simu-
lation, and many appeals to expert opinion. Philosophical difficulties aside,
the numerical probability values seem rather arbitrary.

Another large earthquake in the San Francisco Bay Area is inevitable,
and imminent in geologic time. Probabilities are a distraction. Instead of
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making forecasts, the USGS could help to improve building codes and to
plan the government’s response to the next large earthquake. Bay Area
residents should take reasonable precautions, including bracing and bolting
their homes as well as securing water heaters, bookcases, and other heavy
objects. They should keep first aid supplies, water, and food on hand. They
should largely ignore the USGS probability forecast.

Notes

1 See Stigler (1986) for history prior to 1900. Currently, the two main schools are the
frequentists and the Bayesians. Frequentists, also called objectivists, define probability
in terms of relative frequency. Bayesians, also called subjectivists, define probability as
degree of belief. We do not discuss other theories, such as those associated with Fisher,
Jeffreys, and Keynes, although we touch on Fisher’s ‘fiducial probabilities’ in note 11.

2 It is hard to specify precisely which conditions must be the same across trials, and,
indeed, what ‘the same’ means. Within classical physics, for instance, if all the conditions
were exactly the same, the outcome would be the same every time—which is not what
we mean by randomness.

3 A Bayesian will have a prior belief about nature. This prior is updated as the data
come in, using Bayes rule: in essence, the prior is reweighted according to the likelihood
of the data (Hartigan, 1983, pp. 29ff). A Bayesian who does not have a proper prior—
that is, whose prior is not a probability distribution—or who does not use Bayes rule to
update, is behaving irrationally according to the tenets of his own doctrine (Freedman,
1995). For example, the Jeffreys prior is generally improper, because it has infinite mass;
a Bayesian using this prior is exposed to a a money-pump (Eaton and Sudderth, 1999,
p. 849). It is often said that the data swamp the prior: the effect of the prior is not
important if there are enough observations (Hartigan, 1983, pp. 34ff). This may be true
when there are many observations and few parameters. In earthquake prediction, by
contrast, there are few observations and many parameters.

4 The number of states depends on the temperature of the gas, among other things.
In the models we describe, the particles are ‘non-interacting’. For example, they do not
bond with each other chemically.

5 To define the binomial coefficients, consider m things. How many ways are there to
choose k out of the m? The answer is given by the binomial coefficient

(

m

k

)

=

(

m

m − k

)

=
m!

k!(m − k)!

for k = 0, 1, . . . , m. Let n and r be positive integers. How many sequences (j1, j2, . . . , jr)
of nonnegative integers are there with j1 + j2 + · · · + jr = n? The answer is

(

n + r − 1

n

)

.

For the argument, see Feller (1968). To make the connection with Bose-Einstein statistics,
think of {j1, j2, . . . , jr} as a possible value of the state vector, with ji equal to the number
of particles in quantum state i.

6 That is the number of ways of selecting n of the r states to be occupied by one
particle each.
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7 In probability theory, we might think of a Maxwell-Boltzman ‘gas’ that consists of
n = 2 coins. Each coin can be in either of r = 2 quantum states—heads or tails. In
Maxwell-Boltzman statistics, the state vector has two components, one for each coin.
The components tell whether the corresponding coin is heads or tails. There are

r
n = 22 = 4

possible values of the state vector: HH, HT, TH, and TT. These are equally likely.
To generalize this example, consider a box of r tickets, labeled 1, 2, . . . , r. We draw

n tickets at random with replacement from the box. We can think of the n draws as the
quantum states of n particles, each of which has r possible states. This is ‘ticket-gas’.
There are rn possible outcomes, all equally likely, corresponding to Maxwell-Boltzman
statistics. The case r = 2 corresponds to coin-gas; the case r = 6 is ‘dice-gas’, the
standard model for rolling n dice.

Let X = {X1, . . . , Xr} be the occupancy numbers for ticket-gas: in other words, Xi

is the number of particles in state i. There are
(

n + r − 1

n

)

possible values of X. If ticket-gas were Bose-Einstein, those values would be equally
likely. With Maxwell-Boltzman statistics, they are not: instead, X has a multinomial
distribution. Let j1, j2, . . . jr be nonnegative integers that sum to n. Then

P (X1 = j1, X2 = j2, . . . , Xr = jr) =
n!

j1!j2! · · · jr!
×

1

rn
.

The principle of insufficient reason is not sufficient for probability theory, because there
is no canonical way to define the set of outcomes which are to be taken as equally likely.

8 The most common isotope of Helium is He4; each atom consists of two protons, two
neutrons, and two electrons. He3 lacks one of the neutrons, which radically changes the
thermodynamics.

9 There is only about one earthquake of magnitude 8+ per year globally. In the San
Francisco Bay Area, unless the rate of seismicity changes, it will take on the order of a
century for a large earthquake to occur, which is not a relevant time scale for evaluating
predictions.

10 The collection Σ must contain S and must be closed under complementation and
countable unions. That is, Σ must satisfy the following conditions: S ∈ Σ; if A ∈ Σ then
Ac ∈ Σ; and if A1, A2, . . . ∈ Σ, then ∪∞j=1Aj ∈ Σ.

11 Some parameters were estimated from data. The Monte Carlo procedure treats such
parameters as random variables whose expected values are the estimated values, and
whose variability follows a given parametric form (Gaussian). This is ‘fiducial inference’
(Lehmann, 1986, pp. 229–230), which is neither frequentist nor Bayesian. There are
also several competing theories for some aspects of the models, such as the relationship
between fault area and earthquake magnitude. In such cases, the Monte Carlo procedure
selects one of the competing theories at random, according to a probability distribution
that reflects ‘expert opinion as it evolved in the study’. Because the opinions were
modified after analyzing the data, these were not prior probability distributions; nor
were opinions updated using Bayes rule. See note 3.

12 About 40% of the randomly generated models were discarded for violating a con-
straint that the regional tectonic slip be between 36 mm/y and 43 mm/y.

13 The standard deviations are zero—no uncertainty—in several cases where the slip
is thought to be accommodated purely seismically; see Table 2 of (USGS , 1999). Even
the non-zero standard deviations seem to be arbitrary.
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14 It seems that the study intended to treat as equally likely all 2n −1 ways in which at
least one of n fault segments can rupture; however, the example on p. 9 of USGS (1999)
refers to 6 possible ways a three-segment fault can rupture, rather than 23 − 1 = 7, but
then adds the possibility of a ‘floating earthquake’, which returns the total number of
possible combinations to 7. Exactly what the authors had in mind is not clear. Perhaps
there is an implicit constraint: segments that rupture must be contiguous. If so, then for
a three-segment fault where the segments are numbered in order from one end of the
fault (segment 1) to the other (segment 3), the following six rupture scenarios would
be possible: {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}; to those, the study adds the seventh
‘floating’ earthquake.

15 The relationships are all of the functional form M = k + log A, where M is the
moment magnitude and A is the area of the fault. There are few relevant measurements in
California to constrain the relationships (only seven ‘well-documented’ strike-slip earth-
quakes with M ≥ 7, dating back as far as 1857), and there is evidence that California
seismicity does not follow the generic model (USGS , 1999).

16 This probability is added at the end of the analysis, and no uncertainty is associated
with this number.

17 Stage 1 produced estimates of rates for each source; apparently, these are disaggre-
gated in stage 2 into information about fault segments by using expert opinion about the
relative likelihoods of segments rupturing separately and together.

18 See notes 3 and 11.
19 For example, the Mount Diablo Thrust Fault, which slips at 3 mm/y, was not

recognized in 1990 but is included in the 1999 model (USGS , 1999, p. 8). Moreover,
seismic sources might not be represented well as linked fault segments.
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