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xxx This is intended as a section in a Chapter near Chapter 4; maybe
a new Chapter consisting of this and another section on bounding 7 via
distinguished paths. Need some preliminary discussion, e.g. on
relations between 7 and 7o;
observe that 7 is tied to reversibility whereas coupling isn’t.

1 Using coupling to bound variation distance

Recall from Chapter 2 section 4.1 (yyy 9/10/99 version) several ways in
which variation distance is used to measure the deviation from stationarity
of the time-¢ distribution of a Markov chain:

di(t) : = [[F(Xe= ) =7()|
d(t): = maxd;(t)
a0 = max|IPX =) - B =]

Recall also from yyy the definition of variation threshold time
71 :=min{t : d(t) < e},

Since 7y is affected by continuization, when using the above definition with
a discrete-time chain we write 73 for emphasis.

Coupling provides a methodology for seeking to upper bound d(t) and
hence 71. After giving the (very simple) theory in section 1.1 and some
discussion in section 1.2, we proceed to give a variety of examples of its use.
We shall say more about theory and applications of coupling in Chapter 8
(where we discuss the related idea of coupling from the past) and in Chapter
10 (on interacting random walks).



1.1 The coupling inequality

Consider a finite-state chain in discrete or continuous time. Fix states ¢, j.
Suppose we construct a coupling, that is a joint process ((Xt(l), Xt(])), t>0)
such that

(Xt(i),t > 0) is distributed as the chain started at ¢
(Xt(j),t > 0) is distributed as the chain started at j. (1)

And suppose there is a random time 7% < oo such that
x=x9 1 <t < co. 2)
Call such a T% a coupling time. Then the coupling inequality is
1P(X; €)= Pi(X; €)|| < P(TV > 1), 0 <t < oo. (3)
The inequality holds because

I1P(Xi €)= Pi(Xee ]| = [IP(Xe)-Px e
< P(x{ £ xP)
< P(TY > t).

1.2 Comments on coupling methodology

The coupling inequality provides a method of bounding the variation dis-
tance d(t), because if we can construct a coupling for an arbitrary pair (7, j)
of initial states then

d(t) < max P(T" > t).

6,
The reader may wish to look at a few of the examples before reading this
section in detail.

In applying coupling methodology there are two issues. First we need
to specify the coupling, then we need to analyze the coupling time. The
most common strategy for constructing couplings is via Markov couplings,
as follows. Suppose the underlying chain has state space [ and (to take
the continuous-time case) transition rate matrix Q = (¢(¢, k)). Consider a
transition rate matrix Q on the product space I x I. Write the entries of Q
as §(i,7;k,1) instead of the logical-but-fussy ¢((z,7), (k,1)). Suppose that,
for each pair (7, j) with j # 1,

q~(l7.]7 B ) has marginals q(i7 ) and q(j7 ) (4)



in other words 3, q(¢,7; k,1) = q(i,k) and Y. ¢(¢,7;k,1) = q(4,1). And
suppose that

q(i,4k,0) = 0forl#k.

Take (X,f(i)7 Xt(j)) to be the chain on I x I with transition rate matrix Q and
initial position (i, ), Then (1) must hold, and T% := min{t : Xt(i) = Xt(j)}
is a coupling time. This construction gives a natural Markov coupling, and
all the examples where we use the coupling inequality will be of this form.
In practice it is much more understandable to define the joint process in
words, and we usually do so.

In constructing and analyzing couplings, we often exploit (explicitly or
implicitly) some integer-valued metric p(¢,7) on the state space I. Then
with a Markovian coupling,

P(T > 1) = P(p(X}, X)) > 1)

and it is enough to study the integer-valued process 7; := p(Xt(i),Xt(j)).
Typically (Z;) is not Markov, but one can try to compare it with some
integer-valued Markov process (Z;). Indeed, in defining the coupling one
has in mind trying to make such a comparison possible. Often one shows
that for any initial (¢, 7) the random time T% is stochastically smaller than
the hitting time 7, for the comparison chain (Z}) to reach 0 starting from
a :=max; ; p(¢, 7). This would imply

d(t) < P(TZy > 1).

Finally, one does calculations with the integer-valued chain (Z}), either
bounding the tail probability P(T), > t) directly or (what is often simpler)
just bounding the expectation T}, so that by Markov’s inequality and the
submultiplicativity property (Chapter 2 Lemma 20) (yyy 9/10/99 version)
we have in continuous time

mi <eET5y;  d(t) <exp(l- L),

_7-1

Here is perhaps the simplest comparison lemma, whose proof is left to
the reader.

Lemma 1 (Decreasing functional lemma) Let (Y;) be a Markov chain
on S and f:S — {0,1,2,...,A} a function. Suppose that for each 1 < i <



A and each initial state y with f(y) =1,
(ii) P(f(Y1) <i—1) > a; > 0.
Then

maXE yT'a < Zl/al
ye

=1
where A:={y: f(y) =0}.

We now start a series of examples. Note that when presenting a coupling
proof we don’t need to explicitly check irreducibility, because the conclusion
of a bound on coupling time obviously implies irreducibility.

1.3 Random walk on a dense regular graph

(Chapter 5 Example 16).

Consider an r-regular n-vertex graph. Write N (v) for the set of neighbors
of v. For any pair v, w we can define a 1 — 1 map 6,,, : N'(v) = N (w) such
that 6,.,,(z) = 2 for € N(v) N N(w). Consider discrete-time random
walk on the graph. We define a “greedy coupling” by specifying the joint
transition matrix

p(v, w;z,0,,(2)) =1/r, =€ N(v).

That is, from vertices v and w, if the first chain jumps to z then the sec-
ond chain jumps to 8, ,(z), and we maximize the chance of the two chains
meeting after a single step. In general one cannot get useful bounds on the
coupling time. But consider the dense case, where r > n/2. As observed
in Chapter 5 Example 16, here |V (v) N AN (w)| > 2r — n and so the coupled
process (Xy,Y;) has the property that for w # v

|V (v) NN (w)] > 2r —n

P(Xt+1 = Yt+1|Xt =0,Y; = w) = . .

implying that the coupling time 7" (for any initial pair of states) satisfies

)

So the coupling inequality implies d(t) < (2=L)". In particular the variation
threshold satisfies

P < (2

Tldlsc:O(l) as n — 00, r/n—} o > 1/2



1.4 Continuous-time random walk on the d-cube

(Chapter 5 Example 15).

Fori= (i1,...,14) and j = (j1, .

oy da) in T ={0,1}%, let D(i,j) be the

set of coordinates u where i and j differ. Write 1* for the state obtained
by changing the u’th coordinate of i. Recall that in continuous time the
components move independently as 2-state chains with transition rates 1/d.

Define a coupling in words as “run unmatched coordinates independently
until they match, and then run them together”. Formally, the non-zero

transitions of the joint process are
q(i,J;1%,3%)
q(i,J;1%,J) =
q(i,J;1,3%) =

1/d if u & D,j)
1/dif u € D(i, j)
1/dif u € D(i, ).

For each coordinate which is initially unmatched, it takes exponential (rate
2/d) time until it is matched, and so the coupling time 7" = T™ satisfies

T 4 max (&1, -+, &dy)

where the (£,) are independent exponential (rate 2/d) and do = |D(3, )| is
the initial number of unmatched coordinates. So

PT<t)=(1- exp(—Qt/d))dO

and the coupling inequality bounds variation distance as

d(t) <1— (1 —exp(=2t/d))%

This leads to an upper bound on the variation threshold time

71 < (3 +0(1))dlogd as d — occ.

This example is discussed in more detail in Chapter 5 Example 15 (yyy
4/23/96 version) where it is shown that

Ty~ idlogd as d = o0

so the coupling bound is off by a factor of 2.



1.5 The graph-coloring chain

Fix a n-vertex graph with maximal degree r. Fix an integer ¢ > r 4+ 2 and
consider [c] := {1,2,...,¢c} as a set of ¢ colors. Let col(GG,c) be the set
of c-colorings of (G, where a c-coloring is an assignment of a color to each
vertex, in such a way that no two adjacent vertices have the same color.
One can put a natural “product graph” structure on col(G, ¢), in which two
colorings are adjacent if they differ at only one vertex. It is not hard to
check that the condition ¢ > r 4+ 2 ensures that col(G, ¢) is non-empty and
the associated graph is connected. There is a natural discrete-time Markov
chain on col(G, ¢):

Pich a vertex v of G uniformly at random, pick a color v uni-
formly at random, assign color v to vertex v if feasible (i.e. if no
neighbor of v has color 7), else retain existing color of v.

Under certain conditions a simple coupling analysis succeeds in bounding
the mixing time. (The bound is far from sharp — see Notes).

Proposition 2 If ¢ > 4r then d(t) < nexp(—%ﬁ) and so T < 1 4
(1 + logn).

c—4r

Proof. We couple two versions of the chain by simply using the same v and
~ in both chains at each step. Write D, for the number of vertices at which
the colors in the two chains differ. Then D;1y — D; € {—1,0,1} and the key
estimate is the following.

Lemma 3 Conditional on the state of the coupled process at time t,

2rD

P(Dir =D +1) < =~ (5)
c—2r\D

Py =D, - 1) > 200 (6)

Proof. In order that D;11 = D;+1 it is necessary that the chosen pair (v, )
is such that

(*) there exists a neighbor (w, say) of v such that w has color v
in one chain but not in the other chain.

But the total number of pairs (v,7v) equals nc while the number of pairs
satisfying (*) is at most Dy - 2r. This establishes (5). Similarly, for D;4q =
D; — 1 it is sufficient that v is currently unmatched and that no neighbor



of v in either chain has color v; the number of such pairs (v,7) is at least
Dy (c—2r). O
Lemma 3 implies E(Dy41 — Dy|Dy) < —(c — 4r)D¢/(en) and so

EDiy <kEDy; ki=1-— e=dr

cn

Since Dy < n we have, for any initial pair of states,

P(D; > 1) < ED; < w'n < nexp(— (=201

cn

and the coupling lemma establishes the Proposition.

1.6 Permutations and words

The examples in sections 1.4 and 1.5 were simple prototypes of interacting
particle systems, more examples of which appear in Chapter 10, whose char-
acteristic property is that a step of the chain involves only “local” change.
Chains making “global” changes are often hard to analyze, but here is a
simple example.

Fix a finite alphabet A of size |A|. Fix m, and consider the set A™ of
“words” x = (21,...,%,) with each z; € A. Consider the discrete-time
Markov chain on A™ in which a step x — y is specified by the following
two-stage procedure.

Stage 1. Pick a permutation o of {1,2,..., m} uniformly at random from
the set of permutations o satisfying z,(;y = z;Vi.

Stage 2. Let (c;(0);7 > 1) be the cycles of o. For each j, and indepen-
dently as j varies, pick uniformly an element «; of A, and define y; = «; for
every i € ¢;(0).

Here is an alternative description. Write Il for the set of permutations of
{1,...,m}. Consider the bipartite graph on vertices A™ U Il with edge-set
{(x,0) : 2,4 = x;Vi}. Then the chain is random walk on this bipartite
graph, watched every second step (that is, when it is in A™).

From the second description, it is clear that the stationary probabilities
7(x) are proportional to the degree of x in the bipartite graph, giving

m(x) Hna(x)!

where n,(x) = [{7: z; = a}|. We shall use a coupling argument to establish
the following bound on variation distance:

a0 <m(1- o) 7)



implying that the variation threshold satisfies
1+ logm
1

The construction of the coupling depends on the following lemma.

T{iisc <14+

<14 (1+4logm)|Al.

Lemma 4 Given finite sets F', F?* we can construct (for v = 1,2) a uni-
form random permutation o* of F* with cycles (C’;L;j > 1), where the cycles
are labeled such that

C}ﬂFlﬂFQZC?OFlﬂFQforallj.

In the equality we interpret the C'}' as sets.

Proof. Given a permutation o of a finite set GG, there is an induced per-
mutation on a subset GG’ obtained by deleting from the cycle representation
of o those elements not in G’. It is easy to check that, for a uniform random
permutation of G, the induced random permutation of G’ is also uniform. In
the setting of the lemma, take a uniform random permutation o of F'U F?,
and let o" be the induced random permutations of F*. Then the equality
holds because each side is representing the cycles of the induced permutation
on F1NF?% O

We construct a step (x!,x2?) — (Y!,Y?) of the coupled processes as
follows. For each a € A, set 1'% = {i: 2} = a}, F?* = {i: 2? = a}. Take
random permutations o%*, 0% as in the lemma, with cycles C;’Q,C;’a.
Then (6% a € A) define a uniform random permutation o' of {1,...,m},
and similarly for o2. This completes stage 1. For stage 2, for each pair (a, )
pick a uniform random element af of A and set

1 _ _a . 1l,a
Y, =aj forevery i € O

2 _ _a . 2,a
Y = aj forevery i € C77.

This specifies a Markov coupling. By construction
if ! = a? then Y;! = V2
if x} £ 27  then P(Y)! =Y2) = 1/]4|

because Y;! and Y;? are independent uniform choices from A. So the coupled
processes (X1(t), X?%(t)) satisfy
1 t
PxH0) # X20) = (1= 7 ) POXO) # X2(0))
In particular P(X!(¢) # X2%(t)) < m(1—1/|A|)? and the coupling inequality
(3) gives (7).



1.7 Card-shuffling by random transpositions

We mentioned in Chapter 1 section 1.4 (yyy 7/20/99 version) that card-

shuffling questions provided a natural extrinsic motivation for the study of

mixing times. The example here and in section 1.9 give a first study of math-

ematically (if not physically) simple random shuffles, and these discrete-time

chains are prototypes for more complex chains arising in other contexts.
Consider a d-card deck. The random transpositions shuffle is:

Make two independent uniform choices of cards, and interchange
them.

With chance 1/d the two choices are the same card, so no change results.
To make a coupling analysis, we first give an equivalent reformulation.

Pick a label a and a position ¢ uniformly at random; interchange
the label-a card with the card in position 1.

This reformulation suggests the coupling in which the same choice of (a,1)
is used for each chain. In the coupled process (with two arbitrary starting
states) let D; be the number of unmatched cards (that is, cards whose
positions in the two decks are different) after ¢ steps. Then

(i) Diy1 < Dy

(it) P(Deg1 < J — 1Dy = 4) > j*/d>.

Here (i) is clear, and (ii) holds because whenever the card labeled a and
the card in position 7 are both unmatched, the step of the coupled chain
creates at least one new match (of the card labeled a).

Noting that D; cannot take value 1, we can use the decreasing functional
lemma (Lemma 1) to show that the coupling time 7" := min{t : D; = 0}
satisfies .

ET <Y d*/j* < d*(% — 1).
7=2

disc _

In particular, the coupling inequality implies 7{i5¢ = O(d?).
We revisit this example in Chapter 7 Example 18 (yyy 1/31/94 version)
where it is observed that in fact

T~ 2dlogd (8)

An analogous continuous-space chain on the simplex is studied in Chapter
13-4 Example 3 (yyy 7/29/99 version)



1.8 Reflection coupling on the n-cycle

Consider continuous-time random walk on the n-cycle I = {0,1,2,...,n—1}.
That is, the transition rates are
1 £> 1+ 1; ¢ 1—/2> 1—1
where here and below %1 is interpreted modulo n. One can define a coupling
by specifying the following transition rates for the bivariate process.
G0 B G+t G Ba-1i-1
o 1/2 . Coa 12 )
Gli-il>10  G)Le+rii-0 6D e-1i+

Git1) LG Giv ) Berit; (it LB a-1i+2) 9
and symmetrically for (i41, ¢). The joint process ((Xt(o), Xt(k)),t > 0) started

at (0, k) can be visualized as follows. Let ¢(i) := k — ¢ mod n. Picture the
operation of ¢ as reflection in a mirror which passes through the points
{z1,29} = {k/2,k/2+4 n/2 mod n} each of which is either a vertex or the
middle of an edge. In the simplest case, where 1 and x5 are vertices, let
(X?) be the chain started at vertex 0, let T7°% = min{t : X; € {z1,25}} and
define

xP = o(x(), 1< 1o
= X9 > 7%

This constructs a bivariate process with the transition rates specified above,
with coupling time 79, and the pre-T% path of X () is just the reflection
of the pre-T% path of X(©). In the case where a mirror point is the middle
of an edge (4,7 + 1) and the two moving particles are at j and j + 1, we
don’t want simultaneous jumps across that edge; instead (9) specifies that
attempted jumps occur at independent times, and the process is coupled at
the time of the first such jump.
It’s noteworthy that in this example the coupling inequality

1Po(Xs € ) = Pu(Xr € )] < P(X[D # X1

is in fact an equality. Indeed this assertion, at a given time ¢, is equivalent
to the assertion

P(Xt(o) €-,T>t)and P(Xt(k) € -,T > t) have disjoint support.

10



But the support AY of the first measure is the set of vertices which can be
reached from 0 without meeting or crossing any mirror point (and similarly
for A¥); and A® and A* are indeed disjoint.

It is intuitively clear that the minimum over k& of T°F is attained by
k = |n/2]: we leave the reader to find the simple non-computational proof.
It follows, taking e.g. the simplest case where n is multiple of 4, that we
can write

d(t) = P(T{_pjansay > 1) (10)

where T(_, /4 /4y is the hitting time for continuous-time random walk on
the integers.

Parallel results hold in discrete time but only when the chains are suit-
ably lazy. The point is that (9) isn’t allowable as transition probabilities.
However, if we fix 0 < @ < 1/3 then the chain with transition probabilities

i i41; -1

(and which holds with the remaining probability) permits a coupling of the
form (9) with all transition probabilities being @ instead of 1/2. The analysis
goes through as above, leading to (10) where T refers to the discrete-time
lazy walk on the integers.

Similar results hold for random walk on the n-path (Chapter 5 Example
8) (yvyy 4/23/96 version). and we call couplings of this form reflection cou-
plings. They are simpler in the context of continuous-path Brownian motion
— see Chapter 13-4 section 1 (yyy 7/29/99 version).

1.9 Card-shuffling by random adjacent transpositions

As in section 1.7 we take a d-card deck; here we define a (lazy) shuffle by

With probability 1/2 make no change; else pick a uniform ran-
dom position ¢ € {1,2,...,d} and interchange the cards in posi-
tions ¢ and ¢ + 1 (interpret d + 1 as 1).

To study this by coupling, consider two decks. In some positions ¢ the decks
match (the label on the card in position 7 is the same in both decks). Write
D for the set of 7 such that either position 7 or position 7+ 1 or both match.
Specify a step of the coupled chain by:

P(interchange 7 and ¢+ 1 in each deck) =

3

1
2d
1
2d°

P(interchange i and ¢ + 1 in first deck, no change in second deck) =

11

i€D
igdD



P(interchange i and i+ 1 in second deck, no change in first deck) = 4,

P(no change in either deck) = 2%.

Consider a particular card a. From the coupling description we see

(a) if the card gets matched then it stays matched;

(b) while unmatched, at each step the card can move in at most one of the
decks.

It follows that the “clockwise” distance D(t) := X!(t) — X2(t) mod d be-
tween the positions of card @ in the two decks behaves exactly as a lazy
random walk on the d-cycle:

Pij+1 = pij1=1/d, 1<j<d

until D(¢) hits 0. By the elementary formula for mean hitting times on the
cycle (Chapter 5 eq. (24)) (yyy 4/23/96 version), the mean time T(*) until
card a becomes matched satisfies

ETW <

(]I

d2
4

uniformly over initial configurations. By submultiplicativity (Chapter 2 sec-
tion 4.3) (yyy 9/10/99 version)

P(T@ > md®/4) <27 m=1,2,....
The chains couple at time T := max, T(*) and so
d(md®/4) < P(T > md®/4) < d27™.

In particular

rdisc — O(d® log d).

In this example it turns out that coupling does give the correct order of
magnitude; the corresponding lower bound

s = Q(d® log d)

was proved by Wilson [18]. Different generalizations of this example appear
in section 1.13 and in Chapter 14 section 5 (yyy 3/10/94 version), where we
discuss relaxation times.

A generalization of this example, the interchange process, is studied in
Chapter 14 section 5 (yyy 3/10/94 version).

12



1.10 Independent sets

Fix a graph G on n vertices with maximal degree r, An independent set
is a set of vertices which does not contain any adjacent vertices. Fix m
and consider the space of all independent sets of size m in GG. Picture an
independent set x as a configuration of m particles at distinct vertices, with
no two particles at adjacent vertices. A natural discrete-time chain (X;) on
1 is

pick a uniform random particle ¢ and a uniform random vertex
v; move particle a to vertex v if feasible, else make no move.

To study mixing times, we can define a coupling (X;, Y¢) by simply making
the same choice of (@, v) in each of the two coupled chains, where at each time
we invoke a matching of particles in the two realizations which is arbitrary
except for matching particles at the same vertex. To analyze the coupling,
let p be the natural metric on I: p(x,y) = number of vertices occupied
by particles of x but not by particles of y. Clearly D; := p(X;,Y;) can
change by at most 1 on each step. Let us show that, for initial states with

p(x,y)=d >0,

m—d 2d(r+1
Pugy(Dr=d 1) < 20+ (1)
d n—(m+d-2)(r+1
Pog(Dr=d=1) > 422t d=2UED gy

For in order that D; = d + 1 we must first choose a matched particle a
(chance (m—d)/d) and then choose a vertex v which is a neighbor of (or the
same as) some vertex v’ which is in exactly one of {x,y}: there are 2d such
vertices v’ and hence at most 2d(r + 1) possibilities for v. This establishes
(11). Similarly, in order that D; = d — 1 it is sufficient that we pick an
unmatched particle a (chance d/m) and then choose a vertex v which is not
a neighbor of (or the same as) any vertex v’ which is occupied in one or
both realizations by some particle other than a: there are m + d — 2 such
forbidden vertices v’ and hence at most (m+d—2)(r+1) forbidden positions
for v. This establishes (12).
From (11,12) a brief calculation gives

By (D1 —d) < 23(n— (3m—d —2)(r + 1))
< Zn-3(m-1)(r+1)).

13



In other words

_ 1 )
ExyyD1 < kd; ki=1- n 3(mmn)(r—|- )

Ifm< 14 ﬁ then £ < 1. In this case, by copying the end of the analysis

of the graph-coloring chain (section 1.5)

dt) <mk'; 7 =0 (loﬂ) .

— 1—-k

To clarify the size-asymptotics, suppose m, n — oo with m/n — p < ==

3r+1)°
Then for fixed p
= O(nlogn).

1.11 Two base chains for genetic algorithms

One way of motivating study of Markov chains on combinatorial sets with
uniform stationary distributions is as “base chains” on which to base Markov
chain Monte Carlo, that is to create other chains designed to have some
specified distribution as their stationary distributions. Here is a typical
base chain underlying genetic algorithms.

Fix integers K, L > 1 with K even. A state of the chain is a family of
words (x*,1 < k < K), where each word is a binary L-tuple x* = (2¥,1 <
I < L). A step of the chain is defined as follows.

Use a uniform random permutation 7 of {1,2,..., K} to parti-
tion the words into K/2 pairs {x™(1) x™()} =~ {x™() x*(H)}
Create a new pair {y',y?} from {x™1) x™?)1 by setting, inde-
pendently for each 1 <[ < L

(1 (2 (2 (1
Pl o) = (@], 2] ™) = P} 0f) = @@ 2])) = 1/2.
(13)
Repeat independently for 1 < i < K/2 to create new pairs

{y?=1,y?} from {x™(?=1) x"(3)} | The new state is the family
of words y*.

Associated with an initial state (x*) is a vector of column sums m = (m;, 1 <
I < L) where m; =3, ch These sums are preserved by the chain, so the
proper state space is the space [, of families with column-sums m. The
transition matrix is symmetric and so the chain is reversible with uniform
stationary distribution on I,.

14



To describe the coupling, first rephrase (13) in words as “(y/,y?) is

{mf(l), mf@)} in random order, either forwards or backwards”. Now specify
the coupling as follows.

(i) Use the same random permutation 7 for both chains.

(ii) For each i and each [, in creating the new words (y? ™', y?) from the old
words {:C;r(%_l), ;r;r(%))
chains, except when ($?(22—1)7 $;r(22)) = (1,0) for one chain and = (0, 1) for
the other chain, in which case use opposite choices of (forwards, backwards)
in the two chains.

To study the coupled processes (X(t), X(t)), fix [ and consider the num-
ber W (t) :== YK | | XF(t) — XF(t)| of words in which the I’th letter is not
matched in the two realizations. Suppose W (0) = w. Consider the creation
of the first two new words in each chain. The only way that the number of
matches changes is when we use opposite choices of (forwards, backwards)

} use the same choice (forwards or backwards) in both

in the two chains, in which case two new matches are created. The chance
that the /’th letter in the two chains is 1 and 0 in the 7(1)’th word and is 0
and 1 in the 7(2)’th word equals wI—{Q X ﬁg, and so (taking into account the

symmetric case) the mean number of new matches at [ in these two words

equals #2_1) Summing over the K /2 pairs,

2

EW(L)W(0)=w)=w— SUEE

We can now apply a comparison lemma (Chapter 2 Lemma 32) (yyy 9/10/99
version) which concludes that the hitting time 7" of W () to 0 satisfies

K
ET! < 37 A2 <9,
w=2

Since T := max; T' is a coupling time, a now-familiar argument shows that
foru=1,2,...

d(4uK) < P(T > 4uK) < LP(T' > u-4K) < [, 27"

and so

s — O(K log ).

Open Problem 5 Show 7% = O(log K x log L).

15



We expect this bound by analogy with the “random transpositions” shuffle
(section 1.7). Loosely speaking, the action of the chain on a single position
in words is like the random transpositions chain speeded up by a factor K /2,
so from (8) we expect its mixing time to be ©(log K). It would be interesting
to study this example via the group representation or strong stationary time
techniques which have proved successful for the random transpositions chain.

To make a metaphor involving biological genetics, the letters represent
chromosomes and the words represent the chromosomal structure of a ga-
mete; the process is “sexual reproduction from the viewpoint of gametes”. If
instead we want a word to represent a particular chromosome and the letters
to represent genes within that chromosome, then instead of flipping bits in-
dependently it is more natural to model crossover. That is, consider a chain
in which the rule for creating a new pair {y? !, y*} from {x7(2-1) xm(?9}
becomes

Take U; uniform on {1,2,..., L, L+ 1}. Define

) = @) i<
(yl%—l’yl%) _ (;r;r(Qz)’.r;r(Qz—l))7 [>U.
As an exercise (hint in Notes), find a coupling argument to show that for

this chain .
riisc — O(KL?). (14)

1.12 Path coupling

In certain complicated settings it is useful to know that it is enough to couple
versions of the chain which start in “nearby” states. To say this carefully,
let I be finite and consider a {0, 1,2,...}-valued function p(7, j) defined on
some symmetric subset £ C I x I. Call p a pre-metric if

(i) pli, 4) = 0 iff i = j.

(i) p(i,7) = p(J4, 1)

iii) p(io, i) < Zﬁ;ép(iu,iuﬂ), whenever (ig, i) and each (iy,7,4+1) are in
£.

Clearly a pre-metric extends to a metrric p by defining
p(i, j) = min {Zp(im ml)} (15)

the minimum over all paths ¢ = ig,7y,...,ix = j with each (iy,7u41) € €.
Note p(7,7) < p(7,7) for (z,7) € €.
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Lemma 6 Let S be a state space. Let (p; 41, 0 <1< d— 1) be probability
distributions on S x S such that the second marginal of p; ;41 coincides with
the first marginal of p;q1 42 for 0 < @ < d — 2. Then there exists a S-
valued random sequence (V;,0 < i < d) such that p; ;41 = dist(V;, Vigq) for
0<i<d-1.

Proof. Just take (V;) to be the non-homogeneous Markov chain whose tran-
sition probabilities P(V;41 € |V, = v) are the conditional probabilities de-
termined by the specified joint distribution g; ;41.

Lemma 7 (Path-coupling lemma) Take a discrete-time Markov chain

Xy) with finite state space I. Write X9 for the time-1 value of the chain
1

started at state . Let p be a pre-metric defined on some subset £ C I x I.
(%)

Suppose that for each pair (i, j) in & we can construct a joint law (X, ,Xl(j))
such that ' 4
Ep(xD, X9 < kp(i, 5) (16)

for some constant 0 < k < 1. Then
d(t) < Ah (k< 1) (17)
where A, = max; jer p(i, 7).

See the Notes for comments on the case Kk = 1.

Proof. Fix states ¢, j and consider a path (¢,) attaining the minimum in
(15). For each u let (Xl(i“), Xl(i““)) have a joint distribution satisfying (16).
By Lemma 6 there exists a random sequence (Xl(i) = Xl(io), Xl(il), . .,X{j))
consistent with these bivariate distributions. In particular, there is a joint
distribution (Xl(i),X{j)) such that

Eﬁ(/Yl(Z)7/Y1(])) < EZﬁ(/Yl(iu)7/Yl(iu+l)) < sz(im iu+1) = Kﬁ(l7j)

This construction gives one step of a coupling of two copies of the chain
started at arbitrary states, and so extends to a coupling ((Xt(z), Xt(])), t =
0,1,2,...) of two copies of the entire processes. The inequality above implies

ExD, xD)1x 9 xO) < rep(x @, x )

and hence

x££ x) < mp(x!), X)) < w'p(i, ) < KA,
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establishing (17). O

Bubley and Dyer [2] introduced Lemma 7 and the name path-coupling. 1t
has proved useful in extending the range of applicability of coupling meth-
ods in settings such as graph-coloring (Bubley et al [4] Vigoda [17]) and
independent sets (Luby and Vigoda [13]). These are too intricate for pre-
sentation here, but the following example will serve to illustrate the use of
path-coupling.

1.13 Extensions of a partial order

Fix a partial order < on an n-element set, and let I, be the set of linear
extensions of <, that is to say total orders consistent with the given partial
order. We can define a discrete-time Markov chain on [, by re-using the
idea in the “random adjacent transpositions” example (section 1.9). Let
w(-) be a probability distribution on {1,2,...,n — 1}. Define a step of the
chain as follows.

Pick position ¢ with probability w(7), and independently pick one
of { stay, move } with probability 1/2 each. If pick “move” then
interchange the elements in positions ¢ and ¢ + 1 if feasible (i.e.
if consistent with the partial order); else make no change.

The transition matrix is symmetric, so the stationary distribution is uniform
on I,,.

To analyze by coupling, define one step of a bivariate coupled process as
follows.

Make the same choice of ¢ in both chains. Also make the same
choice of { move, stay }, except in the case where the elements
in positions ¢ and 7 + 1 are the same elements in opposite order
in the two realizations, in which case use the opposite choices of
{ stay, move }.

The coupling is similar (but not identical) to that in section 1.9, where the
underlying chain is that corresponding to the “null” partial order. For a
general partial order, the coupling started from an arbitrary pair of states
seems hard to analyze directly. For instance, an element in the same position
in both realizations at time ¢ may not remain so at time ¢t + 1. Instead we
use path-coupling, following an argument of Bubley and Dyer [3]. Call two
states x and y adjacent if they differ by only one (not necessarily adjacent)
transposition; if the transposed cards are in positions ¢ < j then let p(x,y) =
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j—1. We want to study the increment ® := p(Xy, Y1) —p(x,y) where (X4, Y7)
is the coupled chain after one step from (x,y). The diagram shows a typical
pair of adjacent states.
a b c o d e f B g h
a b c 8 de f a g h
position A I
Observe first that any choice of position other than ¢ — 1,7,5 — 1,7 will
have no effect on ®. If position 7 and “move” are chosen, then {a,d} are
interchanged in the first chain and {3, d} in the second; both lead to feasible
configurations by examining the relative orders in the other chain’s previous
configuration. This has chance w(¢)/2 and leads to ® = —1. If position i — 1
and “move” are chosen (chance w(i—1)/2), then if either or both moves are
feasible @ = 1, while if neither are feasible then & = 0. Arguing similarly
for choices j — 1, 7 leads to

E(®) < 3(w(i—1) —w(i) —w(j — 1) + w(j)).

This estimate remains true if j = 141 because in that case choosing position
i (chance w(t)) always creates a match. Now specify

) ) n—1
w(i) == ﬁZ—:‘l, Wy, 1= Z](n -7)
7=1

and then F® < —% This leads to
E(x,y)p(XhYl) < (1 - wl_n) p(X7Y)

for adjacent (x,y). We are thus in the setting of Lemma 7, which shows

d(t) < A exp(—t/wy,).
Since A,, = O(n?) and w,, ~ n*/6 we obtain

T{jisc = (% +0o(1)) n> log n.

2 Notes on Chapter 4-3

Coupling has become a standard tool in probability theory. The monograph
of Lindvall [12] contains an extensive treatment, and history. In brief, Doe-
blin [5] used the idea of running two copies of the chain independently until
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they meet, in order to prove the convergence theorem (Chapter 2 Theorem
2) for finite-state chains, and this is now the textbook proof ([14] Theorem
1.8.3) of the convergence theorem for countable-state chains. The first wide-
ranging applications were in the context of infinite-site interacting particles
in the 1970s, where (e.g. Liggett [11]) couplings were used to study unique-
ness of invariant distributions and convergence thereto. Theory connecting
couplings and variation distance is implicit in Griffeath [7] and Pitman [15],
though the first systematic use to bound variation distance in finite-state
chains was perhaps Aldous [1], where examples including those in sections
1.4, 1.7 and 1.9 were given.

Section 1.2. There may exist Markov couplings which are not of the nat-
ural form (4), but examples typically rely on very special symmetry prop-
erties. For the theoretically-interesting notion of (non-Markov) mazimal
coupling see Chapter 9 section 1 (yyy 4/21/95 version).

The coupling inequality is often presented using a first chain started
from an arbitrary point and a second chain started with the stationary
distribution, leading to a bound on d(t) instead of d(t). See Chapter 13-
4 yyy for an example where this is used in order to exploit distributional
properties of the stationary chain.

Section 1.5. This chain was first studied by Jerrum [9], who proved
rapid mixing under the weaker assumption ¢ > 2r. His proof involved a
somewhat more careful analysis of the coupling, exploiting the fact that
“bad” configurations for the inequalities (5,6) are different. This problem
attracted interest because the same constraint ¢ > 2r appears in proofs of the
absence of phase transition in the zero-temperature anti-ferromagnetic Potts
model in statistical physics. Proving rapid mixing under weaker hypotheses
was first done by Bubley et al [4] in special settings and using computer
assistance. Vigoda [17] then showed that rapid mixing still holds when
¢ > Hr: the proof first studies a different chain (still reversible with uniform
stationary distribution) and then uses a comparison theorem.

Section 1.6. The chain here was suggested by Jerrum [8] in the context of
a general question of counting the number of orbits of a permutation group
acting on words. More general cases (using a subgroup of permutations
instead of the whole permutation group) remain unanalyzed.

Section 1.10. See Luby and Vigoda [13] for more detailed study and
references.

Section 1.11. Conceptually, the states in these examples are unordered
families of words. In genetic algorithms for optimization one has an objec-
tive function f : {0,1}* — R and accepts or rejects offspring words with
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probabilities depending on their f-values.

Interesting discussion of some different approaches to genetics and com-
putation is in Rabani et al [16].

Hint for (14). First match the L’th letters in each word, using the
occasions when U; = L or L 4 1. This takes O(LK) time.

Section 1.12. Another setting where path-coupling has been used is
contingency tables: Dyer and Greenhill [6].

In the case where (16) holds for k = 1, one might expect a bound of the
form

d(t) = O(A]/a) (18)

a= min_P(p(X{",x) < p(i,j) - 1).
(i,5)e€
by arguing that, for arbitrary (¢, k), the process p(Xt(i),Xt(k)) can be com-
pared to a mean-zero random walk with chance a of making a negative

step. Formalizing this idea seems subtle. Consider three states 7, j, & with
(2,7) € £ and (j,k) € €. Suppose

Pp(XD, XDy = p(i,5)+ 1) = P(o(XP, x) = p(i,j) = 1) = a

and otherwise p(-, ) is unchanged; similarly for (j, k). The changes for the
(¢,7) process and for the (j, k) process will typically be dependent, and in
the extreme case we might have

p(X1), X = p(i, 5) + 1iff p(XI, X)) = p(j, k) — 1
and symmetrically, in which case ,o(Xt(i), Xt(k)) might not change at all. Thus
proving a result like (18) must require further assumptions.

Section 1.13. The Markov chain here (with uniform weights) was first
studied by Karzanov and Khachiyan [10].
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