
Extracting data from
XML

Wednesday
DTL

Parsing - XML package
2 basic models - DOM & SAX

Document Object Model (DOM)
 Tree stored internally as C, or as regular R objects

Use XPath to query nodes of interest, extract info.

Write recursive functions to "visit" nodes,
extracting information as it descends tree

extract information to R data structures via
handler functions that are called for particular
XML elements by matching XML name

For processing very large XML files with low-level
state machine via R handler functions - closures.

Preferred Approach
DOM (with internal C representation and XPath)

Given a node, several operations

xmlName() - element name (w/w.o. namespace prefix)
xmlNamespace()

xmlAttrs() - all attributes
xmlGetAttr() - particular value

xmlValue() - get text content.

xmlChildren(), node[[i]], node [["el-name"]]

xmlSApply()

xmlNamespaceDefinitions()

ExamplesScraping HTML - (you name it!)
zillow - house price estimates
PubMed articles/abstracts
European Bank exchange rates
itunes - CDs, tracks, play lists, ...
PMML - predictive modeling markup language
CIS - Current Index of Statistics/Google Scholar
Google - Page Rank, Natural Language Processing
Wikipedia - History of changes,
SBML - Systems biology markup language
Books - Docbook
SOAP - eBay, KEGG, ...
Yahoo Geo/places - given name, get most likely location

PubMed

Professionally archived collection of "medically-related"
articles.

Vast collection of information, including

article abstracts

submission, acceptance and publication date

authors

...

PubMed
We'll use a sample PubMed example article for
simplicity.
Can get very large, rich <ArticleSet> with many articles
via an HTTP query done from within R/XML package
directly.

Take a look at the data, see what is available or read
the documentation
Or explore the contents.

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
rid=helppubmed.section.publisherhelp.XML_Tag_Descripti
ons

doc = xmlTreeParse("pubmed.xml", useInternal = TRUE)

top = xmlRoot(doc)

xmlName(top)
[1] "ArticleSet"

names(top) - child nodes of this root
[1] "Article" "Article" - so 2 articles in this set.

Let's fetch the author list for each article.
Do it first for just one and then use "apply" to iterate

names(top[[1]])
 Journal ArticleTitle FirstPage
 "Journal" "ArticleTitle" "FirstPage"
 LastPage ELocationID ELocationID
 "LastPage" "ELocationID" "ELocationID"
 Language AuthorList GroupList
 "Language" "AuthorList" "GroupList"
 ArticleIdList History Abstract
"ArticleIdList" "History" "Abstract"
 ObjectList
 "ObjectList"

art = top[[1]] [["AuthorList"]]
what we want

names(art)
[1] "Author" "Author" "Author" "Author" "Author"
"Author"

names(art[[1]])
[1] "FirstName" "MiddleName" "LastName" "Suffix"
[5] "Affiliation"

So how do we get these values, e.g. to put in a data
frame.

Each element is a node with text content.

So loop over the nodes and get the content as a string

 xmlSApply(art[[1]], xmlValue)

To do this for all authors of the article

xmlSApply(art, function(x) xmlSApply(x, xmlValue))

How do we deal with the different types of fields in the
names?
 e.g. First, Middle, Last, Affiliation
 CollectiveName
data representation/analysis question from here.

Pubmed Dates
In the <History> element, have date
 received, accepted, aheadofprint

May want to look at time publication lag (i.e. received to
publication time) for different journals.

So get these dates for all the articles
 <History>
 <PubDate PubStatus="received">
 <year>...</year><Month>06</Month><Day>15</Day>
 <PubDate>
 <PubDate PubStatus="accepted">
 <year>.....</day>
 </PubDate>

Find the element PubDate within History which has an
attribute whose value is "received"

Can use art[["History"]][["PubDate"]] to get all 3
elements.

But what if we want to access the 'received' dates for
all the articles in a single operation, then the
accepted, ...

Need a language to identify nodes with a particular
characteristic/condition

XPath

XPath is a language for expressing such node subsetting
with rich semantics for identifying nodes

by name

with specific attributes present

with attributes with particular values

with parents, ancestors, children

XPath = YALTL (Yet another language to learn)

XPath language
/node - top-level node

//node - node at any level

node[@attr-name] - node that has an attribute
named "attr-name"

node[@attr-name='bob'] - node that has attribute
named attr-name with value 'bob'

node/@x - value of attribute x in node with such
attr.

Returns a collection of nodes, attributes, etc.

Let's find the date when the articles were received

nodes = getNodeSet(top,
 "//History/PubDate[@PubStatus='received']")

2 nodes - 1 per article

Extract year, month, day
 lapply(nodes, function(x) xmlSApply(x, xmlValue))

Easy to get date "accepted" and "aheadofprint"

Text mining of abstract
Content of abstract as words

abstracts = xpathApply(top, "//Abstract", xmlValue)

Now, break up into words, stem the words, remove the
stop-words,

abstractWords = lapply(abstracts, strsplit, "[[:space:]]")

library(Rstem)
abstractWords = lapply(abstractWords,
 function(x) wordStem[[1]])

Remove stop words
lapply(abstractWords, function(x) x[x %in% stopWords])

Zillow - house prices
Thanks to Roger, yesterday evening I found the Zillow
XML API - (Application Programming Interface)

Can register with Zillow, make queries to find estimated
house prices for a given house, comparables,
demographics, ...

Put address, city-state-zip & Zillow login in URL request

Can put this at the end of a URL within xmlTreeParse()
"http://www.zillow.com/...../...?zws-
id=...&address=1029%20Bob's
%20Way&citstatezip=Berkeley"

But spaces are problematic, as are other characters.

So I use library(RCurl)

reply = getForm("http://www.zillow.com/webservice/GetSearchResults.htm",
 'zws-id' = "AB-XXXXXXXXXXX_10312q",
 address = "1093 Zuchini Way",
 citystatezip = "Berkeley, CA, 94212")

reply is text from the Web server containing XML

<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<SearchResults:searchresults
xsi:schemaLocation=\"http://www.zillow.com/static/xsd/SearchResults.xsd /vstatic/
71a179109333d30cfb3b2de866d9add9/static/xsd/SearchResults.xsd\" xmlns:xsi=
\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:SearchResults=\"http://
www.zillow.com/static/xsd/SearchResults.xsd\">\n\n <request>\n
<address>112 Bob's Way Avenue</address>\n <citystatezip>Berkeley, CA,
94212</citystatezip>\n </request>\n \n <message>\n <text>Request
successfully processed</text>\n <code>0</code>\n\t\t\n </message>\n\n
\n <response>\n\t\t<results>\n\t\t\t\n\t\t\t<result>\n\t\t\t\t
\t<zpid>24842792</zpid>\n\t<links>\n\t\t<homedetails>http://www.zillow.com/
HomeDetails.htm?city=Berkeley&state=CA&zprop=24842792&s_cid=Pa-Cv-X1-
CLz1carc3c49ms_htxqb&partner=X1-CLz1carc3c49ms_htxqb</homedetails>\n\t
\t<graphsanddata>http://www.zillow.com/Charts.htm?
chartDuration=5years&zpid=24842792&cbt=8965965681136447050%7E1%7E43-17yrvL
7nIj-Y5pqbsoqb_nh1QW4CVIhubJRAXIOkwbPosbEGChw**&s_cid=Pa-Cv-X1-
CLz1carc3c49ms_htxqb&partner=X1-CLz1carc3c49ms_htxqb</graphsanddata>\n\t
\t<mapthishome>http://www.zillow.com/search/RealEstateSearch.htm?
zpid=24842792#src=url&s_cid=Pa-Cv-X1-CLz1carc3c49ms_htxqb&partner=X1-
CLz1carc3c49ms_htxqb</mapthishome>\n\t\t<myestimator>http://www.zillow.com/
myestimator/Edit.htm?zprop=24842792&s_cid=Pa-Cv-X1-
CLz1carc3c49ms_htxqb&partner=X1-CLz1carc3c49ms_htxqb</myestimator>\n\t
\t<myzestimator deprecated=\"true\">http://www.zillow.com/myestimator/Edit.htm?
zprop=24842792&s_cid=Pa-Cv-X1-CLz1carc3c49ms_htxqb&partner=X1-
CLz1carc3c49ms_htxqb</myzestimator>\n\t</links>\n\t<address>\n\t\t<street>1292
Bob's way</street>\n\t\t<zipcode>94</zipcode>\n\t\t<city>Berkeley</city>\n\t
\t<state>CA</state>\n\t\t<latitude>34.882544</latitude>\n\t
\t<longitude>-123.11111</longitude>\n\t</address>\n\t\n\t\n\t<zestimate>\n\t
\t<amount currency=\"USD\">803000</amount>\n\t\t<last-updated>07/14/2008</last-
updated>\n\t\t\n\t\t\n\t\t\t<oneWeekChange deprecated=\"true\"></oneWeekChange>\n
\t\t\n\t\t\n\t\t\t<valueChange currency=\"USD\" duration=\"31\">-33500</
valueChange>\n\t\t\n\t\t\n\t\t<valuationRange>\n\t\t\t<low currency=\"USD
\">650430</low>\n\t\t\t

<?xml version="1.0" encoding="utf-8"?>
<SearchResults:searchresults xsi:schemaLocation="http://
www.zillow.com/static/xsd/SearchResults.xsd /vstatic/
71a179109333d30cfb3b2de866d9add9/static/xsd/SearchResults.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SearchResults="http://www.zillow.com/static/xsd/
SearchResults.xsd">

 <request>
 <address>123 Bob's Way</address>
 <citystatezip>Berkeley, CA, 94217</citystatezip>
 </request>

 <message>
 <text>Request successfully processed</text>
 <code>0</code>

 </message>

 <response>
 <results>

 <result>
 <zpid>1111111</zpid>
 <links>

Processing the result

We want to get the value of the element
 <amount>803000</amount

doc =
 xmlTreeParse(reply, asText = TRUE, useInternal = TRUE)

xmlValue(doc[["//amount"]])
[1] "803000"

Other information too

2004 Election Results

http://www.princeton.edu/~rvdb/JAVA/election2004/

Where are the data?

Within days of the election ?
USA Today, CNN, ...

http://www.usatoday.com/news/politicselections/
vote2004/results.htm

By state, by county, by senate/house, ...

read.table ?

Within the noise/ads, look for a table whose first cell is
"County"

Actually a
 <td>County</td>

How do we know this? Look at one or two HTML files
out of the 50. Verify the rest.

Then, given the associated <table> element,
we can extract the values row by row and get a
data.frame/....

XPath expression

Little bit of trial and error

getNodeSet(nj, "//table[tr/td/b/text()='Total Precincts']")

Could be more specific, e.g. tr[1] - first row

<table>........<tr>
 <td class="notch_medium" width="153">County</
b></td><td class="notch_medium" align="Right"
width="65">Total Precincts</td><td
class="notch_medium" align="Right" width="70">Precincts
Reporting</td><td class="notch_medium" align="Right"
width="60">Bush</td><td class="notch_medium"
align="Right" width="60">Kerry</td><td
class="notch_medium" align="Right" width="60">Nader</
b></td>

 </tr><

Now that we have the <table> node, read the data into
an R data structure

 rows = xmlApply(v[[1]],
 function(x)
 xmlSApply(x, xmlValue))

i.e. for each row, loop over the <td> and get its value.

Got some "\n\t\t\t" and last row is "Updated...."
first row is the County, Total Precincts,

So discard the rows without 7 entries
then remove the 7th entry ("\n\t\t\t")

v = getNodeSet(nj, "//table[tr/td/b/text()='Total Precincts']")
rows = xmlApply(v[[1]], function(x) xmlSApply(x, xmlValue))

 # only the rows with 7 elements
rows = rows[sapply(rows, length) == 7]
Remove the 7th element, and transpose to put back into
counties as rows, precinct, candidates, ... as columns.
So get a matrix of # counties by 6 matrix of character
vectors.
rows = t(sapply(rows, "[", -7))

Learning XPath
XPath is another language

part of the XML technologies

XInclude

XPointer

XSL

XQuery

Can't we extract the data from the XML tree/DOM
(Document Object Model) without it and just use R
programming - Yes

doc = xmlTreeParse("pubmed.xml")

Now have a tree in R

recursive - list of children which are lists of children

or recursive tree of C-level nodes

Write an R function which "visits" each node and
extracts and stores the data from those nodes that are
relevant

e.g. the <Author>, <PubDate> nodes

Recursive functions are sometimes difficult to write

Have to store the results "globally"/non-locally
 leads to closures/lexical scoping - "advanced R"

Have to traverse the entire tree via R code - SLOW!

Handlers

Alternative approach

when we read the XML tree into R and convert it to
a list of lists of children ...

when convert each C-level node, see if caller has a
function registered corresponding to the name/type
of node

if so call it and allow it to extract and store the
data.

Efficient Parsing

Problem with previous styles is we have the entire tree
in memory and then extract the data
 => 2 times the data in memory at the end

Bad news for large datasets

All of Wikipedia pages - 11Gigabytes

Need to read the XML as it passes as a stream,
extracting and storing the contents
and discarding the XML.

SAX parsing - "Simple API for XML"!

xmlEventParse(content,
 list(startElement = function(node, ...)....,
 endElement = function(node, ...) ...,
 text = function(x) ...,
 comment = function(x) ... ,))

Whenever XML parser sees start/end/text/comment
node, calls R function which maintains state.

Awkward to write, but there to handle very large data.

Schema....
Just like a database has a schema describing the
characteristics of columns in all tables within a
database, XML documents often have an XML Schema
(or Document Type Definition - DTD) describing the
"template" tree and what elements can/must go where,
attributes, etc.

The XML Schema is written in XML, so we can read it!

And we can actually create R data types to represent
the same elements in XML directly in R.

So we can automate some of the reading of XML
elements into useful, meaning R objects
harder to programmatically flatten into data frames.

RCurl
xmlTreeParse() & xmlEventParse() can read from files,
compressed files, URLs, direct text - but limited
connection support.

RCurl package provides very rich ways that extend R's
ability to access content from URLs, etc. over the
Internet.

HTTPS - encrypted/secure HTTP
passwords/authentication
efficient, persistent connections
multiplexing
different protocols

Pass results to XML parser or other consumers.

Exceptions/Conditions

