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ABSTRACT

Lévy discovered that the fraction of time a standard one-dimensional Brownian motion B spends
positive before time ¢ has arcsine distribution, both for ¢ a fixed time when B, #0 almost surely, and
for ¢ an inverse local time, when B, =0 almost surely. This identity in distribution is extended from
the fraction of time spent positive to a large collection of functionals derived from the lengths and
signs of excursions of B away from 0. Similar identities in distribution are associated with any process
whose zero set is the range of a stable subordinator, for instance a Bessel process of dimension d for
0<d<2.

1. Introduction

Let (B,, ¢ =0) be a Brownian motion on the line, starting at 0. Let I',.(¢) be the
time B spends above 0 up to time ¢:

r+(tj = f(: 1(B, > 0) ds.

Lévy [29] showed that for each ¢ >0 the variable I',.(¢)/¢ has the arcsine law:

du

m, forO0<u<1.

(1.a) P (t)/tedu)=

On the way to this result, Lévy showed that the same arcsine distribution is
obtained if the fraction of time spent positive, I'.(t)/t, is.considered at the
random time ¢ = T, where (T, s = 0) is the inverse of the continuous local time

process (S,, t = 0) which Lévy associated with the random set of zeros of B. We
denote this identity in distribution by

T.(8) 4 T(T)
"

(1.b)

As Lévy noted in the third paragraph of p. 326 of his 1939 paper [29], it is
remarkable that the same law for the fraction of time spent positive should
appear both at a fixed time ¢ when B, # 0 almost surely, and for the random time
t =T, when B,=0 almost surely. Our aim is to expose as best we can what lies
behind the identity of laws (1.b). This enables us to extend the identity to a large
collection of functionals derived from the lengths and signs of excursions of B
away from 0. We find similar identities for a process whose zero set is the range
of a stable subordinator. These results are closely related to the multidimensional
arcsine laws of Barlow, Pitman and Yor [2].
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We start by recalling how Lévy derived the arcsine distribution of I'.(T;)/T;.
He first showed that (T,,s=0) is an increasing process with independent
increments, or subordinator, which is stable with index o =31 There is a
one-to-one correspondence between jumps of this subordinator and maximal
open intervals during which the Brownian motion is away from zero. From the
Poisson character of the jumps of the subordinator, and the fact that each of
these jumps contributes to time positive with probability 3, independently of all
others, Lévy argued that

(1.0) (T(L), T) £ (T;n, T),
so that

T+ T

where T, =T, — T,, is independent of T, with the same stable distribution with
index 3. Lévy showed that the distribution of the right-hand variable in (1.d) is
arcsine by a two-dimensional integration. This can also be seen more simply as in
paragraph (1.1) of [2].

Using (1.¢) and the formula

N 3

(1.e) P(T, € d{)/dt = Veon) £ where s >0, t >0,
Lévy gave an explicit formula for the density of the conditional distribution
(1.9) PT(T)e-|T,=t)=P(I.(t)e-|B,=0, S, =s).

By integration with respect to the conditional distribution of S, given B, =0, he
then obtained his famous result for the time spent positive by a Brownian bridge:

(1.g) the conditional distribution of T .(t)/t given B, =0 is uniform on [0, 1].

Finally, Lévy pointed out that the unconditional distribution of I',.(¢)/¢ could be
found by conditioning on the time G, of the last zero before time ¢. Lévy showed
that G,/t too has arcsine distribution and that

" (1.h) given G, =g, the pre-g process (B,,0<u<g)isa
Brownian bridge of length g.

He then derived the arcsine law (1.a) for I .(¢)/t by applying (1.g) to the bridge in
(1.h), and using the fact that independently of what happens before g, on the
final zero-free interval of length 1 — g, the Brownian path is equally likely to go
positive or negative.

The most important ingredient in these results of Lévy is the fact that the
random zero set Z of the Brownian motion B is the closure of the range of a
stable subordinator of index a =3% Somewhat more generally, suppose B is
replaced by a diffusion on the line whose zero set is the closed range of a
-subordinator (T;, s =0), which is stable with index «, for some 0<a<1,
meaning that for every a >0,

(1.i) (T(s), s =0) £ (aT(s/a®), s = 0).

(We often use notation like T'(s) instead of T; for typographical convenience.) A
diffusion B with such an inverse local time process at zero can be constructed as



328 JIM PITMAN AND MARC YOR

in [1] using a Bessel process of dimension d =2(1 — &) for the modulus, and coin
tossing for the signs. Lévy’s formulae (1.c) and (1.d) adapt at once to this setting
to describe the law of I'.(T;)/T,. And as shown by a Laplace transform
calculation in [2], the identity in law (1.b) between I, (¢)/t and T (T)/T,
continues to hold, even though Lévy’s approach sketched above is blocked in this
setting by the lack of any analogue of the explicit formula (1.e) for a #3.

Puzzled by why (1.b) should hold so generally, we were led to analyse the
interval partition generated by the zeros up to time ¢ By this we mean the
collection of lengths of maximal intervals comprising Z° N (0, ¢), without regard
to the order in which these lengths appear. We describe the interval partition by
the sequence of ranked lengths of intervals, as in the following theorem:

THEOREM 1.1. Fix a with 0<a <1. Suppose Z is the closure of the range of a
stable subordinator (T;) of index «. Let V(t) be the infinite sequence of lengths of
the maximal open subintervals of Z° N (0, t), arranged in descending order:

(1J) V(t) = (V]([), Vz(t): V3(t)’ )
where Vi(t) = V()= V3(t)=.... Then for t >0 and s >0,
V() 4 V(T)
t T,

5

(1.k)

To illustrate this result in the Brownian case, a =3, suppose that Z is the zero
set of the Brownian motion, and each interval of Z¢ is given a sign by a fair coin
tossing process independent of interval length. So the ith longest interval of
Z°N (0, 1), that is Vi(¢), contributes with probability 3 to the sum of positive
interval lengths I, (¢), independently as i varies and independently of V(¢). The
same can be said at the random time T; instead of the fixed time t. So Lévy’s
identity (1.b) follows at once from (1.k).

Notice that for a fixed time ¢, one of the lengths appearing in the sequence V(t)
represents the age A, of the excursion in progress at time ¢:

(1.m) A,=t=G, where G, =sup{ZN(0, 1)}

is the last time in Z before t. More precisely, A, = Vg,(t), where #(t) — 1 is the
number of excursions completed before time ¢ with lifetime longer than A,. As a
complement to Theorem 1.1 we show:

THEOREM 1.2. Conditionally given V(t), the length of the final interval is picked
by length biased sampling. In symbols:

PO =j| V@)=V, forj=1,2, ...

In contrast to a fixed time ¢, the random time 7; falls in Z almost surely, so
Gri) =T, and A7) =0 almost surely. This means that every length appearing in
V(T;) represents the lifetime of a complete excursion. And #(T;) is undefined. So
despite the equality in distribution of V(¢)/t and V(T;)/T,, it is nonsense to
substitute the random time T instead of the fixed time ¢ in Theorem 1.2. But
suppose V7 is the length of the complete excursion containing a random time
point T, which given the subordinator is distributed uniformly on the interval
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(0, T;). Then, according to Theorems 1.1 and 1.2, the joint distribution of V(¢)/t
and A,/t is the same as that of V(T;)/T; and V}/T,.

Kingman [25, § 7] considered the distribution of V(T;)/T, for a more general
subordinator. In particular, in the case where (T;) is a gamma process, the law of
V(T;)/T; is the well-known Poisson—Dirichlet distribution on the infinite simplex
with parameter s. This distribution turns up in a number of different contexts, for
example in the asymptotics for the ranked cycle lengths of a. random permutation
(Shepp and Lloyd [42], Vershik and Schmidt [43, 44]), as the distribution of the
ranked sizes of atoms in the Dirichlet process prior in Bayesian statistics
(Blackwell and McQueen [5], Ferguson [11]), and in limiting models for the
abundances of genes in population genetics and species in mathematical ecology
(see, for example, Patil and Taillie [32], Hoppe [17]). Explicit but rather
intractable formulae for features of the Poisson-Dirichlet distribution such as the
joint density of the first n components can be found in papers by Watterson [46],
Ewens [10], and some -of the other references above. Perman ([34] gives
extensions of these formulae for a class of subordinators including both the stable
and gamma cases in terms of the solution of an integral equation. In the stable
case the one-dimensional density of the largest component Vi(T;)/T; is found
quite simply on the interval (3, 1], then determined recursively by the integral
equation on the intervals (3, 3], (3, 3], and so on. But explicit integration seems
possible only in the case where o =% and even then only as far as the interval
1,3]. See also Getoor [14] and Knight [26] for results on the distribution of
Vi(G,) at fixed times ¢ for a general subordinator.

While explicit description of the common finite-dimensional distributions of
V(T;)/ T, and V(t)/t in the stable case turns out to be unmanageable, Theorem 1.2
hints that there may be a simple description for the size-based permutation of the
values of V(T;)/T;, analogous to the following result of McCloskey [30] in the
Poisson—Dirichlet case:

If T, has gamma(s) distribution and Y., Ya, ... represents a size-biased permuta-
tion of V(T,)/T,, then

i—1
(1.n) Y,=5[[(1-§), fori=1,
j=1
where the &; are independent with identical beta(1, s) distribution.

Indeed, Perman [34, Corollary 3.19] has applied Theorems 1.1 and 1.2, to
derive the following remarkable analogue in the stable case:

If T has stable(a) distribution, then the size-biased permutation of V(T,)/T, is
described by (1.n) for independent and non-identically distributed §;, where &; has
beta(l — a, i) distribution.

Due to Theorem 1.1, (Y;) constructed as in (1.n) from such beta variables also
describes the length-biased permutation of the unit interval partition V(¢)/¢
associated with the stable(a) subordinator, for any ¢ > 0. These and other results
concerning size-biased sampling of the jumps of a subordinator are studied by
Perman, Pitman and Yor in [35].
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If we now think of Z as the zero set of an underlying Brownian motion or
Bessel process, Theorems 1.1 and 1.2 invite interpretation at the level of some
kind of path transformation. In the case of classical identities in distribution
related to arcsine laws for random walks, this is achieved by the Sparre-
Andersen transformations described by Feller [12, § XII1.8]. Karatzas and Shreve
[23] offer an analogous transformation in the Brownian case. Our framework is a
little different, as we have moved away from processes with independent
increments to include the Bessel case with zero set defined by a stable.
subordinator. However, by a combination of Brownian scaling and a rearrange-
ment of intervals in the zero set, we come up with the following:

THeOREM 1.3. Let (B,, t =0) be a Brownian motion on R, or a Bessel process
of dimension d on R*, for 0<d <2, starting at By=0. Let T,=inf{t: S,=1}
where (S,, t =0) is the local time process of B at 0. Let (Bf,0<t<1) be derived
from (B,, 0<u <T,) by Brownian scaling:

Bf = VT, B(tT;), where 0<t<1.
Let U be distributed uniformly on [0, 1), independently of (B¥). Let (G, D) be the
maximal interval free of zeros of B¥ which contains U, so G<U<D and
BE=B%=0. Let H=1-(D - G), and let Y be the process with lifetime H
obtained by excising the excursion of X* away from zero on the interval (G, D),
and closing up the gap:

Y_{B,’" if 0<t<G,
"B, ifGst<H.
Then

(1.0) (Y, 0<t<H)% (B, 0<t<G),

where G, =sup{r: t<1, B,=0}.

The process (B, 0=<t<1) we call a pseudo-bridge. According to Theorem 5.2
below, which extends the result of Biane, Le Gall and Yor [3] from the Brownian
case to the Bessel case, the law of the pseudo-bridge has density constant S,
relative to that of the standard bridge (B,, Osts1| B,=0), where S, is the
bridge local time at zero up to time 1.

We note the following description, similar to (1.h), of the process on the
right-hand side of (1.0): the random time G, has beta(a, 1 - &) law for
a=1-14d (see Dynkin [9]), and given G,, (B,,0<t<G,) is a Brownian or
Bessel bridge of length G;.

Theorem 1.3 contains Theorems 1.1 and 1.2 implicitly. To see this, just note
that V(1) and 1 — G, are measurable functions of (B,, 0=t = G,), and hence have
the same joint law as the corresponding functions of (Y, 0=<<¢< H), which are
V(T;)/T, and D — G by construction. Spelled out even further,

(Y, 0<t<H;1-H;V(T)/T,; T{"*) £ (B, 0<t<Gy;1~-G,; V(1); ).

In the Brownian case, two variables that can be added to the first list are the sign
of B* on (G, D) (that is, the sign of B on (GT;, DT;)), and T .(T})/T,, where
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T, (¢) is the time spent positive by B up to time ¢. Here the sign is independent of
(Y,, 0=t =< H), positive with probability 1, and by construction

+(T1) jl(y>0)dt+(1 H)1(+),

where 1(+) is the indicator of the event that B¥ is positive on (G, D). The
corresponding variables in the second list are the sign of B on (G, 1), and I, (1),
for similar reasons.

One would naturally like to extend the definition of Y beyond time H and up to
time 1 to get a Brownian motion for 0<¢=<1. This is done in Theorem 6.3 by
continuing Y after time H with a signed Brownian (or Bessel) meander of length
1— H, which given H is independent of Y on [0, H]. This meander could be
created by a transformation of the signed excursion of length 1 — H which was
excised from B¥ to obtain Y, or by further randomisation. But we do not see any
particular way of doing this with interesting implications.

The rest of the paper is organised in sections as follows:

2. Reformulation and proof of Theorems 1.1 and 1.2. Theorem 1.1 is reformu-
lated as Theorem 2.1. Theorem 2.1 is then proved using Lemma 2.2, which
describes in particular the joint distribution of X and N~, where N is a point
process, and N~ is obtained from N by deletion of a point X picked from the
points of N in an arbitrary probabilistic way.

3. Analysis at an independent exponential time. This section offers an alterna-
tive derivation of Theorems 1.1 and 1.2. A substitute for Lemma 2.2 is provided
by Theorem 3.1. This gives a remarkable description of the joint distribution of X
and N~, where N~ is derived from a Poisson process N by removal of a single
point X picked from N by h-biased sampling for some positive function h: a
random variable Y is created such that conditionally given Y, X and N~ are
independent, and N~ is still Poisson.

4. Application to occupation times. Here we recover the result of [2] concern-
ing the joint distribution of the occupation times in sectors of Walsh’s singular
diffusion in the plane.

5. Results in terms of bridges.

6. Rearrangements. Here we consider the conditional distribution of the whole
process given the interval partition it creates on (0, ¢£). This leads to the derivation
of Theorem 1.3.

7. More general subordinators. Here we formulate some of the results in the
stable case in a way that makes sense for more general subordinators, and we
indicate some converses of Theorems 1.1 and 1.2.

2. Reformulation and proof of Theorems 1.1 and 1.2
We assume throughout this section that (T;, s =0) is a stable subordinator

with index @. As is well known, the Laplace transform of 7, must then be of the
form

(2.a) E[e ") =exp(—cs0%) = exp(—s Jm a- e“")A(dx)), with 8> 0,
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where ¢ >0 is a scale constant, and A is the Lévy measure on (0, ») defined by

ca dx
2. Adx)=—7——F <x <o,
(2.b) (dx) = T a) " where 0 <x <o
Think of the range of the subordinator as a subset of a real time scaie t=0
parameterised by a local time scale s =0. Assume (7T;, s =0) is right continuous,
and let (S(2), t =0) be the continuous local time process that is the inverse of the
subordinator. So

S(t) =inf{s: T(s)>t}; T(s)=inf{t: S(t)>s}.

The counting process associated with the local times and jump lengths of the
subordinator is a Poisson process, homogeneous in the local time, with intensity
measure A for jump lengths per unit local time.

We start with an elementary remark, namely that the distribution of S(¢) for
any fixed ¢ can be derived from that of T, for any fixed s. Indeed, for any ¢ >0 and
x>0,

Pt S(t)<x)=P(S(t) <t%)
=P(T(t°*x)>1¢) (by the inverse relation)
=P(T(t*x/a*)>t/a) (for any a>0, by (1.1))
= P(T(s) > (s/x)"*) (by choice of a = t(x/s)"®)

=P(s/T¢<x).
To summarise, for t >0 and s >0,
Sy, s
2. 4
2:¢) t*  T(s)*

In particular, we note that to get the usual normalisation of local time in the
Browman case, so as to make S(t) |B,| for each fixed ¢, the parameters are
a=1% and ¢ =V2. Then (2.c) gives T(s) £ s*>/B?, and hence (1.e), as noted by
Lévy [29].

Consider now the sequence V(¢) of ranked interval lengths as in Theorem 1.1.
It is well known that

#{i: Vi(t)> ¢}

2.d) S(t) = il_rg Ae, @) for t >0,
where

2.f - _ce”

@ A=) =5

is the Lévy measure for jump lengths greater than g, and the convergence in (2.d)
is uniform on bounded ¢-intervals almost surely. Formula (2.d) shows that the
local time S(¢r) may be regarded a measurable function of V(¢), say

(2-g) 8(t) = Loc[V(t)].
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For any strictly positive, fixed or random normalizing factor X, (2.d) and (2.f)
give

V()] S@)

o Lod Y0 50

@.h) oc| ~| =%

simultaneously for all =0 a.s., and hence also for random times as well as fixed
ones.

Now fix >0 and s > 0, and consider the assertion of Theorem 1.1, namely that

V@) . V(1)

(2.4) t T

Applying Loc to both sides shows that (2.i) implies (2.c), and indeed

t t”

T, 'T(s5)"
This in turn is equivalent by the same kind of trick to

V() 4 V(T)
S(t)lla— sl/a :

(2.K)

So the random scaling can be transferred from one side to the other. Since for
each s the sequence V(T;)/s"“ just consists of the descending sequence of points
of a Poisson point process governed by A (abbreviated PPP(A)), and since the
terms of V() are also descending, Theorem 1.1 can be reformulated as follows:

THEOREM 2.1. For Borel subsets B of (0, »), let
N(B) = #{i: V(t)/S:'" € B}.
Then for each fixed t >0, the counting process N, is a PPP(A).

Let X, =A,/SY* be the point of N, corresponding to the final interval of length
A, as in (1.m). In view of (2.g), Theorem 1.2 amounts to the assertion

(2.m) X, is a point of N, picked at random by size-biased sampling:
P(X, € dx |N) =xN(dx) [ [ yNiay).

To summarise the above discussion: Theorems 1.1 and 1.2 admit an equivalent
formulation as Theorem 2.1 and (2.m). The rest of this section offers a proof of
the latter results by application of the following general lemma. An alternative
approach is offered in the following section.

Lemma 2.2 (Poisson sampling). Let (Q¥, F¥) be the space of counting measures
on a measurable space (S, S). Let Q be the law on (Q¥, F*) of a PPP(u) over
(S, S). Let f(x, n) be a non-negative jointly measurable function of a point x € S
and a counting measure n € Q*. Let X be a random point in S and N~ a random
counting measure over S defined jointly on some basic probability space (Q, F, P).
Let N=N~+ 6y be the point process obtained from N~ by addition of a single



334 JIM PITMAN AND MARC YOR

extra point at X. The following statements are equivalent:
(2.n) P(X edx, N" €edn)=f(x, n+ 6,)u(dx)Q(dn);
(2.0) P(X edx, N edn) =f(x, n)n(dx)Q(dn).

Proof. Let O, denote the distribution of n + §, when n is a PPP(u) with law Q.
By a change of variable, (2.n) amounts to

(2.p) P(X edx, N edn) = f(x, n)u(dx)Q,(dn).

But it is well known that (Q,, x € §) serves as a family of Palm distributions for
0, meaning that there is the identity of measures on (Q* x §, F* ® §),

(2.9) u(dx)Q,(dn) = n(dx)Q(dn).
See, for instance, Daley and Vere-Jones (7, § 12.1].

We note that (2.0) displays the most general possible joint distribution of X
and N where the law of N is absolutely continuous with respect to O, and X is a
point of N. The proof shows how to formulate the lemma for a more general
distribution Q on the space of counting measures (Q*, F*) instead of the law of a
PPP. Simply replace Q in (2.n) by the Q, distribution of n—4,, where
(Q;, x € §) serves as a family of Palm distributions for Q relative to y, as in (2.q).
The existence of such a disintegration of the law Q of a point process is known in
great generality (see, for example, Kallenberg [20]).

Proof of Theorem 2.1 and (2.m). Let O be the law of a PPP(A). Theorem 2.1
and (2.m) combined amount to

x
2.r P(X,€dx, N,edn) = n(dx)Q(dn),
( ' ) t t ) J‘ yn(dy)
which, by Lemma 2.2, is equivalent to
- - *
(2.s) P(X,edx, N edn) = T  Ton(d) A(dx)Q(dn),

where N; = N, — 0y, is the point process N, with the point at X, removed. Thus
N; has a point at V,(¢)/S;’* for each complete excursion interval V,(t). Now it is
clear in principle that both X, and N; are functions of the point process M on
(0, »)? defined by the jumps of the subordinator (T;, s =0):

M(B)=#{s: (s, T, - T,_) e B}, with Bc (0, ©)?

where M is a PPP(dsA(dx)). We proceed to verify (2.s) by a change of variables
from the distribution of M. Let Y,= D, — G, be the length of the jump interval
covering t. Given M =m, (S, Y,) is a.s. the unique point (s, y) of M such that
T._<tand T._+y=t, where T,_=T,_(m)= [ x1(s' <s)m(ds’ dx). That is to
say,

P(S,eds, Y,edy, M edm)=1(T,_<t, T,_+y =1t)m(ds dy)P(M € dm).
Let M~ be M with the point (S,, Y;) removed. By Lemma 2.2,

.t) P(S,eds,Y,edy, M~ edm)=1(T,_<t, T,_ +y =1t) dsA(dy)P(M € dm),
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where T,_=T,_(m). Now for a fixed s>0, let K; be the point process on
(0, ) obtained by first restricting M to (0,s) X (0, ), then projecting onto the
second coordinate and scaling via the transformation

(2.u) : (s', x)—>x/s"
That is to say, for subsets C of (0, «),
K(C)=#{s": s'<s,(T,, — T,._)/s"* e C}.

For each fixed s, the point process K, is a PPP(A), with law denoted by Q. Now
T._ = T,_(m) =s"*T(k,), where k, is the image of m under the scaling transfor-
mation (2.u), and T(n)= [xn(dx). Since N; as in (2.s) is just Ny =Ks, a
change of variables from (2.t) shows that

(2.v) P(S,eds, Y, edy, N edn)=1(s"°T <t, s"°T + y =) dsA(dy)Q(dn)
where T = T(n). Since X, =A,/SY*=1t/S}'*— T(N)), we get

t
P(S,eds, Y, e dy, X, e dx, N| € dn) = 1(;m- T e dsx, x ssll,a) dsA(dy)Q(dn),

P(X,edx, N edn)
Q(dn)

=j[ dsA(dy)l(le,a— Tedx, x ss{)—’“)
= J’ dsl(;%x— Te dx)A(s”"x, ®)

~ x| | 2| A%, ),

where
t t \¢ tx ds te
—— — T ) =( ) y 1/0’ - > _—= - _—__.
sv7= LSEHT) T TR T YGrT)te
Thus
P(X,edx, N[ edn) _ \dx| - c ( xt )“”
Q(dn) B x+T)*'T(1-a) \x+ T

= A(dx) :x%“ by (2.b).

3. Analysis at an independent exponential time

~This section presents an alternative approach to Theorems 1.1 and 1.2, based
on analysis of the intervals up to an independent exponential time. As in § 2, we
establish Theorems 1.1 and 1.2 as reformulated in Theorem 2.1 and (2.m). The
argument brings out some remarkable general features of size-biased sampling
from a Poisson point process, which are presented in Theorem 3.1.

Let T be an exponentially distributed random variable with rate 1 independent
of the stable subordinator (7;). Let N, be the point process whose points in
descending order form the normalised sequence of ranked interval lengths
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V,/8¥. Let X;=A,/S¥* which is one of the points of N;. Since it is clear a
priori by scaling invariance that N is independent of T, it suffices to show that

(3.a) NrisaPPP(A); _
(3.b) given T and N, the point Xy is picked from Ny by size-biased sampling.

For the rest of the argument, we write simply S for S;, and v for 1/a. Each
length in the sequence Vi represents either the length of one of the infinite
number of jumps of the subordinator occurring at some local time strictly before
S, or the age A of the excursion in progress at time 7. The counting process Ny
associated with V,/S" is therefore the sum of two processes:

(3.c) the process N7 counting the lengths of jumps of the subordinator strictly
before local time S, with each jump normalised by S”;

(3.d) the process counting a single point at X = Ar/S".

It will now be argued that these two counting processes are conditionally
independent given S, with just the right conditional distributions given S to make
(3.a) and (3.b) hold.

Think of T as the time of the first mark in a Poisson process of marks with rate
1 on the real time scale, independent of the subordinator. Associate with each
jump of the subordinator the real times of any marks that fall in that jump
interval, measured from the start of the jump (i.e.-the beginning of the
corresponding excursion). A big Poisson process, homogeneous in the local time
coordinate, is then obtained by counting the local times of jumps of the
subordinator, jointly with jump lengths embellished by their mark times if any.
And S is the local time of the first marked jump in this big Poisson process. This
idea has been used in a number of contexts. See, for instance, Greenwood and
Pitman [15], Rogers [38, 39]. Rogers and Williams [40, § VI.53] give a careful
formulation. The independent decomposition of this Poisson point process into
points with marks and points without implies the following formulae, where we
assume for simplicity (and without loss of generality) that the constant c in (2.a) is
c=1:

(3.f) S is exponential with rate [ (1 —e *)A(dx)=1;

(3.g) the local times and lengths of the unmarked jumps appear according to a
homogeneous Poisson point process with intensity measure e *A(dx) per
unit local time, independently of S;

(3.h) independently of S and all unmarked jumps, the age Ay, which is the time
of the first mark measured from the beginning in the first marked jump
interval, has the gamma(l — «, 1) distribution:

dx
| P(A;edx)=e " dxA(x, )= F(lTa—) e *x™% withx>0.

Now condition on §=s, and normalise all the lengths by s¥, where v=1/a.

From (3.g) by the linear change of variable x = y/s", the process of normalised

completed jumps is Poisson with mean measure

@ sdx
(1 _ a) (xsv)a+l

(3.1)  sYexp(—s'x) T =exp(—s"x)A(dx), where x>0.
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And independently of this Poisson counting process given S =s, the normalised
age X; = Ar/S" has gamma(l — a, s") distribution: for x >0,

G.i) P(Xredx|S=s)= exp(—s“x)x~*(s")}~®

_ &
rl-oa)
= vs""'x exp(—s "x)A(dx).
Now (2.a), (3.f), (3.i) and (3.j) show that conditions (d), (¢) and (f) of the next
theorem are satisfied with
N=Np, Y=8", X=X, h(x)=x, u=A.

The desired conclusions (3.a) and (3.b) then follow at once from conditions (a)
and (c) of the next theorem.

THEOREM 3.1. Let (Q¥, F¥) be the space of counting measures on a measurable
space (S, S), let u be a o-finite measure on S. Let h be a non-negative measurable
function defined on S such that
3.k) if N is a PPP(u) then P(0<Nh <) =1,

where Nh = [ hdN. Suppose Y is a non-negative random variable, X a random
point in S, and N~ a point process on S, all defined on some basic probability
space (2, F, P). Let N= N~ + Ox be the point process obtained by the addition to
N~ of a single extra point at X. The following statements (a), (b) and (c) combined
are equivalent to (d), (e) and (f) combined:

(a) N is a PPP(u),
(b) Y =T/Nh where T has standard exponential distribution independently
of N,
(c) given N and Y, X is picked from N by h-biased sampling;
’ 3
@ P(Y>y)=exp| - [ (1= e u(an)],

(e) given Y =y, X and N~ are conditionally independent, with
P(X edx | Y =y)=q(y) "h(x)e™"u(dx)
for a constant of integration q(y),
(f) given Y=y, N~ is a PPP[e "™y (dx)]. )

Proof. Since the joint law of either of the triples (N, X, Y) or (N7, X, Y)
determines that of the other, it suffices to establish that (d), (¢) and (f) hold for
any particular triple (N, X, Y) satisfying (a), (b) and (c). This is conveniently
done by supposing that N is of the form

N(B) = E 1(X; € B)

for some sequence of S-valued random variables (X;), and that given (X;) there is
a sequence of independent variables (Y;) such that Y; is exponential with rate
h(X;). Let Y =min; Y; =Y, say, and let X = X,. Then (a) holds by construction,
and (b) and (c) follow from standard properties of independent exponential
variables. It is well known that if the points of a Poisson process on § are assigned
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marks independently according to a transition probability function from S to
some other space, the result is a Poisson process on the product space. Thus the
process N* on S X (0, «) defined by

N*() =2 1[(X;, Y) e ]

is a PPP[u(dx)q(x, y) dy], where q(x, y) = h(x)e "™ is the conditional density
of Y, given X; =x. Now (X,, Y;) is picked from N* by the deterministic rule of
taking the point with minimum y-value, and N~ is the projection of N* — §4, v,
onto the x-axis. So (d), (¢) and (f) follow immediately from standard Poisson
features of N*.

We continue this section with a series of remarks concerning Theorem 3.1.

REMARK 3.2. Assuming that (a) holds, we can recognise the right-hand side of
(e) as the Laplace transform of Nh:

(3.m) P(Y >y) = E exp[—yNh] = exp[-F(y)],

say. Then the constant of integration g(y) in (d) turns out to be simply the
derivative of F at y:

(3.m) q(y)=F'(y).

RemMark 3.3. Hidden in Theorem 3.1 is the following consequence of Lemma
2.2, noted already in a special case in (2.s): if N~ is obtained by deleting a point X
from N, a PPP(u), by h-biased sampling, then

G.p) P(X edx, N" edn)= nh%);z)(x) w(dx)Q(dn),

where Q is the P distribution of N. Suppose Y is constructed as in condition (b) of
the theorem, so Y = T/Nh for a standard exponential variable T independent of
N and X. Then (a), (b) and (c) hold, and it is interesting to see how (3.p)
emerges from (d), (¢) and (f). Let Q, denote the law of a PPP(u,) where
py(dx) = e "7 u(dx). So Q, is the law of N~ given Y =y as prescribed in (f). It
is easy to check that

—(nh)y

o(y)

0, (dn) == 0(dn)
where nk = [ n(dx)h(x), and

8() = [ Q(ame 7 = P(¥>y)
by (3.m). Now (3.m) and (3.n) make

P(Y edy)=—¢'(y)dy = ¢(y)q(y) dy.
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So conditions (d), (¢) and (f) of Theorem 3.1 imply that

P(Xedx,N'edn)=fP(Xedx, N~ edn|Y=y)P(Y edy)

B U q(y)“h(x)e—h(,)ye‘("h)y

o0 o(y)q(y) dy]Q(dn)u(dx),

which reduces to (3.p).

REMARK 3.4. Suppose again that N is a PPP(u) and X is picked from N by
h-biased sampling. According to Theorem 3.1, provided that the space (Q, F, P)
on which N and X are defined allows room for a continuously distributed random
variable T independent of both N and X, a random variable Y can be created
from N and 7T such that conditionally on Y, N~ is a Poisson process independent
of X. In particular, this implies that the law of N~ is a mixture of Poisson laws, a
fact which does not seem obvious a priori, and is even well hidden in formula
(3.p). In common terminology, N~ is a Cox process.

REMARK 3.5. The part of the assumption in (3.k) that Nh >0 a.s. rules out the
case when u is a finite measure. But this assumption was made only for simplicity
of exposition. It is clear from the proof that the result still holds without assuming
Nh >0 a.s. provided the various conditions are modified to allow the possibility
of the event (Y =), in which case X is undefined and N~ is identically zero. In
particular, in the case where § is a single point, 4 and h are identified with
positive real numbers, and N with a non-negative integer-valued random variable,
Theorem 3.1 reduces to the following elementary fact: N has Poisson(u)
distribution on {0, 1, 2, ...} if and only if the distribution of (N — 1) restricted to
the event N =1 is the mixture over A of Poisson(A) distributions with respect to
die*"*1(A<p). (This fact is obvious by conditioning on the time of the last
arrival before time p in a Poisson process with rate 1 on (0, «).)

REMARK 3.6. Say that (U, V, W) is Markov if U and W are conditionally
independent given V. A curious feature of the joint law described in Theorem 3.1
is that (Y, N, X) is Markov, while (N —dy, Y, X) is also Markov. A third
equivalent description of the Markov triple (Y, N, X) is obtained by combining
(d) (the law of Y) and (c) (the law of X given Y and N) with the following
formula for the law of N given Y:

(3.9) P(Nedn|Y =y)=c(y) (nh)e™"™Q(dn),

where Q is the law of a PPP(u), and c(y) is a constant of integration which can
be calculated variously as

c(y)= f (nh)e™"MQ(dn) = —¢'(y) = ¢(y)q(y) = P(Y e dy)/dy.

This is an easy consequence of (e) and the following proposition, which is applied
conditionally given Y =y, with e "“”u(dx) instead of wu(dx), and h(x)/q(y)
instead of A(x).
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ProposiTioN 3.7. Suppose under P that N~ is a PPP(u) with distribution Q, and
N = N7+ 8y where X is independent of N~ with law

P(X € dx) = h(x)u(dx)
for some density h. Then N has law

P(N € dn) = (nh)Q(dn),
and X is picked from N by h-biased sampling.

Proof. Apply the Poisson sampling Lemma 2.2.

To conclude this section, we mention two natural extensions of Theorem 3.1
which can be obtained by minor variations of the same argument. One is a
description of the joint distribution of N and m =1 points of N picked by
repeated h-biased sampling, which is given by Perman, Pitman and Yor [35]. The
other, spelled out as Theorem 3.8 below, is obtained by using a more general
transition density g(x, y), with x €S, y =0, instead of q(x, y) = h(x)e™"*”. We
do not know of any interesting applications of this result, but it seems nonetheless
worth recording:

THEOREM 3.8. Let q(x,y), with x€S and y =0, be a transition probability
density from S to (0, ®). Let

Feey) = [ aw)du,

G(x, y)=1-F(x, y)= J:oq(x, ) du.
For y >0 define

9= [ e (),

FO) = [ q) du= [ £, puan).

Assume F(y) <o fbr all y>0. Suppose there is defined on (22, F, P) a triple
(N, X, Y) such that

(a) N is a PPP(n),
(b) P(Y>y|N)=HG(XnY),
() P(Xde'N,Y:y):M..

[ h(x, y)N(dx)’

where h(x, y)=q(x, y)/G(x, y) is the hazard rate at y associated with the density
q(x,-). Let N" =N —0x. Then

(d) P(Y >y)=exp(—F(y)),
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(e) given Y=y, X and N~ are conditionally independent, with

q(x, y) (

P(Xedx|Y=y)= TN

dx),

(f) given Y=y, N~ is a PPP G(x, y)u(dx).

Conversely, if (N~, X, Y) satisfy (d), (e) and (f), and N =N~ + 8y, then (a),
(b), (c) hold for (N, X, Y).

Notes. (i) Taking expectations in (b) gives
(@) P(Y > ) = E exp — [ log G, y)N(dx)

which can be used as a substitute for (d).
(ii) Integrating out y gives the formula

P(X edx, N~ € dn) = u(dx)P(dn) f q(x, y)epr log G(x', y)n(dx’)] dy.

4. Application to occupation times

Barlow, Pitman and Yor [2] found the joint distribution of the occupation times
in sectors of Walsh’s singular diffusion in the plane. This result, reformulated
here slightly more generally as Theorem 4.1, is an extremely close relative of
Theorem 1.1. Indeed, it was Theorem 4.1 that first led us to Theorem 1.1, and

either result can easily be derived from the other.

"~ Walsh [45] defined a diffusion process X in the plane as follows. Assume X
starts at the origin, that the radial part of X is a reflecting Brownian motion on
[0, ), and that each excursion of the radial part away from zero corresponds to
an excursion of X within a ray emanating from the origin at an angle chosen
independently according to some given distribution F on [0, 27). See [1] for a
more careful description of this process. In particular, in the case where F puts
probability p on angle 0 and probability 1 — p on angle &, the process X can be
identified as a skew Brownian motion such that

(4.2) : P(X,>0)=p, P(X,<0)=1-p.

Skew Brownian motion, introduced by It6 and McKean [18], has been studied by
Walsh [45], Harrison and Shepp [16], and Brooks and Chacon [6]. It appears
naturally in certain limit theorems for real diffusions considered by Rosenkrantz
[41], Le Gall [28], and Franchi [13]. And with Barlow in [2] we considered the
process X in the plane defined as above, but whose radial part is a Bessel process
of dimension d € (0, 2) instead of a reflecting Brownian motion. As pointed out
by Molchanov and Ostrowski [31] (see also [2]), the inverse local time at zero of
this Bessel process is a stable subordinator with index a =1 — 3d.

Walsh’s construction involves a random labelling of the jump intervals of the
subordinator, which we can describe as follows. Suppose that every jump interval
I=(T,_, T,) of the subordinator (T;) is labelled by a random variable ©,. In
Walsh’s construction, the ©, are understood to represent angles, but any
measurable space of labels is now allowed. Assume these ©, are mutually
independent as [ varies, independent also of the lengths of all intervals, and that
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the ©; have some common distribution F. To be pedantic, this means the
following: for some exhaustive listing (I(n), n=1, 2, ...) of the maximal open
intervals of Z¢, where the definition of the endpoints of I(n) may depend
measurably on the subordinator (7;) whose closed range is Z, random variables
©,(. are independent and identically distributed according to F, independently
also of (T;). This defines ®, for every.jump interval I. And for any other such
(T;)-dependent listing of the intervals, exhaustive or not, the sequence of ©
values will have the same probabilistic properties.
Define a process (©,, t € Z€) by

®t=®l lftEI,

and consider for a fixed or random time T the random occupation measure
I'(+, T) defined on measurable subsets D of ® values by

(4.) (D, T) = f " 1,00, ds

Put another way,
(4.0 I(D, T)=2, V,(T)1[©,(T) € D],
where ©,(T) is the label of the nth longest subinterval of Z°N (0, T), whose

length is V,(T). Provided T depends only on the subordinator, these labels are
independent with common distribution F.

THeoreM 4.1 [2). For disjoint measurable sets of labels D;, withi=1, ..., n, and
s, t>0, the random variables
F(Dit t) .
(4.d) S(t)”"" fori=1, ..., n,
are independent with the same joint distribution as
(4.€) L?"‘,’;TL), fori=1, ..., n

Here I'(D;, T,)/s"* has the same stable distribution with index & as T(F(D;)).
This, and the independence of I'(D;, T;) as i varies, are immediate consequences
of the Poisson character of the counting process on [0, ©) X labels which counts
the local times and labels associated with jump intervals of the subordinator. As
an immediate consequence of Theorem 4.1, we have the following corollary:

CoROLLARY 4.2 [2). The random variables

(D, t ) S(t
4.9 %, fori=1, ..., n; %
have the same joint distribution as

r(Di) T;‘) . §
4.2 —~r fori=1,.., n; Tva:
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Further description of the common joint law of the variables in (4.f) and (4.g)
can be found in [2], along with corresponding results for the bridge obtained by
conditioning X to return to zero at time ¢. In particular, according to formula
(4.a") of [2], for F(D)=p, the Stieltjes transform of the one-dimensional
distribution of I'(D, 1) for fixed D is given for u >0 by

[ 1 ]_p(u-f—l)‘”_1+qu"’hl

u+T(D, D] p+1)*+qu®

(4.h)

Lamperti [27, formula (3.17)] found the same transform for the limiting
distribution of occupation times of certain discrete time processes. Lamperti
inverted the transform to give the following explicit formula for the correspond-
ing probability density, now identified as the density of I'(D, 1):

P(I(D, 1) edx) asinna X+ x e
dx T a4+ 2ax%%* cos mar + 72’

(4.)

where £=1—x and a=(1—p)/p. In particular, for a =3 this is the density
found by Keilson and Wellner [24] for the fraction of time spent positive by a
skew Brownian motion which is positive at each fixed time with probability p.

Derivation of Theorem 4.1 from Theorem 2.1. When assigned independent
labels according to distribution F, the points of the Poisson process N, in
Theorem 2.1 that are assigned labels in D; form independent Poisson processes
with mean measures F(D;)A, for i=1, ..., n. Since adding the values of points
with labels D; gives T'(D;, £)/S(¢)"“, these must be independent stable(a) random
variables, as asserted by Theorem 4.1.

As Theorem 4.1 was proved in [2] by a different method (computation of the
joint Laplace transform via excursion theory), we offer also the following
argument:

Derivation of Theorem 2.1 from Theorem 4.1. Take the distribution of labels
to be uniform on [0, 1]. Fix ¢t > 0. Theorem 4.1 implies that

4.)) (r([so(t—;}at) OSasl)

is a process with stationary independent increments, identical in law to
(T,, 0=<a=<1). So the counting process M, defined on subsets B of (0, ) by

' W O A CCI ) }
(4.k) M,(B) #{a. SO €B
is Poisson with mean measure A. This process counts the sizes of the atoms of the
random measure [(-, t)/S(¢)"%, which for each n puts an atom of size
V,(¢)/S(t)"~ at a label chosen uniformly at random from [0, 1], independently as
n varies. Since there is probability zero that any two labels are equal, the
counting processes N, in Theorem 2.1 and M, in (4.k) are identical almost surely.

In view of the argument preceding Theorem 2.1, it is now plain that Theorems
1.1, 2.1 and 4.1 are equivalent in the sense that any one of these results can easily
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be derived from any of the others. But to build up any of these results from
scratch seems to require some non-trivial calculation.

This section would not be complete without mentioning the analogue in this
setting of Theorem 1.2. Recall from (4.c) that ©,(¢) is the label of the nth longest
subinterval of Z° N (0, ¢), whose length is V,(¢).

THEOREM 4.3. Let G, be the o-field generated by the random variables ©,(t) and
V,(t) forn=1,2,.... Then

(4.1) P(®,e-|G,)=T(, 1)/t

Proof. Due to the independence of labels and interval lengths, Theorem 1.2
implies that given ©,(t) and V,(¢) for n=1,2, ..., ©,=0,(t) with probability
V,(t). So the conclusion is immediate from formula (4.c).

On the way to his arcsine law (1.a) for Brownian motion, Lévy [29, formula
(51)], found that

(4.m) P(t™'T,(t) edu| B,>0)=§ \/(l—l_l—u> du, forO<u<l.

In combination with the arcsine law (1.a), this amounts to
(4.n) P(B,>0|t7'T . (t)=u)=u, forO<u<l,

which is a special case of Theorem 4.3. According to Theorem 4.3, formula (4.n)
must hold also in the case of a skew Brownian motion B, regardless of what
probability p there is for positive excursions, and even for a ‘skew Bessel
process’.

5. Results in terms of bridges

Let P, be the law of a bridge of length t, obtained as a conditional distribution
given te€ Z, where Z is the closed range of a subordinator (T, s =0). If we
assume for simplicity that Z is the zero set of a Brownian motion or Bessel
process (B,, t =0) set up on the canonical path space, then

Pu(:)=P(-| B,=0)

governs a Brownian or Bessel bridge of length ¢. And there are nice versions of
conditional distributions so the basic switching identity '

(5.a) P(-|T.=t)=Py(-|S.=5)

holds exactly for every s >0 and ¢ > 0. In the Brownian case this is the basis of
Lévy’s argument (1.f). See also Karatzas and Shreve [22, § 4], Kallenberg [21,
Lemma 4.1]. The switching identity allows us to reformulate Theorem 1.1 in
terms of bridges:

THEOREM S5.1. For a stable subordinator (T;), the conditional distribution of
V(t) given S, is the same for the bridge distribution P, as for the original
distribution P.
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Proof. Compute as follows:

Po,(xft—)e- s,=s)= p(@e- 7;=t) (by the switching identity (5.a))
_(Y(T) i_i)
=F ( T < |7 @
- p(Y® i_z) i
_p( e | 2=2) by @i)
_ V(o) _
—P( . € S,—s).

As we give a different approach to an extension of Theorem 5.1 in § 7, we
record the following argument, which shows that Theorem 5.1 joins Theorems
1.1, 2.1 and 4.1 in a circle of ‘equivalent’ results, any one of which can be derived
quickly from any of the others.

Derivation of Theorem 1.1 from Theorem 5.1. Assuming the conclusion of
Theorem 5.1, we see that the quantities in the first and last lines of the preceding
proof must be equal; hence so too must the quantities in the second and third
lines. Take s/t* = x, say, and use scaling to deduce that

T%)(:x):P(V(l)e-ISl:x);

but as remarked in (2.c), s/T*<S,, whence the conclusion of Theorem 1.1 for
t =1 follows, and then that for all ¢ by scaling.

The present discussion is closely related to the work of Biane, Le Gall and Yor
[3], who considered the pseudo-bridge

L
-7

in the case where B is Brownian motion and (T;) its inverse local time at zero.
Here is a straightforward generalisation of their result:

(5.b) B B(uT,), withO<su=<l,

THEOREM 5.2 (obtained by [3] in the Brownian case 6 =1). Let (T,) be the
subordinator inverse of the local time at zero (S,) of (B,), a Brownian motion, or a
Bessel process of dimension 0, for 0< 8 <2. Then the law Py, of the correspond-
ing bridge of length 1 and the law P{, of the pseudo-bridge (5.b) are mutually
absolutely continuous with

dFy
dP§,

(5.0) =cl(a+1)S,,

where a =1~ 18 and c is the scale constant determined by the normalisation of the
local time, as in (2.a) and (2.b).
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Proof. According to Molchanov and Ostrovski [31] (or see [2]), the subor-
dinator (T;) derived from a Bessel process of dimension 6 is stable with index
a =1-445. And the computation of [3] in the Brownian case a = 4 extends easily
to a general 0< o <1.

THEOREM 5.3. In the setting of Theorems 5.1 and 5.2, let G, be the o-field
generated by V(t). Then the bridge law P, and the unconditional law P are
mutually absolutely continuous on G,, with

dP,

(5.d) -

G,=cl"(a/+1)t%.

Proof. By scaling, it suffices to consider the case where t =1. By construction
of the pseudo-bridge, V(T;)/T, is the vector of interval lengths generated by the
pseudo-bridge B¥. The identity V(T;)/T, £ V(1) of Theorem 1.1 therefore
amounts to

(Se) PO#1=P on Gl’

so the result follows immediately from Theorem 5.2.

It follows at once from Theorem 5.3 and the factorisation criterion for sufficient
statistics that P, and P must have the same conditional distribution for V(¢) given
S,. Thus Theorem 5.3 provides a strengthening of Theorem 5.1. Equally,
Theorem 5.3 can be derived from Theorem 5.1 without reference to the
pseudo-bridge by checking that the formula §,/E(S,) gives the correct one-
dimensional density on the o-field generated by S,. For a way to do this, see
formula (7.b).

In the setting of § 4, where intervals are assigned independent and identically
distributed labels, it is immediate from the independence of the subordinator and
the labelling process that Theorem 5.3 still holds with G, enlarged to include the
labels generated up to time ¢, as in Theorem 4.3. And Theorem 5.1 can be
similarly extended. In the Brownian case, this shows, for example, that, for I ,.(¢)
the time spent positive up to ¢,

(5.9) P(T.(ye-|S,=s, B,=0)=P([,()e-|S =s).

Lévy hints at this identity in the paragraph mentioned below (1.b), and he could
have computed either conditional distribution by his methods. Explicit formulae
for joint densities of occupation and local times of Brownian motion can be found
in work by Perkins [33, Theorem 10] and Karatzas and Shreve [22, § 6.3].

6. Rearrangements

Our concern in this section is how to describe precisely the relation between
what happens up to fixed times ¢ and up to inverse local times T; if we keep track
of the whole zero set, or equivalently, the order in which the intervals in V(¢) or
V(T;) appear as they are laid down by the process. The whole discussion can be
conducted for a Bessel process, or just for a stable subordinator. But to be
definite we shall assume for simplicity of exposition that we are dealing with the
Brownian case « = 3. We assume the reader has some familiarity with the theory
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of Brownian excursions. For background and further references, see, for
example, Revuz and Yor [37, Chapter 12] or Rogers [39].

Consider various laws on C[0, 1] with coordinates (X,,0<t=<1) and S, the
Brownian local time at 0 up to time 1:

Q = law of standard Brownian motion started at 0;
Q' =0(|8=5);
Q, = law of standard Brownian bridge = Q(- | X, = 0);
0v= Qo(' | S =S)= Q( |X1=O; S =S)-
Also, for a distribution p on (0, =), let

0= [ Q'u(as)

and define Qf similarly in terms of the Qg. Let

v(ds) = e™*"ds (the Q distribution of S,),

V(27)
vo(ds) =se™*"ds (the Q, distribution of S,).

Then Q"=0Q, Qi°= Q. According to Theorem 5.2, Qg is the law of the
pseudo-bridge (5.b).

On the path space C[0, 1], define V=(V;, V,, ...) to be the vector of interval
lengths. Under any of the above laws,

Vi>V,>... and 2 V,=1a.s.
Then we have the following basic result:

PropOSITION 6.1. For every probability distribution u on (0, ), the distribution
of V is the same under Q" as under Qf.

Proof. The result for u =49, is Theorem 5.1, and the result for general u
follows by mixing on s.

Let (L,, R,) be the interval which contributes length V, =R, — L,. So
(6.a) {t: 0<t<1, X,#0} = (L,, R,).

The stochastic structure of the zero set of X is thus defined by the joint
distribution of any two of the random sequences L, R and V. It seems most
convenient to consider V and R. Inasmuch as the law of V is the same under both
Q" and Qf, whereas the structure of the whole zero set is obviously different for
Q" and Qf, the difference lies in the conditional distribution of R given V.,

The law of R given V is simplest to describe under Qf, and is the same
regardless of u, the distribution of local time. Informally, for any n, the intervals
of length V,, ..., V, are equally likely to appear in any of n! possible orderings.
These orderings have an obvious consistency property as n varies. And once these
orderings are determined, the value of R, can be calculated as the sum of V; over
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all i such that V; is put before V,,. This can be expressed neatly by introducing the
random variables on C[0, 1],

(6.b) U, =S8(R,)/5(1)

where (S(¢), t = 0) is the local time process. Here U, < U,, means that the interval
of length V, is placed to the left of the interval of length V,,. Equivalently:
R,<R,. And

(6.c) R,=> V,|(U,<U,), form=1,2,....

This formula makes sense and holds both Q a.s. and Q} a.s. for any u. In view of
this formula, to specify the joint law of V and R under any of these probabilities,
it suffices to specify the joint law of V and U= (U,, U, ...).

ProrosiTioN 6.2. Under Qf, for any u, the random variables U,, U,, ... are
independent with uniform [0, 1] distribution, and are independent of V.

Proof. First, it is enough to consider the case where u = §; for 0 <s <, But
since Qg(+) = Q¢ (- | S, =s), and §, is a function of V, the result is immediate from
the presentation of Qg as the law of the pseudo-bridge (5.b) and standard It6
excursion theory. (Alternatively: note that under Qj, the process (7, 0<w <ys)
is a subordinator conditioned on T, =1, which is a process with exchangeable
increments. And U, =S,/s, where §, is the local time at which the nth largest
jump of this process occurs. Now use the canonical representation of processes
with exchangeable increments due to Kallenberg [19].)

The corresponding situation under Q is only a little more complicated. Under
Q there is almost surely a last interval

(GIJ 1) = (LN, RN)

for a random index N. This N is revealed in the U sequence as the unique n such
that U, = 1. And according to Theorem 1.2,

Q(N=n|V)=V,,, forn=1,2, ....

Now to be given V and N is the same as to be given V(G,) and G,. And we know
that under Q the process (X;, 0=<t¢=<G,) given G, is just a Brownian bridge of
length G,. So essentially we are being given G, and the interval lengths for this
bridge which come from the sequence V by deleting the term V. By the previous
proposition for bridges we therefore obtain the following, first for u = v, the Q
distribution of S, so QY= Q, then for general u by first conditioning on S, then
mixing:

ProposITION 6.3. Under Q¥, for any u, there is a unique random index N such
that Uy =1, :
Q*N=n|V)=V,, forn=1,2,..,
and the U sequence with the Nth term deleted,
U, Uy, ..., Uv_y, Unsr, Uy, -

is a sequence of independent uniform [0, 1])-random variables, independent of V
and N.
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Informally, Propositions 6.1, 6.2 and 6.3 tell us how the intervals forming
{t: 0<t<1, X,#0}

are created under Q* and Qf. According to Proposition 6.1, the ranked lengths
are created with the same joint distribution in the two cases. According to
Proposition 6.2, in the case of Qf these ranked lengths appear in a purely random
order, the longest equally likely to be before or after the second longest, the 1st
and 2nd and 3rd longest equally likely to be in any of the 3! possible orders, and
so on. (The formula for R in terms of V and the relative local times U, and the
i.i.d. property of U, is just a slick formalisation of this idea.)

According to Proposition 6.3, in the case of Q" the only difference is that one
of the lengths in V is picked out by length-biased sampling to be the last interval
(G, 1); then the remaining intervals are laid down to the left of (G, 1), in purely
random order, relative to each other. Comparison of these two prescriptions
suggests a natural way of creating the interval structure under Q* from that under
Qf by a simple random shuffling scheme: on a suitable probability space
(Q,F, P), let X have distribution Qf, and let T be a uniform [0, 1]-random
variable independent of X. Let (G, Dr) denote the zero-free interval of X that
covers T, so

(Gr, Dr)=(Ln, Rn),
where N is the index at which D, — G appears in the terms of V=V(X). Then
by construction
P(N=n|V)=V,, forn=1,2,...

From the interval structure (V, R) of X, create a new interval structure (V, R*)
with the same lengths as follows: exchange the interval (G, D;) with the pattern
" of intervals from Dy to 1. Thus

R, if R, <Ry (i.e. U, < Uy),
Rr=141 if R, =Ry (i.e. n=N, U,=Uy),

Ry—Vy ifR,>Ry (i.e. U,>Uy).

These are the right ends of the zero-free intervals defined by the process

X(t) if0=<t<Gy,
X*(t)z X(Dr+t_Gr) ifGT$t<1—(DT—GT),

Clearly, V(X*)=V(X). Now it is clear that the variables U,, U,, ... defined
earlier on the canonical space via local times can be composed with X* to create
Ut, U3, ..., by using, for example, the formula for local time in terms of number
of intervals with lengths greater than €. And it is clear by construction that the
P-joint distribution of V(X*) and U(X™*) is identical to the Q*-joint distribution
of V and U. Consequently, the structure of intervals forming {¢: X, #0} under
Q* is identical to the structure of intervals forming {¢: X} # 0} under P, where
X* is the random rearrangement of X with distribution Qf, as above. To lift this
identity to the level of processes, introduce the Brownian scaling notation

1
Xa1(u) = Vo —a) Xeruo—ay forO<usl,
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for any process X and random times a < b. Let SSE and SSM stand for standard
signed excursion and signed meander on [0, 1]. Let Z be the o-field generated by
the zero set, meaning

Z=6(V,R) = o(L, R) = o(V, U)

(where the last of these equalities is true only Q" and Qf a.s. for any yu, because
the definition of U involves local times). Standard excursion theory tells us that
for any u:

Under Qf given Z, the processes X,(-)=Xy g, () for n=1,2,... are
independent SSEs.
Under Q, given Z, if N denotes the index with Ry =1,

Xn() =Xi6,1()

is a SSM, and the sequence of processes X, (+), forn=1, 2, ..., with the Nth term
deleted, is a sequence of independent SSEs, which is independent of Xy.

Also, because under Qf or Q" the whole process X can be reconstructed in a
measurable manner a.s. from (V, R) and the sequence of standardised fragments
Xi(+), X5(*), ..., to show that a process X has one of these laws, it suffices to
check that X has continuous paths and the right laws for (V, R) and the X,,(-), as
described above. We therefore obtain the following conclusion:

THEOREM 6.4. Let X have distribution Qf, and let T, independent of X, be
uniform on [0, 1]. Let (Gy, Dr) be the zero-free interval for X covering T. Let M
be a SSM independent of both X and T. Define a new process X** by

(X(¢) if 0st<Gy,
X(Dr+t—Gy) ifGr=t<1-(Dy-Gy),

X2\ Vo, - Gom

5rglt+ (Pr=Gn-1))
L if 1-(Dr—Gr)st<1l.

Then the law of X** is Q*.

Note. On the interval [0, G +1— Dy], the process X** is identical to X*
defined previously. So

(6.d) (X,*,OstsGT+1fDT;Q(,‘)é(X,,OSts‘Gl;Q“).

In the case where u = v this is Theorem 1.3.

7. More general subordinators

This section presents some extensions for more general subordinators of the
previous results in the stable case. To go beyond the stable case, it seems
essential to formulate things in a way that does not involve scaling. Previous
results of this kind are Theorems 1.2, 5.1, and 5.2. The main result of this
section, Theorem 7.1 below, combines all three of these results in a more general
setting.
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We first introduce some notation for various functions associated with a
subordinator. To facilitate comparison with previous results, we use the notation
‘2’ below to denote ‘equals in the stable case’. Suppose given a subordinator (7;)
with Lévy measure A such that A(0, )=, and no drift component, so for
>0, )

E[e™9T®)] = exp(—s J: a- e“”‘)A(dx)) £ exp(—ch"’).

" Suppose A has a density

A(dx) P

= <x <o,
p(x)= T —a) e for0<x <o

Assume p is strictly positive except perhaps on an interval of the form [a, «) for
some a > 0. The functions

‘Q’

( ~-a)
h(x) = Alx)/p(x) = x/a
will play an important role. So too will the density functions
p(t, )= P(S, € ds)/ds,
6(s, t) = P(T; e dt)/ds.
In principle, either of these functions can be calculated from the other, due to the
inverse relation between (S,) and (7). Neither function assumes a simple form in

the stable case, unless a = 3. But their ratio is simple in the stable case, whatever
a, due to (2.c):

A(x) = A(x, ©) =

6(s, t) .
D¢, 5):= (s, )—— a-.

p(t, s) t
Bridge distributions (P, t = 0) can be identified, as by Kallenberg in [21], as the
family of Palm distributions on the basic probability space (Q, F, P) associated
with the local-time random measure d$,:

EWS, ; F
Po(F) = _%(é_s,)_) where FeF,t>0.
As suggested by [21, Lemma 4.1], the basic switching identity
(7.a) P(|T=t)=Po(|S.=5)

holds in this setting modulo null sets. We shall assume for simplicity that.good
versions of the conditional distributions exist so that (7.a) holds identically in s
and ¢. Then (7.a) implies that

0(s, ) » cT(a+1)s

(7.b) Po(S, € ds)/ds = m) e p(t, s)
where
(7.¢) m(t) = f oG, t)ds—E(dtS)éct;(;)
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THEOREM 7.1. Let G, be the o-field generated by the sequence of lengths
Vi(t) > Vy(t) > ...

of maximal intervals in the random set Z°N (0, t), where Z is the closure of the
range of a subordinator (T,) as above. Let sup{ZN(0,t)}=t— A, and let
H,=Y¥,h(V, (). Then, forn=1,2, ...,

(7.d) P(A, =V, ()| G) =h(V,())/H,.

The unconditional law P, and the bridge law P,, are mutually absolutely continuous
on G,, with

dapP
. H,/S,.
(7.e) ap, G, =m(t)H,/
Similarly, for the laws P; and Py, obtained by further conditioning on S, =s,
dap;
1 ®(s, 5)H,
(7.9 P G, =®(t, s)H,/s

and (7.d) holds also with P; in lieu of P.

Proof. Part (7.f) together with (7.d) for P{ instead of P follow immediately
from Lemmas 7.2 and 7.3 below. To derive (7.¢) from (7.f), compute as follows:
for GeG,,

P(G ; S, e ds) = P}(G)p(t, 5) ds
= Po(GH)®(t, s)s™'p(t, s)ds  (by (7.1))
= Py(GH,)0(s, t)s™' ds
= Py (GH,, S, e ds)m(t)s~'ds (by (7.b)).
LemMA 7.2. Let N, be the point process on (0, ®) which counts the interval
lengths up to time G,=t— A,:
N()=#{n: V.(De -} - 1A e").
Let Q7 be the law of a Poisson point process N with intensity sA(dx) over
x € (0, ©), conditioned on [ xN(dx)=1t. Then
(7.8) Pi(N, € dn) = Qi(dn),
(s, t —
p(t ,S)
Proof. Formula (7.g) follows at once from the switching identity (7.a) and the

Poisson character of the jumps of the subordinator (7;). To derive (7.h), we recall
the well-known facts that

(7.h) * Pi(A, eda, N, € dn) = daA(a) —=—— Q;_,(dn).

P(A, € da) = m(t — a) daA(a),

and that under P, given A, =a, the process on [0, ¢t —a] is distributed as under
the bridge law Py,_,. See, for example, [21]. This enables us to compute

P(A,€eda, N, e dn, S, € ds) = m(t —a) daA(a)Py,_,(N,_, € dn, S,_, € ds)
=m(t —a) daA(a)Py,_.(S,—, € ds)Q:_.(dn),
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where Q% appears as the P}, distribution of N,, by (7.g). This expression and
(7.b) yield (7.h).

LemMAa 7.3. Let M be a PPP(u), = a function such that MZ has probability
density 6(t), with t >0, and let (Q,) be a regular conditional distribution for M
given MZ =t, with t>0. Suppose defined on (R, F, P) a point process N and a
random variable A such that

P(A €da, N € dn) = g(a)u(da)Q,_s)(dn).
Let N* =N+ 6,. Then P(N™ € dn) = (nh,)Q,(dn), where

hi(a)=g(a)6(:)/6(t — Z(a)),
and A is picked from N* by h,-biased sampling:
P(A eda | N* = n) = h(a)n(da)/nh,.

Proof. Conditioning a point process n to have sum nX =¢, and a point at a, is
the same as conditioning n to have a point at a, and n — §, to have sum t — Z(a).
Let Q denote the law of a PPP(u). From the description (2.q) of the Palm
distributions for Q, it follows that for n with distribution Q,= Q(-|nZ=1),

Q,-x@) serves as the Palm distribution of n — §, given n with a point at a. The
mean measure for Q, is u, where

u(da) = Qin(da) = Qln(da) | nZ=1]
_Q[n(da)1(nZ € dt)]
~ Q(nZed)

= u(da)6(t — 2(a))/ 6(2).
Thus the assumptions on N and A make

P(A eda, N € dn) = h,(a)u,(da)Q, _sy(dn).

By the above description of the Palm measures associated with Q, and the remark
below Lemma 2.2, this implies that

P(A €da, N* € dn) = h(a)Q,(dn)n(da).
CoroLLARY 7.4. Let 8(t) = tp(t)/A(¢). Then for G, e G,
Pi[G,6(A))] = PoG)®(t, s)t/s = PoG)P[6(A))].

Proof. The first equality is immediate from (7.f) and t'h.e fact that ¥, V, (1) =1t
a.s. The second equality follows by two applications of the first one.

REMARKs. In the stable case, h(t) =t/«. Hence also H,=t/a, and (7.e) shows
that [dP/dP,] =m(t)t/(aS,) on G,, which is the conclusion of Theorem 5.2.
Consequently, in the stable case, for G, € G,,

(7'i) P(G, | S,) = Po (G, | S.),



354 JIM PITMAN AND MARC YOR

as asserted by Theorem 5.1. The above corollary offers one kind of extension of
this identity to the general case. Another extension, immediate from (7.€), is

Po,(G,H, | Sl)

(7.|) P(Gt l St) = Po:(H: I Sz) ’

where H, = Y, h(V,(1)).

Converses to Theorems 1.1 and 1.2. We conclude with some remarks on
characterisation of stable subordinators via the conclusions of Theorems 1.1 and
1.2. We would like to thank Pat Fitzsimmons for a communication in this
connection, which we have incorporated in the following remarks.

Starting with Theorem 1.2, it seems reasonable to. conjecture that the
conclusion of this result is characteristic of the stable case. At least under the
regularity conditions imposed at the beginning of this section, this follows from
Theorem 7.1. Indeed, it is not hard to show that (7.d) forces A(x)=cx on
{x: p(x)>0}, for some constant c; then that {x: p(x)>0} = (0, ), and finally
that h(x) = cx for all x >0. So the stable case must obtain.

Turning to Theorem 1.1, we see that the conclusion of this theorem is the
conjunction of the following three assertions:

(7.1) the distribution of V(t)/t does not depend on t;
(7.9) the distribution of V(T,)/T, does not depend on s;
(7.k) V(t)/t£ V(T,)/T, for some t and s.

Both (7.i) and (7.)) are elementary consequences of stability, and each is
characteristic of the stable case, as we will indicate below. Presumably so too is
the less obvious consequence of stability (7.k), but we do not see an argument.
Anyway, condition (7.k) divorced from the others seems rather artificial.

That (7.i) is characteristic of the stable case can be seen using the interval-
counting construction (2.d) of S,. For (7.i) and (2.d) imply that A(x) is regularly
varying at 0, and hence that there exists p >0 such that

S/tP LS, JuP

for all ¢, u > 0. Consequently, (S,, ¢ = 0) is the inverse of a stable subordinator.

That (7.j) is characteristic of the stable case can be deduced as follows. The
PPP description of the jumps of a subordinator implies easily that the law of
V(T;)/T, determines the law of the process (7,/T;, 0<u<s). This in turn
determines the law of T, up to a constant scale factor by virtue of the following
lemma.

LemMA 7.5. For a subordinator (T, 0 < u <1), the law of T, is determined up to
a constant scale factor by the law of the process (T,/T,, 0<u <1).

Proof (due to David Aldous and Steven Evans). Let W =T, —Ti. Since
T,/W =(T,/T))(1 - Ty/T,), from (T,/T;, 0<u<1) we can construct the process
(T,/W, 0<u=<3). Let N be the point process on (0, «) recording the magnitudes
of jumps of this latter process. Then N is a Cox process with directing measure
(i.e. random intensity) v given by

v(A) = 3A(WA),
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where A is the Lévy measure of T. By general point process theory (see
Kallenberg [20]), the law of v is determined by that of N. But the law of v
determines that of

1
inf{x: v(x,®)<1}= —“—,inf{x: A(x, ©) <2}

So the distribution of W (and hence that of T;) is determined up to a constant
scale factor.

REemaRk 7.6. It is not always the case that the law of T is determined up to a
scale factor by that of T,/T, for a fixed 0<u <1. Indeed, the law of Ty/T, is
beta(3, 3), both if 7; has exponential distribution, and if 7, is stable with index 1.
These cases are distinguished by the law of T,/T; for any u other than 3.
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