Homework 8
Statistics 205B: Spring 2008
Due on March 20, 2008

1. (Problem 1.12 from section 3.1 in Durrett)
 Let \(X_1, X_2, X_3, \ldots \) be i.i.d. uniform on \((0, 1)\), let \(S_n = X_1 + X_2 + \cdots + X_n \), and \(T = \inf\{n : S_n > 1\} \). Show that \(\mathbb{P}(T > n) = 1/n! \), so \(\mathbb{E}T = e \) and \(\mathbb{E}S_T = e/2 \).

2. (Problem 1.13 from section 3.1 in Durrett)
 Let \(X_1, X_2, X_3, \ldots \) be i.i.d. with \(\mathbb{P}(X_1 = 1) = p > 1/2 \) and \(\mathbb{P}(X_1 = -1) = 1 - p \), and let \(S_n = X_1 + X_2 + \cdots + X_n \). Let \(\alpha = \inf\{m : S_m > 0\} \) and \(\beta = \inf\{n : S_n < 0\} \).
 (a) Use Exercise 3.1.9 to conclude that \(\mathbb{P}(\alpha < \infty) = 1 \) and \(\mathbb{P}(\beta < \infty) < 1 \).
 (b) If \(Y = \inf S_n \), then \(\mathbb{P}(Y \leq -k) = \mathbb{P}(\beta < \infty)^k \).
 (c) Apply Wald’s equation to \(\alpha \wedge n \) and let \(n \to \infty \) to get \(\mathbb{E} \alpha = 1/\mathbb{E}X_1 = 1/(2p - 1) \).
 Comparing with exercise 1.10 shows \(\mathbb{P}(\bar{\beta} = \infty) = 2p - 1 \).

3. (Problem 1.15 from section 3.1 in Durrett)
 (Wald’s second equation.) Let \(X_1, X_2, \ldots \) be i.i.d. with \(\mathbb{E}X_n = 0 \) and \(\mathbb{E}X_n^2 = \sigma^2 < \infty \). If \(T \) is a stopping time with \(\mathbb{E}T < \infty \) then \(\mathbb{E}S_T^2 = \sigma^2 \mathbb{E}T \).
 Hint: Compute \(\mathbb{E}S_{T\wedge n}^2 \) by induction and show that \(S_{T\wedge n} \) is a Cauchy sequence in \(L^2 \).

4. Show that if the random walk \(S_n \) is recurrent then so is the random walk \(S_{k \times n} \) for each natural \(k \).

5. Consider a random walk \(S_n \) in \(\mathbb{R}^2 \) where \(S_n = \sum_{i=1}^n X_i \) and \(X_i \) are i.i.d. with \(\mathbb{E}[X_i(1)] = \mathbb{E}[X_i(2)] = 0 \) and \(\mathbb{E}[X_i(1)^2 + X_i(2)^2] < \infty \). Let \(U((-1,1) \times (-1,1)) \) be the occupation measures of the \((-1,1) \times (-1,1)\) square; that is, the expected value of the number of visits of the walk to the square. Show that \(U((-1,1) \times (-1,1)) = \infty \).
 From what we’ve seen in class this implies that the random walk \(S_n \) is recurrent.