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Abstract

We introduce a class of nonstationary covariance functions for Gaussian
process (GP) regression. Nonstationary covariance functions allow the
model to adapt to functions whose smoothness varies with the inputs.
The class includes a nonstationary version of the Matérn stationary co-
variance, in which the differentiability of the regression function is con-
trolled by a parameter, freeing one from fixing the differentiability in
advance. In experiments, the nonstationary GP regression model per-
forms well when the input space is two or three dimensions, outperform-
ing a neural network model and Bayesian free-knot spline models, and
competitive with a Bayesian neural network, but is outperformed in one
dimension by a state-of-the-art Bayesian free-knot spline model. The
model readily generalizes to non-Gaussian data. Use of computational
methods for speeding GP fitting may allow for implementation of the
method on larger datasets.

1 Introduction

Gaussian processes (GPs) have been used successfully for regression and classification
tasks. Standard GP models use a stationary covariance, in which the covariance between
any two points is a function of Euclidean distance. However, stationary GPs fail to adapt
to variable smoothness in the function of interest [1, 2]. This is of particular importance in
geophysical and other spatial datasets, in which domain knowledge suggests that the func-
tion may vary more quickly in some parts of the input space than in others. For example, in
mountainous areas, environmental variables are likely to be much less smooth than in flat
regions. Spatial statistics researchers have made some progress in defining nonstationary
covariance structures for kriging, a form of GP regression. We extend the nonstationary
covariance structure of [3], of which [1] gives a special case, to a class of nonstationary
covariance functions. The class includes a Matérn form, which in contrast to most covari-
ance functions has the added flexibility of a parameter that controls the differentiability
of sample functions drawn from the GP distribution. We use the nonstationary covariance
structure for one, two, and three dimensional input spaces in a standard GP regression
model, as done previously only for one-dimensional input spaces [1].

The problem of variable smoothness has been attacked in spatial statistics by mapping



the original input space to a new space in which stationarity is assumed, but research has
focused on multiple noisy replicates of the regression function with no development nor
assessment of the method in the standard regression setting [4, 5]. The issue has been ad-
dressed in regression spline models by choosing the knot locations during the fitting [6] and
in smoothing splines by choosing an adaptive penalizer on the integrated squared derivative
[7]. The general approach in spline and other models involves learning the underlying basis
functions, either explicitly or implicitly, rather than fixing the functions in advance. One
alternative to a nonstationary GP model is mixtures of stationary GPs [8, 9]. Such meth-
ods adapt to variable smoothness by using different stationary GPs in different parts of the
input space. The main difficulty is that the class membership is a function of the inputs;
this involves additional unknown functions in the hierarchy of the model. One possibility
is to use stationary GPs for these additional unknown functions [8], while [9] reduce com-
putational complexity by using a local estimate of the class membership, but do not know
if the resulting model is well-defined probabilistically. While the mixture approach is in-
triguing, neither of [8, 9] compare their model to other methods. In our model, there are
unknown functions in the hierarchy of the model that determine the nonstationary covari-
ance structure. We choose to fully model the functions as Gaussian processes themselves,
but recognize the computational cost and suggest that simpler representations are worth
investigating.

2 Covariance functions and sample function differentiability

The covariance function is crucial in GP regression because it controls how much the data
are smoothed in estimating the unknown function. GP distributions are distributions over
functions; the covariance function determines the properties of sample functions drawn
from the distribution. The stochastic process literature gives conditions for determining
sample function properties of GPs based on the covariance function of the process, sum-
marized in [10] for several common covariance functions. Stationary, isotropic covariance
functions are functions only of Euclidean distance, τ . Of particular note, the squared expo-
nential (also called the Gaussian) covariance function, C(τ) = σ2 exp

(

−(τ/κ)2
)

, where
σ2 is the variance and κ is a correlation scale parameter, has sample functions with in-
finitely many derivatives. In contrast, spline regression models have sample functions that
are typically only twice differentiable. In addition to being of theoretical concern from an
asymptotic perspective [11], other covariance forms might better fit real data for which it is
unlikely that the unknown function is so highly differentiable. In spatial statistics, the expo-
nential covariance, C(τ) = σ2 exp (−τ/κ) , is commonly used, but this form gives sample
functions that, while continuous, are not differentiable. Recent work in spatial statistics has
focused on the Matérn form, C(τ) = σ2 1

Γ(ν)2ν−1 (2
√

ντ/κ)
ν
Kν (2

√
ντ/κ) , where Kν(·)

is the modified Bessel function of the second kind, whose order is the differentiability pa-
rameter, ν > 0. This form has the desirable property that sample functions are bν − 1c
times differentiable. As ν → ∞, the Matérn approaches the squared exponential form,
while for ν = 0.5, the Matérn takes the exponential form. Standard covariance functions
require one to place all of one’s prior probability on a particular degree of differentiability;
use of the Matérn allows one to more accurately, yet easily, express prior lack of knowledge
about sample function differentiability. One application for which this may be of particular
interest is geophysical data.

[12] suggest using the squared exponential covariance but with anisotropic distance,
τ(xi,xj) =

√

(xi − xj)T ∆−1(xi − xj), where ∆ is an arbitrary positive definite ma-
trix, rather than the standard diagonal matrix. This allows the GP model to more easily
model interactions between the inputs. The nonstationary covariance function we intro-
duce next builds on this more general form.



3 Nonstationary covariance functions

One nonstationary covariance function, introduced by [3], is C(xi,xj) =
∫

<2 kxi(u)kxj (u)du, where xi, xj , and u are locations in <2, and kx(·) is a ker-
nel function centered at x. One can show directly that C(xi,xj) is positive definite in
<p, p = 1, 2, . . ., [10]. For Gaussian kernels, the covariance takes the simple form,

CNS(xi,xj) = σ2|Σi|
1

4 |Σj |
1

4 | (Σi + Σj) /2|− 1

2 exp (−Qij) , (1)

with quadratic form

Qij = (xi − xj)
T ((Σi + Σj) /2)

−1
(xi − xj), (2)

where Σi, which we call the kernel matrix, is the covariance matrix of the Gaussian kernel
at xi. The form (1) is a squared exponential correlation function, but in place of a fixed
matrix, ∆, in the quadratic form, we average the kernel matrices for the two locations. The
evolution of the kernel matrices in space produces nonstationary covariance, with kernels
that drop off quickly producing locally short correlation scales. Independently, [1] derived a
special case in which the kernel matrices are diagonal. Unfortunately, so long as the kernel
matrices vary smoothly in the input space, sample functions from GPs with the covariance
(1) are infinitely differentiable [10], just as for the stationary squared exponential.

To generalize (1) and introduce functions for which sample path differentiability varies, we
extend (1) as proven in [10]:

Theorem 1 Let Qij be defined as in (2). If a stationary correlation function, RS(τ), is
positive definite on <p for every p = 1, 2, . . ., then

RNS(xi,xj) = |Σi|
1

4 |Σj |
1

4 |(Σi + Σj) /2|− 1

2 RS
(

√

Qij

)

(3)

is a nonstationary correlation function, positive definite on <p, p = 1, 2, . . ..

One example of nonstationary covariance functions constructed in this way is a nonstation-
ary version of the Matérn covariance,

CNS(xi,xj) =
σ2 |Σi|

1

4 |Σj |
1

4
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∣
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−
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(

2
√

νQij

)

. (4)

Provided the kernel matrices vary smoothly in space, the sample function differentiabil-
ity of the nonstationary form follows that of the stationary form, so for the nonstationary
Matérn, the sample function differentiability increases with ν [10].

4 Bayesian regression model and implementation

Assume independent observations, Y1, . . . , Yn, indexed by a vector of input or feature val-
ues, xi ∈ <P , with Yi ∼ N (f(xi), η

2), where η2 is the noise variance. Specify a Gaussian

process prior, f(·) ∼ GP
(

µf , CNS
f (·, ·)

)

, where CNS
f (·, ·) is the nonstationary Matérn co-

variance function (4) constructed from a set of Gaussian kernels as described below. For
the differentiability parameter, we use the prior, νf ∼ U(0.5, 30), which varies between
non-differentiability (0.5) and high differentiability. We use proper, but diffuse, priors for
µf , σ2

f , and η2.The main challenge is to parameterize the kernel matrices, since their evo-
lution determines how quickly the covariance structure changes in the input space and the
degree to which the model adapts to variable smoothness in the unknown function. In many
problems, it seems natural that the covariance structure would evolve smoothly; if so, the
differentiability of the regression function will be determined by νf .



We put a prior distribution on the kernel matrices as follows. Any location in the input
space, xi, has a Gaussian kernel with mean xi and covariance (kernel) matrix, Σi. When
the input space is one-dimensional, each kernel ’matrix’ is just a scalar, the variance of
the kernel, and we use a stationary Matérn GP prior on the log variance so that the vari-
ances evolve smoothly in the input space. Next consider multi-dimensional input spaces;
since there are (implicitly) kernel matrices at each location in the input space, we have
a multivariate process, the matrix-valued function, Σ(·). Parameterizing positive definite
matrices as a function of the input space is a difficult problem; see [7]. We use the spectral
decomposition of an individual covariance matrix, Σi,

Σi = Γ(γ1(xi), . . . , γQ(xi))D(λ1(xi), . . . , λP (xi))Γ(γ1(xi), . . . , γQ(xi))
T , (5)

where D is a diagonal matrix of eigenvalues and Γ is an eigenvector matrix constructed
as described below. λp(·), p = 1, . . . , P , and γq(·), q = 1, . . . , Q, which are func-
tions on the input space, construct Σ(·). We will refer to these as the eigenvalue
and eigenvector processes, and to them collectively as the eigenprocesses. Let φ(·) ∈
{log(λ1(·)), . . . , log(λP (·)), γ1(·), . . . , γQ(·)} denote any one of these eigenprocesses. To
have the kernel matrices vary smoothly, we ensure that their eigenvalues and eigenvectors
vary smoothly by taking each φ(·) to have a GP prior with a single stationary, anisotropic
Matérn correlation function, common to all the processes and described later. Using a
shared correlation function gives us smoothly-varying kernels, while limiting the number
of parameters. We force the eigenprocesses to be very smooth by fixing ν = 30. We do
not let ν vary, because it should have minimal impact on the regression estimate and is not
well-informed by the data.

Parameterizing the eigenvectors of the kernel matrices using Givens angles, with each an-
gle a function on <P , the input space, is difficult, because the angle functions have range
[0, 2π) ≡ S1, which is not compatible with the range of a GP. To avoid this, we overparam-
eterize the eigenvectors, using Q = P (P − 1)/2 + P − 1 Gaussian processes, γq(·), that
determine the directions of a set of orthogonal vectors. Here, we demonstrate the construc-
tion of the eigenvectors for xi ∈ <2 and xi ∈ <3; a similar approach, albeit with more
parameters, applies to higher-dimensional spaces, but is probably infeasible in dimensions
larger than five or so. In <3, we construct an eigenvector matrix for an individual location
as Γ = Γ3Γ2, where

Γ3 =







a
labc

−b
lab

−ac
lablabc

b
labc

a
lab

−bc
lablabc

c
labc

0 lab

labc






, Γ2 =





1 0 0
0 u

luv

−v
luv

0 v
luv

u
luv



 .

The elements of Γ3 are functions of three random variables, {A,B,C}, where labc =√
a2 + b2 + c2 and lab =

√
a2 + b2. (Γ3)32 = 0 is a constraint that saves a degree of

freedom for the two-dimensional subspace orthogonal to Γ3. The elements of Γ2 are based
on two random variables, U and V . To have the matrices, Σ(·), vary smoothly in space,
a, b, c, u and v, are the values of the processes, γ1(·), . . . , γ5(·) at the input of interest.

One can integrate f , the function evaluated at the inputs, out of the GP model. In the
stationary GP model, the marginal posterior contains a small number of hyperparameters
to either optimize or sample via MCMC. In the nonstationary case, the presence of the
additional GPs for the kernel matrices (5) precludes straightforward optimization, leaving
MCMC. For each of the eigenprocesses, we reparameterize the vector, φ, of values of the
process at the input locations, φ = µφ +σφL(∆(θ))ωφ, where ωφ ∼ N (0, I) a priori and
L is a matrix defined below. We sample µφ, σφ, and ωφ via Metropolis-Hastings separately
for each eigenprocess. The parameter vector θ, involving P correlation scale parameters
and P (P − 1)/2 Givens angles, is used to construct an anisotropic distance matrix, ∆(θ),
shared by the φ vectors, creating a stationary, anisotropic correlation structure common to
all the eigenprocesses. θ is also sampled via Metropolis-Hastings. L(∆(θ)) is a general-
ized Cholesky decomposition of the correlation matrix shared by the φ vectors that deals
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Figure 1: On the left are the three test functions in one dimension, with one simulated set
of observations (of the 50 used in the evaluation), while the right shows the test function
with two inputs.

with numerically singular correlation matrices by setting the ith column of the matrix to
all zeroes when φi is numerically a linear combination of φ1, . . . , φi−1 [13]. One never
calculates L(∆(θ))−1 or |L(∆(θ))|, which are not defined, and does not need to introduce
jitter, and therefore discontinuity in φ(·), into the covariance structure.

5 Experiments

For one-dimensional functions, we compare the nonstationary GP method to a station-
ary GP model1, two neural network implementations2 , and Bayesian adaptive regression
splines (BARS), a Bayesian free-knot spline model that has been very successful in com-
parisons in the statistical literature [6]. We use three test functions [6]: a smoothly-varying
function, a spatially inhomogeneous function, and a function with a sharp jump (Figure
1a). For each, we generate 50 sets of noisy data and compare the models using the means,
averaged over the 50 sets, of the standardized MSE,

∑

i(f̂i − fi)
2/

∑

i(fi − f̄)2, where f̂i

is the posterior mean at xi, and f̄ is the mean of the true values. In the non-Bayesian neural
network model, f̂i is the fitted value and, as a simplification, we use a network with the op-
timal number of hidden units (3, 3, and 8 for the three functions), thereby giving an overly
optimistic assessment of the performance. To avoid local minima, we used the network fit
that minimized the MSE (relative to the data, with yi in place of fi in the expression for
MSE) over five fits with different random seeds.

For higher-dimensional inputs, we compare the nonstationary GP to the stationary GP, the
neural network models, and two free-knot spline methods, Bayesian multivariate linear
splines (BMLS) [14] and Bayesian multivariate automatic regression splines (BMARS)
[15], a Bayesian version of MARS [16]. We choose to compare to neural networks and

1We implement the stationary GP model by replacing CNS
f (·, ·) with the Matérn stationary cor-

relation, still using a differentiability parameter, νf , that is allowed to vary.
2For a non-Bayesian model, we use the implementation in the statistical software R, which fits

a multilayer perceptron with one hidden layer. For a Bayesian version, results from R. Neal’s FBM
software were kindly provided by A. Vehtari.



Table 1: Mean (over 50 data samples) and 95% confidence interval for standardized MSE
for the five methods on the three test functions with one-dimensional input.

Method Function 1 Function 2 Function 3
Stat. GP .0083 (.0073,.0093) .026 (.024,.029) .071 (.067,.074)

Nonstat. GP .0083 (0.0073,.0093) .015 (.013,.016) .026 (.021,.030)
BARS .0081 (.0071,.0092) .012 (.011,.013) .0050 (.0043,.0056)

Bayes. neural net. .0082 (.0072,.0093) .011 (.010,.014) .015 (.014,.016)
neural network .0108 (.0095,.012) .013 (.012,.015) .0095 (.0086,.010)

splines, because they are popular and these particular implementations have the ability
to adapt to variable smoothness. BMLS uses piecewise, continuous linear splines, while
BMARS uses tensor products of univariate splines; both are fit via reversible jump MCMC.
We use three datasets, the first a function with two inputs [14] (Figure 1b), for which we use
225 training inputs and test on 225 inputs, for each of 50 simulated datasets. The second
is a real dataset of air temperature as a function of latitude and longitude [17] that allows
assessment on a spatial dataset with distinct variable smoothness. We use a 109 observation
subset of the original data, focusing on the Western hemisphere, 222.5◦ − 322.5◦ E and
62.5◦S-82.5◦N and fit the models on 54 splits with 107 training examples and two test
examples and one split with 108 training examples and one test example, thereby including
each data point as a test point once. The third is a real dataset of 111 daily measurements
of ozone [18] included in the S-plus statistical software. The goal is to predict the cube root
of ozone based on three features: radiation, temperature, and wind speed. We do 55 splits
with 109 training examples and two test examples and one split of 110 training examples
and one test example. For the non-Bayesian neural network, 10, 50, and 3 hidden units
were optimal for the three datasets, respectively.

Table 1 shows that the nonstationary GP does as well or better than the stationary GP,
but that BARS does as well or better than the other methods on all three datasets with
one input. Part of the difficulty for the nonstationary GP with the third function, which
has the sharp jump, is that our parameterization forces smoothly-varying kernel matrices,
which prevents our particular implementation from picking up sharp jumps. A potential
improvement would be to parameterize kernel matrices that do not vary so smoothly. Table
2 shows that for the known function on two dimensions, the GP models outperform both
the spline models and the non-Bayesian neural network, but not the Bayesian network. The
stationary and nonstationary GPs are very similar, indicative of the relative homogeneity
of the function. For the two real datasets, the nonstationary GP model outperforms the
other methods, except the Bayesian network on the temperature dataset. Predictive density
calculations that assess the fits of the functions drawn during the MCMC are similar to the
point estimate MSE calculations in terms of model comparison, although we do not have
predictive density values for the non-Bayesian neural network implementation.

6 Non-Gaussian data

We can model non-Gaussian data, using the usual extension from a linear model to a gen-
eralized linear model, for observations, Yi ∼ D (g (f (xi))), where D(·) (g(·)) is an appro-
priate distribution (link) function, such as the Poisson (log) for count data or the binomial
(logit) for binary data. Take f(·) to have a nonstationary GP prior; it cannot be integrated
out of the model because of the lack of conjugacy, which causes slow MCMC mixing. [10]
improves mixing, which remains slow, using a sampling scheme in which the hyperparam-
eters (including the kernel structure for the nonstationarity) are sampled jointly with the
function values, f , in a way that makes use of information in the likelihood.



Table 2: For test function with two inputs, mean (over 50 data samples) and 95% confidence
interval for standardized MSE at 225 test locations, and for the temperature and ozone
datasets, cross-validated standardized MSE, for the six methods.

Method Function with 2 inputs Temp. data Ozone data
Stat. GP .024 (.021,.026) .46 .33

Nonstat. GP .023 (.020,.026) .36 .29
Bayesian neural network .020 (.019,.022) .35 .32

neural network .040* (.033,.047) .60 .34
BMARS .076 (.065,.087) .53 .33
BMLS .033 (.029,.038) .78 .33

* [14] report a value of .07 for a neural network implementation

We fit the model to the Tokyo rainfall dataset [19]. The data are the presence of rainfall
greater than 1 mm for every calendar day in 1983 and 1984. Assuming independence
between years [19], conditional on f(·) = logit(p(·)), the likelihood for a given calendar
day, xi, is binomial with two trials and unknown probability of rainfall, p(xi). Figure 2a
shows that the estimated function reasonably follows the data and is quite variable because
the data in some areas are clustered. The model detects inhomogeneity in the function,
with more smoothness in the first few months and less smoothness later (Figure 2b).
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Figure 2. (a) Posterior mean
estimate, from nonstationary GP
model, of p(·), the probability of
rainfall as a function of calendar
day, with 95% pointwise credi-
ble intervals. Dots are empirical
probabilities of rainfall based on
the two binomial trials. (b) Pos-
terior geometric mean kernel size
(square root of geometric mean
kernel eigenvalue).

7 Discussion

We introduce a class of nonstationary covariance functions that can be used in GP regres-
sion (and classification) models and allow the model to adapt to variable smoothness in
the unknown function. The nonstationary GPs improve on stationary GP models on sev-
eral test datasets. In test functions on one-dimensional spaces, a state-of-the-art free-knot
spline model outperforms the nonstationary GP, but in higher dimensions, the nonstation-
ary GP outperforms two free-knot spline approaches and a non-Bayesian neural network,
while being competitive with a Bayesian neural network. The nonstationary GP may be
of particular interest for data indexed by spatial coordinates, where the low dimensionality
keeps the parameter complexity manageable.

Unfortunately, the nonstationary GP requires many more parameters than a stationary GP,
particularly as the dimension grows, losing the attractive simplicity of the stationary GP
model. Use of GP priors in the hierarchy of the model to parameterize the nonstationary
covariance results in slow computation, limiting the feasibility of the model to approxi-
mately n < 1000, because the Cholesky decomposition is O(n3). Our approach provides
a general framework; work is ongoing on simpler, more computationally efficient param-
eterizations of the kernel matrices. Also, approaches that use low-rank approximations to



the covariance matrix [20, 21] may speed fitting.

References

[1] M.N. Gibbs. Bayesian Gaussian Processes for Classification and Regression. PhD thesis, Univ.
of Cambridge, Cambridge, U.K., 1997.

[2] D.J.C. MacKay. Introduction to Gaussian processes. Technical report, Univ. of Cambridge,
1997.

[3] D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling. In J.M. Bernardo, J.O.
Berger, A.P. Dawid, and A.F.M. Smith, editors, Bayesian Statistics 6, pages 761–768, Oxford,
U.K., 1999. Oxford University Press.

[4] A.M. Schmidt and A. O’Hagan. Bayesian inference for nonstationary spatial covariance struc-
ture via spatial deformations. Technical Report 498/00, University of Sheffield, 2000.

[5] D. Damian, P.D. Sampson, and P. Guttorp. Bayesian estimation of semi-parametric non-
stationary spatial covariance structure. Environmetrics, 12:161–178, 2001.

[6] I. DiMatteo, C.R. Genovese, and R.E. Kass. Bayesian curve-fitting with free-knot splines.
Biometrika, 88:1055–1071, 2002.

[7] D. MacKay and R. Takeuchi. Interpolation models with multiple hyperparameters, 1995.

[8] Volker Tresp. Mixtures of Gaussian processes. In Todd K. Leen, Thomas G. Dietterich, and
Volker Tresp, editors, Advances in Neural Information Processing Systems 13, pages 654–660.
MIT Press, 2001.

[9] C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems 14, Cambridge, Massachusetts, 2002. MIT Press.

[10] C.J. Paciorek. Nonstationary Gaussian Processes for Regression and Spatial Modelling. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2003.

[11] M.L. Stein. Interpolation of Spatial Data : Some Theory for Kriging. Springer, N.Y., 1999.

[12] F. Vivarelli and C.K.I. Williams. Discovering hidden features with Gaussian processes regres-
sion. In M.J. Kearns, S.A. Solla, and D.A. Cohn, editors, Advances in Neural Information
Processing Systems 11, 1999.

[13] J.R. Lockwood, M.J. Schervish, P.L. Gurian, and M.J. Small. Characterization of arsenic occur-
rence in source waters of U.S. community water systems. J. Am. Stat. Assoc., 96:1184–1193,
2001.

[14] C.C. Holmes and B.K. Mallick. Bayesian regression with multivariate linear splines. Journal
of the Royal Statistical Society, Series B, 63:3–17, 2001.

[15] D.G.T. Denison, B.K. Mallick, and A.F.M. Smith. Bayesian MARS. Statistics and Computing,
8:337–346, 1998.

[16] J.H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19:1–141, 1991.

[17] S.A. Wood, W.X. Jiang, and M. Tanner. Bayesian mixture of splines for spatially adaptive
nonparametric regression. Biometrika, 89:513–528, 2002.

[18] S.M. Bruntz, W.S. Cleveland, B. Kleiner, and J.L. Warner. The dependence of ambient ozone
on solar radiation, temperature, and mixing height. In American Meteorological Society, editor,
Symposium on Atmospheric Diffusion and Air Pollution, pages 125–128, 1974.

[19] C. Biller. Adaptive Bayesian regression splines in semiparametric generalized linear models.
Journal of Computational and Graphical Statistics, 9:122–140, 2000.

[20] A.J. Smola and P. Bartlett. Sparse greedy Gaussian process approximation. In T. Leen, T. Di-
etterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, Cam-
bridge, Massachusetts, 2001. MIT Press.

[21] M. Seeger and C. Williams. Fast forward selection to speed up sparse Gaussian process regres-
sion. In Workshop on AI and Statistics 9, 2003.


