Basics of Vectors

The elements are

- Ordered
- Homogeneous type

Vectors can be created within R using:

- c() function to catenate individual values together
- : the infix function to create a sequence of numbers 1:10
- seq() to create more complex sequences
- rep() to create replicates of values
- sort() and order() are useful for ordering elements in a vector, sort(x, decreasing = TRUE)

Examples of rep()

- rep(3, 2) - a vector of two threes
- The arguments of rep() can be vectors
$>\mathrm{x}=\mathrm{c}(7,1,3)$
$>$ rep (x, 2)
[1] 713713
$>\operatorname{rep}(x, c(3,2,1))$
[1] 777113
> rep(x, c(2, 1))
Error in rep.default(x, c(2, 1))
invalid number of copies in "rep"

Common Data Structures in R

- Vectors

Ordered container of primitive elements
Types - integer, numeric, logical, character, complex

- Matrices and Arrays

Rectangular collections of elements
Dimensions - two, three, .

- Factors

Categorical variables, levels

- Lists

Ordered container for arbitrary elements

- Data Frame

Two dimensional container for records and variables

Examples of c()

- $\mathbf{c}(3,2,1)$ - a vector of three numeric elements $3,2,1$ in that order.
- $\mathbf{c}(2,3,1)$ - a different vector of the same three numeric elements,
but with a different ordering.
- $x=c(b o b=3$, alice $=2$, John $=1$) - elements can have names names(x)
- Vectors can also consist of characters, logicals, factors, integers provided they are all o the same type.

Results from calls to seq()

$>\operatorname{seq}(1,19, \quad b y=2)$
$\begin{array}{lllllllllll}{[1]} & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19\end{array}$
> seq(1, 19, length = 10)
$\begin{array}{lllllllllll}{[1]} & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19\end{array}$
$>\operatorname{seq}(1,19,2)$
[1] $1 \begin{array}{llllllllll} & 3 & 5 & 7 & 11 & 13 & 15 & 17 & 19\end{array}$
$>\operatorname{seq}(1,19,10)$
[1] 111
$>\operatorname{seq}(1$, length $=10$, by $=2)$
[1] $\begin{array}{lllllllllll}1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19\end{array}$
> seq(1, 19, length = 10, by = 2)
Error in seq. default (1, 19, length $=10$, by $=2$) :
Too many arguments

Operators

- Vectorized - Most functions work on vectors in a vectorized fashion, i.e. they work on a the elements without the need for an explicit loop over the elements
- Element-wise - Most operators work element-wise, i.e. they operate on each element $\mathrm{x}=\mathrm{c}(1.2,1,3)$
$2+\mathrm{X}$
$x>1$
- Recycling - When two vectors have different lengths, the elements of the shorter vector may be recycled.
- Typically a Warning is issued when this happens.
- For some functions, an error results
$>\mathrm{x}+\mathrm{c}(1,2)$
[1] $2.23 .0 \quad 4.0$
Warning message
longer object length
is not a multiple of shorter object length in:
$x+c(1,2)$
- Typeset by FoilteX -

```
> seq(1,length = 10,2)
    [1] 1.000000 1.111111 1.222222 1.333333 1.444444
    [6] 1.555556 1.666667 1.777778 1.888889 2.000000
> seq(1, length = 10, 19)
[1] 1 3 5 5 7 7 9 11 13 15 17 19
```

There are several ways to call the seq function. Here are three popular ones: seq(from, to)
seq(from, to, by =)
seq(from, to, length =)

Consider arguments of from $=1$, $\mathbf{t o}=19$, by $=2$, and length $=10$. Evaluate the following function calls to seq() with the various combinations and ordering of arguments (named and unnamed).

- $\operatorname{seq}(1,19$, by $=2)$
- $\operatorname{seq}(1,19$, length $=10)$
- $\operatorname{seq}(1,19,2)$
- $\operatorname{seq}(1,19,10)$
- $\operatorname{seq}(1$, length $=10$, by $=2)$
- $\operatorname{seq}(1,19$, length $=10$, by $=2)$
- seq(1,length = 10, 2)
- $\operatorname{seq}(1$, length $=10,19)$

Subsetting

Subsetting by Exclusion

There are five basic ways to refer to a subset.
$x=c(11,30,2)$

1. Position $-\mathbf{x [2]}$ gives the second element of x, namely 30 .
2. Exclusion $-\mathbf{x [- 2}$] excludes the second element and returns a vector with 11 and 2
3. Name - x["bob"] returns the element named bob, remember we can name elements
4. Logical - $\mathbf{x}[\mathbf{c}($ TRUE, FALSE, TRUE) $]$ subsets the first and third elements of $\mathbf{x}, 11$ and 2 .
5. All $-\mathbf{x []}$ returns all of \mathbf{x}

This can be helpful when we wish to reset all the values in a vector,
$\mathbf{x}[]=0$
How do you think this differs from the command
$\mathrm{x}=0$?

We provide more examples of each of these.
$x=c(11,30,2,14)$

- $x[-3]$

How long is the output vector?

- $x[-(2: 3)]$

How does this differ from $\mathbf{x}[-2: 3]$?

- $x[-c(4,2)]$

Would we get the same result if we switched the order of 2 and 4 ?

- $x[c(-4,1)]$

Can we exclude the fourth element and include the first? What about the second and third elements of the vector?

Subsetting

Subsetting by Position

- One of the most important things we do in statistics is to divide our data into subgroups for comparison,
- Lane 1 versus lane 2 on the freeway
- Traffic at 5 in the morning vs 5 in the afternoon or on different days of the week
- Vectors are ordered collections so we can extract subsets of elements by index or position.
- The [] is the subset operator for vectors (and matrices and lists).
$x=c(11,30,2,14)$
- $x[3]$
- $x[2: 4]$

How many elements are returned?

- $x[c(4,2)]$

What is the order of the values returned?

- $\mathrm{x}[10$]

Is this an error?

- $\mathbf{x [0]}$

Is this the same as the previous operation?

- $x[c(4,0,1)]$

What is the length of the output?

- $\mathrm{ii}=\mathrm{c}(3,2)$
$y=x[i i]$
$x[i i]=17$
What is the value of \mathbf{y} ? of \mathbf{x} ?

Subsetting with Logicals

$x=c(b o b=11$, alice $=30, s=2, x=14)$

- $\mathbf{x [c (T R U E , ~ T R U E , ~ F A L S E , ~ T R U E)] ~}$

What is the length of the output vector?

- x[!c(TRUE, TRUE, FALSE, TRUE)]

What effect does the exclamation point have on the subsetting?

- x[c(TRUE, FALSE)]

Remember the recycling rule...

- $x[F A L S E]$ Is this the same as $\mathbf{x [0]}$ or $\mathbf{x [1 2] ?}$
- $x[x>2]$

This is a compound expression. What does the inner expression evaluate to?

Subsetting by Name

$x=c(b o b=11$, alice $=30, s=2, x=14)$

- x["bob"]
x = matrix(1:15, nrow =3, byrow=TRUE)
$>\operatorname{dim}(x)$
[1] 35
> nrow (x)
[1] 3
$>\operatorname{ncol}(\mathrm{x})$
[1] 5
$>x$
$[1] \quad,[, 1] \quad[, 2] \quad[, 3] \quad[, 4] \quad[, 5]$
$[2] \quad 6 \quad 7 \quad 8 \quad 9 \quad$,
$[3] \quad 11 \quad 12 \quad 13 \quad 14 \quad$,
> rownames(x) = letters[1:3]
$>$ colnames $(x)=$ letters $[4: 8]$
$>$ x
d e f $\quad \mathrm{g}$ h
$\begin{array}{llllll}\text { a } & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllll}\text { b } & 6 & 7 & 8 & 9 & 10\end{array}$
c $\begin{array}{llllll}11 & 12 & 13 & 14 & 15\end{array}$

Typeset by FoilteX -

Matrices

- A matrix in R is a collections of homogeneous elements arranged in 2 dimensions
- A matrix is a vector with a dim attribute, i.e. an integer vector giving the number or rows and columns
- To create matrices us matrix()
- The functions $\operatorname{dim}()$, nrow() and ncol provide the attributes of the matrix.
- Rows and columns can have names, dimnames(), rownames(), colnames()
is there an object bob in the workspace?

Can we negate names?

- x[c("bob", "x")]
- $x[x]$

The \mathbf{x} plays two roles here. What are they?
> matrix(1:15, nrow $=4)$
[,1] [,2] [,3] [,4]

$[1]$,	1	5	9	13

$[3] \quad$,3 | $[3$ | 7 | 11 | 15 |
| :--- | :--- | :--- | :--- |

Warning message
Replacement length not a multiple of the elements
to replace in matrix(...)

Arrays

- Arrays are matrices in higher dimensions
$>\operatorname{array}(1: 30, c(4,3,2))$
, , 1

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	5	9
$[2]$,	2	6	10
$[3]$,	3	7	11
$[4]$,	4	8	12

, 2
[,1] [,2] [,3]
[1,] $13 \quad 17 \quad 21$
$[2] \quad 14 \quad 18 \quad$,
$[3] \quad 15 \quad 19 \quad$,
[4,] $1620 \quad 24$

- Subsetting carries over to arrays in the same way. What is the output from, $\mathbf{x}[\mathbf{c}(4,3), 1: 2,2]$
- Typeset by FoilteX -

Matrix Subsetting

matrix (1:15, nrow $=3)$					
	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	1	4	7	10	13
$[2]$,	2	5	8	11	14
$[3]$,	3	6	9	12	15

> matrix(1:15, ncol = 3)

$$
[, 1][, 2] \quad[, 3]
$$

$[1]$,	1	6	11

$\left[\begin{array}{llll}{[2,]} & 2 & 7 & 12\end{array}\right.$
$[3] \quad 3 \quad 8 \quad$,
$[4] \quad 4 \quad 9 \quad$,

$$
\begin{array}{rrr}
& \mathrm{g} & \mathrm{~d} \\
\mathrm{~b} & 9 & 6 \\
\mathrm{c} & 14 & 11
\end{array}
$$

$>$ matrix(1:15, nrow $=3$, byrow=TRUE) $[, 1][, 2][, 3][, 4][, 5]$

$[1]$,	1	2	3	4	5
$[2]$,	6	7	8	9	10

$\left[\begin{array}{llllll}{[3,]} & 11 & 12 & 13 & 14 & 15\end{array}\right.$

