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Extending Condorect’s Jury Theorem

• We want to consider extensions of Condorcet’s Jury 

Theorem to situations where the signals are not 

binary. 

• n people need to take a decision between k 

alternatives denoted 1,…,k.

• One of the k alternatives is correct. 

• We can make various assumptions on the type of 

signals individuals receive. 

• Such as …



Extending Condorect’s Jury Theorem

• We can make various assumptions on the type of 

signals individuals receive. 

• The most general assumption is: 

• A signal space X and distributions P1,…,Pk on X 

• where if state of the word = i, signal ~ Pi

• A nice non-general assumption is: 

• Signal=  correct alternative with probability p > 1/k and 

each other answer with probability (1-p)/(k-1). 

• We will discuss the least general case in class and 

leave the most general case as HW 



Extending Condorect’s Jury Theorem

• Consider the setup where each signal equals the 

correct state of the world with probability p>1/k and 

each of the other states with probability q=(1-p)/(k-1). 

• What should the aggregation function be? 



Extending Condorect’s Jury Theorem

• What should be the aggregation function? 

• Write na(x) :=  # of a’s in the vector x, 

• Def: A Pluraliry function f : [k]n  [k] is defined in the 

following way: f(x) = a if na(x) > nb(x) for all b  a.

• Def: A function f : [k]n  [k]  is fair if for all  2 Sk it 

holds that f( x) := f( x1, …,  xn) =  f(x). 

•Note: fairness corresponds to treating all alternatives 

equally – their names do not matter. 

•Claim (HW): For all k,n there exists a fair Plurality 

function. 



Extending Condorect’s Jury Theorem

• Consider the setup where each signal equals the 

correct state of the world with probability p>1/k and 

each of the other states with probability q=(1-p)/(k-1).

Assume further a uniform prior. 

• Thm: Assume p>1/k. Write c(n) = P[Plurality is correct] 

then: 
• As n  1   c(n)  1. 

• The same is true even for p(n) – 1/k >> n-1/2.

• If p(n)-1/k = o(-1/2) then c(n)  1/k. 

• Writing a(n) = p(n)-q(n) we have for all n that 
• c(n) ¸ 1 – 2 k exp(-a2n(n))

•Pf: ???



Extending Condorect’s Jury Theorem

• Thm: Assume p>1/k. Write c(n) = P[Plurality is correct] 

then: 
•As n  1   c(n)  1. 

• The same is true even for p(n) – 1/k >> n-1/2.

• If p(n)-1/k = o(-1/2) then c(n)  1/k. 

• Writing a(n) = p(n)-q(n) we have for all n that 
• c(n) ¸ 1 – 2 k exp(-a2n)

•Pf: Generalize proofs of the binary case. 



The estimation point of view

• Claim: Plurality maximizes the probability of being 

correct among fair functions. 

•



The estimation point of view

• Claim: Plurality maximizes the probability of being 

correct among fair functions. 

• Pf:

• Same as proof for majority. 

•

• In a way this is a classical estimation problem. 

• There is a random variable S with uniform prior. 

• Our goal is to estimate S given the signals X1,…Xn. 

• We choose the S which maximizes P[S | X1,…Xn]. 

• Since the prior is uniform this is the same as finding 

the S maximizing P[ X1,…Xn | S]



The estimation point of view

• The estimation point of view is valid also for the 

general signals picture: 

• optimal choice function chooses the s maximizing 

• P[S = s | X1,…,Xn]

• Need to think carefully how to measure bias to obtain 

guarantees. 

• Can apply general results from statistics to obtain 

similar results to the ones above. 



More general signals – Example 1

• Two alternatives: +,-: 

• Vote for correct alternative with probability p 

• Vote for wrong alternative with probability q < p

• Do not vote with probability 1-p-q

• Q: Assuming prior correctness (1/2,1/2) what is the 

optimal aggregation function? 



More general signals – Example 2

• Two alternatives: +,-: 

• Vote for correct alternative with probability p 

• Vote for wrong alternative with probability q

• Do not vote with probability 1-p-q

• Q: Assuming prior (1/2,1/2) what is the optimal 

aggregation function? 

• Q: How large should p-q be to aggregate well?

• HW

• For the second question p-q >> n-1/2 always suffice thought 

in some cases less suffices (e.g. q=0, p = log n/n) 



Example 2 of more general signals

• There are k possible alternatives.  

• Each voter receives a ranking where: 

• The correct alternative is at location i with prob.pi

• All other alternatives are placed uniformly at random.

• p1> p2 > …  > pk

•

•Q: Assuming a uniform prior what is the optimal aggregation 

function? 

• Q: What is the difference needed 

between the pi to aggregate well?

• A generalization of a voting method invented 

by Borda (1733 – 1799; mathematician, physicist, political 

scientist, and sailor)



Beyond the Plurality Function

• Further questions: 

• What about other aggregation functions? 

• E.G: U.S Electoral college? 

• Other functions? 

• We’ll assume simple signals: correct outcome with 

probability p>1/k  -all other outcome equally likely. 



Beyond Condorcet’s Jury Theorem

• We want to consider again functions that are:

• Fair – names of alternatives do not matter. 

• Monotone – stronger vote in one direction should not 

hurt this direction. 



Fairness 

• Recall: in the binary case we said f is fair if 

• f(-x) = -f(x). 

•

• In the general case the definition is: 
• Def: A function f : [k]n  [k]  is fair if for all  2 Sk it 

holds that f( x) := f( x1, …,  xn) =  f(x). 

• How to define monotone? – stronger vote in one 

direction should not hurt this direction. 



Monotonicity 

• Def: for two vector x,y 2 [k]n and a 2 [k] write: 

• x  ·a y to indicate that: 

•Whenever xi  yi it holds that yi =a .

• “y is more leaning towards a than x”. 

• Def: A function f : [k]n  [k]  is monotone if 
• for all a 2 [k] and all x,y 2 [k]n it holds that:

• x ·a y  ) f(x) ·a f(y) 

• If a wins for vote x it also wins for vote y. 

• Definition from Kalai-Mossel(????)



An Aggregation Theorem 

• Recall that f : [k]n  [k] is invariant to a transitive 

action G on [n] if 
•for all  2 G it holds that  

• f(x) = f(x)

• Thm (Kalai-Mossel???): 
• 8 k 9 C = C(k) s.t. 

• 8  < 1/3, 8 monotone transitive f : [k]n  [k] where for 

p=1/k it holds that P[f=a] ¸ 1/(2k) for all a it holds that:

• for p > 1/k + C (log(1-) - log(1/2k)) log log n/ log n:
• P[f is correct] ¸ 1-.

•

• Proof similar to previous proof we haven’t seen …

• Examples? 



An Aggregation Theorem 

• Thm (Kalai-Mossel???): 
• 8 k 9 C = C(k) s.t. 

• 8  < 1/3, 8 monotone transitive f : [k]n  [k] where for 

p=1/k it holds that P[f=a] ¸ 1/(2k) for all a it holds that:

• for p > 1/k + C (log(1-) - log(1/2k)) log log n/ log n:
• P[f is correct] ¸ 1-.

• Examples: 

•“Electoral college” with all states of equal size.

• Plurality

• In fact in all of the examples above a bias of Cn-1/2

suffice.



Aggregation of opinions with additional structure 

• So far we assumed that the different alternatives and 

signals  have no “additional structure”. 

• We now consider two examples of such structures. 

• The first example deals with signals that are real 

numbers. 

• The second example deals with rankings. 



Aggregating real #’s  

• Assume that the true state of the world is s=+ or s=-

• Each voter receives a real signal N(a s, 1) where a> 0 is 

some constant. 

• how should people vote? 
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• Assume that the true state of the world is s=+ or s=-

• Each voter receives a real signal N(a s, 1) where a> 0 is 

some constant. 

• how should people vote? 

• One option is for voters who got a positive signal to vote + 

and voters who got negative signal to vote -. 

• Is this good? 



Aggregating real #’s  

• Assume that the true state of the world is s=+ or s=-

• Each voter receives a real signal N(a s, 1) where a> 0 is 

some constant. 

• how should people vote? 

• One option is for voters who got a positive signal to vote + 

and voters who got negative signal to vote -. 

• Is this good? 

• It is pretty good. For example a >> n-1/2 suffice to get the 

correct answer with probability  1. 



Aggregating real #’s  

• Is this good? 

• It is pretty good. For example a >> n-1/2 suffice to get the 

correct answer with probability  1. 

• But it is not optimal.  

• The optimal rule is: each voter declare their signal Xi. 

• Winner is the sign of  Xi

• This is the best Bayesian decision rule (assuming (½, ½) 

prior).

• But note: this rule let’s one cheater determine the 

outcome of election (while majority is more robust).



Aggregating Real #’s

• More generally:  

•Thm (Keller, Mossel, Sen 10): 

• If f is a monotone transitive function f : Rn
 {-,+} 

with Ea=0[f] = 0 then Ea[f]  1 if a >> log n-1/2

• So any democratic function would work. 

• Non democratic functions (e.g. dictator, functions of 

a few voters) will not aggregate even for a constant a.



Aggregating Permutations 

• Next we discuss n voters who rank k alternatives. 

•The outcome should be a ranking of the k 

alternatives. 

• Q: Should we use a plurality vote?  



Aggregating Permutations 

• Next we discuss n voters who rank k alternatives. 

•The outcome should be a ranking of the k alternatives. 

•

• Q: Should we use a plurality vote?  

• A1: May not be a good idea: 

• Consider a distribution P where the true permutation 

is at least twice as likely as any other permutation. 

• If we apply plurality rule we may need many (order 

k!) voters to get a good answer. 

• If k is large – this is too big! 



Aggregating Permutations 

• Next we discuss n voters who rank k alternatives. 

•The outcome should be a ranking of the k alternatives. 

• A2: Suppose 99%  of voters rank some alternative at 

the top. It is a “no brainer” that this alternative 

should be at the top.  However plurality may very well 

not do it. 

• We are using the wrong model! 

• A better model coming next …



Consensus Ranking, Rearrangements and the Mallows Model

• Given a set of rankings {1, 2, ... N} a natural output to consider is  

consensus ranking which is the following “average”: 

for d = distance on the set of permutations of n objects

Most natural is dK which is the Kendall distance.

• Kendall – tau rank statistics uses the Kendall rank to test if 

two variables are statistically independent. 

• Kendall (1907-1988) was  an English statistician. 

• One of the first to argue shares perform a “random walk”



The Mallows Model – A distribution on rearrangements

 Mallow’s voting model: 

 The Mallow’s model is an Exponential family model in : 

 P(  | 0) = Z()-1 exp(- dK(,0))

 If >0 then given rankings 1,..,k, the consensus ranking 
output is the ML estimator of the original ranking 
assuming a uniform prior. 

 This model was suggested by 

Collin Mallows in 

“Non-null ranking models” I, (1957). 





Natural Questions Regarding the Model

• How many voters are needed in order to be able to recover the 

true ranking with good probability? 

• Algorithmically: how can one find the average of these 

permutations?  

• Assume  is some fixed constant. 



Related work

• Cohen,Schapire,Singer 99: Greedy algorithm (CSS)

• Meila,Phadnis,Patterson,Bilmes 07: 

Branch and Bound algorithm – exponential running 

time. 

• J. Bartholdi, III, C. A. Tovey, and M. A. Trick 98: 

Proved NP-hardness 

“Voting Scheme for which it can be difficult to tell who 

won the election”

• Ailon,Newman,Charikar 05 Randomized algorithm 

– guaranteed 11/7 factor approximation (ANC)

• Mathieu, 07: (1+) approximation, time O(n6/+2^2O(1/))



Efficient Sorting of Mallow’s model of 
rearrangements (problem 3)

• [Braverman-Mossel-10]:

• Given r independent samples from the Mallows 
Model, find ML solution exactly! in time nb,where 

• b = 1 + O(( r)-1),

• where r is the number of samples 

• with high probability (say ¸ 1-n-100)



Sorting the Mallow’s Model (Problem 2)

• [Braverman-M-10]: Optimal order can be found in polynomial 
time and O(n log n) queries.

• Proof Ingredient 1: “statistical properties” of generated 
permutations i in terms of the original order 0

• Let  rank elements according to their average location on 
the r generate permutations then: 

• With high probability: x |0(x) - (x)| = O(n /  r), 

max |0(x) - (x)| = O(log n / r)

•Additional ingredient: A dynamic programming 
algorithm to find  given a starting point where each 
elements is at most k away with running time O(n 26k)

• The proof is hard – we’ll describe the 
algorithmic ingredient in more detail

• Following slides courtesy of M. 
Braverman



• The problem now: Find the optimal ordering k+1 such 
that each element is at most d = O (log n) away from its 
position in ’.

• Use dynamic programming:

’                                                                  

The algorithm assuming small deviation

k+1

d

optimally sorted

• For each interval                     there are <24d “variations”.

• A total of poly(n) variations, can store all of them. 



• Store optimal permutations of all variations 

on the following intervals:

• A total of  Õ(24d n) storage. 

• Work from shorter intervals to longer. 

The algorithm assuming small deviation

k+1 n=2log n

n/2 n/2

1 1 1 1 1 1 1 11 1

2 2 22



’                    2k

d

2k-1

• Each of the shorter intervals has been pre-sorted.

• Thus the cost of doing all intervals on level k is

#intervals × #checks × #cost/check = (n/2k) 24d × 22d × 22k.

• Thus, total running time is bounded by O(26d n2).

Building up:

k+1 22d possibilities



Some Notes on Related Problems

• Except for it’s social context the problem above is an example of 

• Sorting from noisy information. 

• Here are a couple more examples of the same form. 



39

Example Consensus Ranking, Rearrangements and the Mallows Model

 Problem 1: Consider a sorting problem where for each query 

comparing two elements x and y: 

 Return correct answer with probability ½+ 

 Independently for each query. 

 Can query each pair as many times as we want. 

 How many queries are needed to find correct order with probability 

0.9999?

 Feige, Raghavan, Peled and Upfal.

 Problem 2: Consider a sorting problem where for each query 

comparing two elements x and y. 

 Return correct answer with probability ½+ 

 Independently for each query.

 For each element can query only once. 

 What can we do? 

 Again ML solution found in Braverman-Mossel-09. 



HW due in 3 weeks 

• Q1: The Plurality function:

Prove that for all k,n there exists a fair Plurality function. 

• Prove that if voters receive independent signals with the correct 

alternative with probability p>1/k and all other alternatives with 

equal probability, then Plurality maximizes the probability of 

correct vote among all functions (assuming a uniform prior). 

• Assume p(n) depends on n and write q(n) for the probability of 

receiving incorrect signal and  a(n) = p(n)-q(n). 

• Show have for all n that 
• c(n) := P[Plurality is correct] ¸ 1 – 2 k exp(-a2(n) n)

• (k = # alternatives).



HW due in 3 weeks 

•

• Q2 – Bonus : The weakest aggregation functions.

• Consider independent signals N(a s, 1). 

• Find a transitive monotone function with Ea=0[f] = 0         

• where Ea[f]  0 for all a(n) << (log n)-1/2

• Consider binary signals which are correct with 

probability 1/2 + a(n). 

•Find a fair transitive monotone function that does not 

aggregate well for all a << (log n)-1


