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The Gale Kariv Model

• Bayesian setup – state of the word S = +/- with prob. ½. 

• independent private signals s(1),…,s(n). 

• s follows F+ / F- where 
• x(s) := dF(+)(s)/dF(-)(s) 2 (0,1) for all s.

• Assume x is non atomic and has a density. 

• Declaration at time t: 
• d(v,t) := sgn E[f | s(v), d(w,s) : w 2 N(v), s < t]



The Gale Kariv Model

• Declaration at time t: 
• d(v,t)      := sgn E[ S | s(v), d(w,s) : w 2 N(v), s < t]

• Let F(v,t) := Gen{s(v), d(w,s) : w 2 N(v), s < t}, F(v,t)  F(v)

• Let f(v,t)  = E[S | F(v,t)]  f(v) = E[S | F(v)]

• Note if f(v)>0 then declarations of v converge to +. 

• Claim(Gale, Kariv): Could not be that f(v)>0 and f(w)<0 in a 

strongly connected graph. 

• We will try to prove it …



The Gale Kariv Model

• Let F(v,t) := Gen{s(v), d(w,s) : w 2 N(v), s < t}, F(v,t)  F(v)

• Let G(v,t) := Gen{d(v,s) : s < t}, G(v,t)G(v)

• Let f(v,t)  = E[S | F(v,t)]  f(v) = E[S | F(v)]

• Let g(v,t) = E[S | G(v,t)] g(v) = E[S | G(v)]

• Note that f(v)>0 ) d(v,t)  d(v) = + and 

f(v)<0 ) d(v,t)  d(v) = -

define d(v) arbitrarily otherwise. 

• Let e(v) = + if d(v,t)  + and otherwise e(v)=-. 



The Gale Kariv Model

• Note that f(v)>0 ) d(v,t)  d(v) = + and 

f(v)<0 ) d(v,t)  d(v) = -

define d(v) arbitrarily otherwise. 

• Let e(v) = + if d(v,t)  + and otherwise e(v)=-. 

• Claim: The functions d(v),e(v) both maximize the predication 

probability of the signal given F(v). 

• Let G(v,w,t) := Gen{d(v,s), d(w,s) : s < t}, v,w nbrs

• Let c(v,w) maximize the prediction probability given G(v,w). 

• Claim: Unless f(v)=0 or f(w)=0 it holds that d(v)=e(v)=c(v,w).

• Cor: Unless f(v)=0 or f(w)=0 we have d(v)=d(w). 

• Remains to prove: f(v) and f(w) cannot be 0. 



The Gale Kariv Model

• Claim: f(v) and f(w) cannot be 0. 

• Pf: P[+ | F(v)] / P[- | F(v)] = x(s) P[+ | G(v)] / P[- | G(v)]

• So: g(v) = (x g(v)+g(v)-1)/(x g(v)-g(v)+1)

•

• Note further g can take only countably  many values since: 

• Either g=0. 
• g>0 ) 9 an n such that d(v,t)=+ for all t> n

• g<0 ) 9 an n such that d(v,t)=+ for all t> n

• For each of the values that g takes for f=0 x has to take some 

special value which has probability 0. 



The Gale Kariv Model - Challenges

• Not known: How long does it take to converge? 

• Not known: Do big networks aggregate well? 

• Very hard model to tackle analytically.  



Truncated information on the complete graph

• Model in M-Tamuz-10 := 

• Gale Kariv Model on the complete graph. 

• Results: 

•All agents converge to the same outcome. 

•Their calculations are efficient. 

• Process is statistically more accurate than any 

process involving finite # of rounds of voting.

• Technical assumption:
• x(s) := dF(+)(s)/dF(-)(s) 2 (0,1) for all s.

• Assume x is non atomic and has a density. 



Truncated information on the complete graph

• Example of repeated voting: electing a pope. 

• Stops in 2/3 majority.

From the Apostolic Constitution of Pope Paul VI (1975, II, ii, 42):

"Conclave" means the carefully determined place, a kind of sacred 

retreat, where, after asking the Holy Spirit to enlighten them, the 

cardinal electors choose the Supreme Pontiff, and where the 

cardinals and other officials and staff, together with the conclavists, 

if there be any, remain day and night until the election is

complete, and do not communicate with persons and things 

outside, in accordance with the following modalities and norms … 



Voting process as viewed from outside

• Suppose we view the process from the outside. 
• What can we learn about x(v), v 2 V ? 

•

•At round 1: we know that x(v) > 0 for those voting + 

and x(v) < 0 for those voting 0. 

• This information is obviously also known to all voters. 

• Before round 2, player v will calculate: 

• ln P[+]\P[-] = ln x(v) +  { y(w) : w  v} 

• where y(w) = ln P[x(w) > 0 | +] - ln P[x(w) > 0 | -] 

assuming we know x(w) > 0 and

• y(w) = ln P[x(w) < 0 | +] – ln P[x(w) < 0 | -]

assuming we know x(w) < 0 and 

• The vote of v = sgn (ln x(v) +  { y(w) : w  v} )

• Gives new bounds on x(v). 



Voting process as viewed from outside

• At round t: we know that x(v) 2 (a(v,t),b(v,t))

• This information is obviously also known to all players. 

• Before round 2, player v will calculate: 

• ln P[+]\P[-] = ln x(v) +  {y(w,t) : w  v} 
• where y(w,t) = ln P[x(w) 2 (a(w,t),b(w,t)) | + / - ]

• This gives new bounds on x(v). 

• This describes the algorithm of the agents.

• Work out an example.  



Voting process as viewed from outside

• Thm: With probability 1 all agents converge to the 

same vote. 

• Pf idea:  

• Let y(w) = lim y(w,t). 

• Assume first y = w y(w) > 0 (outsider: + eventually)
• No convergence ) 9 v and infinite # of t s.t.: 

•  y(w,t) > y/2, v votes -. 

• At each such vote we update b(v,t) := b(v,t) – y/2. 
• But x 2 [a(v,t),b(v,t)] for all t. 

• The case y < 0 is treated similarly. 



Voting process as viewed from outside

• Thm: With probability 1 all agents converge to the 

same vote. 

• Pf idea:  

• Let y(w) = lim y(w,t). 

• Assume now y :=  y(w) = 0 (outside viewer not sure)

• May assume  x(v)  0. 

• Means there must be v with (a(v,t),b(v,t)) not 

converging to x(v). 

• Suppose v votes – infinitely often 

• This means a(v,t) is updated infinitely many times: 

• a(v,t+1) = max{a(v,t),x(v,t)-  y(w,t)} 

• But this means a(v,t)  x(v). 



Other facts

• Thm: In the case of biased signals – convergence to 

the correct action w.h.p after 2 rounds. 

•Pf idea: After vote 1 individuals see n independent 

signals on the state of the world. 

• Thm: The more rounds the better. 

• Pf idea: The probability of voter i being correct 

increases with time. 



Heuristic Dynamics on Networks

• So far discussed various Bayesian models for opinion 

updates. 

• Now: 

• Discuss simpler heuristic models of repeated voting. 

• Why other models? 



Heuristic Dynamics on Networks

• This time: 

• Discuss simpler heuristic models of repeated voting. 

• Why other models? 

• Real “agents” are probably not fully Bayesian. 

Instead they apply some heuristics (but which?). 

• Simpler update rule may lead to more complete 

analysis in understanding various features of the 

behavior.   



The Two Models We’ll discuss

• DeGroot model: repeated averaging of probabilities 

of self and neighbors. 

• Repeated Majority: Taking repeated majority of  

opinions of self and neighbors. 



The DeGroot Model

• DeGroot model: repeated averaging of probabilities 

of self and neighbors. 

• Formal definition: n individuals denoted 1,…,n. 
• At time 0 some initial beliefs: p(i,0) for i 2 [n]. 

• Averaging weights: w(i,j) ¸ 0 satisfy j w(i,j)  =1 

• Update rule: p(i,t+1) = j w(i,j) p(j,t)

• In matrix notation: p(t+1) = W p(t)

• Linear model, linear updates …

• Introduced by De Groot (Penn Statistician, 1931-

1989) in 1974. 



The DeGroot Model - Examples

• In matrix notation: p(t+1) = W p(t)

• Ex 1: W = I (w(i,i) = 1 for all i) ?

• Ex 2: w(i,j) = 1/n for all i,j ? 

• Ex 3: w(i,j) = 1/3 for i-j mod n 2 {0,1,n-1}? 

• Ex 4: w(i,j) = ½ for i-j mod n 2 {1,n-1} ?

•Ex 5: w(i,n) = w(i,i) = ½ for i < n and w(n,j) = 1/n for all j. 



The DeGroot Model - Convergence

• In matrix notation: p(t+1) = W p(t)

•p(t+1,i) = E(i,t) p(X) where 

•E(i,t) denote expectation according to P(i,t)

•P(i,t) := Markov Chain according to W started at i and  

run for t steps. 



Some Markov Chain Background

• The total variation distance between two 

distributions P,Q is given by 0.5 x |P(x)-Q(x)|

• Def: A finite Markov chain given by transition P  is 

called ergodic if there exists a k such all entries of Pk

are positive. 



The DeGroot Model - Convergence

• In matrix notation: p(t+1) = W p(t)

• p(t+1,i) = E(i,t) p(X) where E(i,t) denote expectation 

according to P(i,t) := M.C. according to W started at i

and run for t steps. 

• If W corresponds to an ergodic chain we know that: 

• there exist a unique stationary distribution . 

• and |P(i,t) - |TV  0. 

• So   | E(i,t) p – E() p|  0

• In other words: all probabilities converge to the same 

value which is E() p = v (v) p(v). 



What is  ?

• Claim: If W is an ergodic random walk on an undirected 

graph then: 

• (i) = deg(i) / j deg(j).

• Conclusion: Importance determined by # of neighbors.



The DeGroot Model - Examples

• In matrix notation: p(t+1) = W p(t)

• Ex 1: W = I (w(i,i) = 1 for all i) ?

• Ex 2: w(i,j) = 1/n for all i,j ? 

• Ex 3: w(i,j) = 1/3 for i-j mod n 2 {0,1,n-1}? 

• Ex 4: w(i,j) = ½ for i-j mod n 2 {1,n-1} ?

•Ex 5: w(i,n) = w(i,i) = ½ for i < n and w(n,j) = 1/n for all j. 



Rate of Convergence

• In the theory of M.C. there are many ways to 

measure the rate of convergence of a chain. 

• We can directly use any of them to obtain bounds on 

the rate of convergence to the common opinion via: 
• maxi | E(i,t) p – E() p| · maxi | P(i,t) – |

• These include: 

• Spectral gap bounds: 

• Conductance bounds 

• etc. (Log-Sobolev bounds, coupling bounds …)



Rate of Convergence

• In the theory of M.C. there are many ways to 

measure the rate of convergence of a chain. 

• We can directly use any of them to obtain bounds on 

the rate of convergence to the common opinion via: 
• maxi | E(i,t) p – E() p| · maxi | P(i,t) – |

• These include: 

• Spectral gap bounds: 

• Let g = smallest non-zero eigen-value of I-1/2(P + P*)

• Then: by time t = s (1+maxi ln(1/(i)))/g we have: 
• maxi | P(i,t) – | · exp(-s). 



Rate of Convergence

• In the theory of M.C. there are many ways to 

measure the rate of convergence of a chain. 

• We can directly use any of them to obtain bounds on 

the rate of convergence to the common opinion via: 
• maxi | E(i,t) p – E() p| · maxi | P(i,t) – |

• These include: 

• Condoctance bounds: 
• ( A) :=  {w(x,y) (x) + w(y,x) (y) : (x,y) 2 (A,Ac)}

• I = min {Q( A)/ (A) : (A) · ½}. 

• Then g ¸ I2/8 (Cheeger’s inequality) and therefore 

• By time t = 8 s (1+maxi ln(1/(i)))/I2 we have: 
• maxi | P(i,t) – | · exp(-s). 

•



Rate of Convergence

• Condoctance bounds: 
• ( A) :=  {w(x,y) (x) + w(y,x) (y) : (x,y) 2 (A,Ac)}

• I = min {Q( A)/ (A) : (A) · ½}. 

• Then g ¸ I2/8 (Cheeger’s inequality) and therefore 

• By time t = 8 s (1+maxi ln(1/(i)))/I2 we have: 
• maxi | P(i,t) – | · exp(-s). 

• This means if there are no “isolated communities” 

then convergence is quick. 

• In the minimum suffices to look at connected sets. 



The DeGroot Model – Convergence rate 

Examples

• In matrix notation: p(t+1) = W p(t)

• Ex 1: W = I (w(i,i) = 1 for all i) ?

• Ex 2: w(i,j) = 1/n for all i,j ? 

• Ex 3: w(i,j) = 1/3 for i-j mod n 2 {0,1,n-1}? 

• Ex 4: w(i,j) = ½ for i-j mod n 2 {1,n-1} ?

•Ex 5: w(i,n) = w(i,i) = ½ for i < n and w(n,j) = 1/n for all j. 



Some non ergodic examples

• Ex 1: Cycle W(i,i+1) = 1. 

• Ex 2: A complete bi-partite graph. 

• Ex 3: An erogdic chain with followers. 

• Todo: add details and figures.



The effect of cheating

• A basic question: 

• What happens if somebody cheats? Can they convince 

the rest of the group to reach whatever value they 

want? 

• Claim: If the chain is ergodic and there is one 

cheater by repeatedly stating a fixed value all opinions 

will converge to that value.  

• Pf: Choose t so that f(t,1) = x and f(t,i) = \sum w(i,j) 

f(0,j) + w(i) x and all w’s are positive. 

• The map f(0,.)  f(t,.) is a contraction with x being 

the fixed point. 

• Q: What about two cheaters? Hint: Harmonic 

functions ..



The iterated majority model

• One model that avoids this “cheating effect” is

• repeated majority. 

• Here the original signals s(i,0) are + / -

• There are weights w(i,j) and: 

• s(i,t+1) = sign( j w(i,j) s(j,t))

•

• We will assume that the w are chosen in such a way 

that there are never ties. 

• A special case: a graph G and: 

• Nodes of odd degrees take majority of neighbors.

• Nodes of even degrees take majority of neighbors 

and self.

• Non-linear analogue of De-Groot model.  



Iterated Majority - Examples

• Ex 1: W = I (w(i,i) = 1 for all i) ?

• Ex 2: w(i,j) = 1 for all i,j and n odd.  

• Ex 3: w(i,j) = 1 for i-j mod n 2 {0,1,n-1}? 

• Ex 4: w(i,j) = 1 for i-j mod n 2 {1,n-1} ?

•Ex 5: w(i,n) =  1 for i < n and w(n,j) = 1 for all j, n odd.  



Basic questions

• Does it converge? 

• If so to what? 

• If doesn’t converge – what can we say about the dynamics? 

• Many of these questions are open! 



Convergence? 

• Bi-partite graphs can be used to construct examples of non-

convergence. 

• In directed graph can get to cycle of length n or even 

exponential in n. 

• What is the longest possible cycle in an undirected graph? 

• In arbitrary starting condition hard to ask what it converges 

to … 



Convergence for biased signals 

• What happens for biased signals? 

• Some partial results are known for asynchronous dynamics: 

• Poisson clock for every node – then update to majority of 

neighbors (with (1/2,1/2)) transitions if even. 

• Results in statistical physics: For infinite dimensional grids 

(dimensions 2 and higher) and regular trees there exists q < 1 

s.t. if initial signals are i.i.d. p > q then with probability 1 all 

converge to +. 

• Howard: the exists p>1/2 for which on infinite 3-regular tree 

there is no convergence to all +. 



Convergence for biased signals 

• Example: Finite binary trees. 

• Let Tn = n level binary tree (with degree of root = 3).



Convergence for biased signals 

• Example: Finite binary trees. 

• Let Tn = n level binary tree (with degree of root = 3).

• Claim: Let 0.5 < p < 1. Then the probability of convergence to 
all +  0 as n 1. 

• Pf: Suppose a node at level (n-1) is – and has its two children 

–s then will never change to +. 

• Question: What is an example of families of graphs for which 

majority dynamics aggregate well. 



Convergence for biased signals 

• Question: What is an example of families of graphs for which 

majority dynamics aggregate well. 

• Def: A graph G=(V,E) is an (e,s) expander if 
• 8 S ½ |V|, |S| · s |V|: 

•|{ v 2 Sc : 9 u 2 S, (u,v) 2 E}| ¸ e |S|. 



Convergence for biased signals 

• Question: What is an example of families of graphs for which 

majority dynamics aggregate well. 

• Def: A graph G=(V,E) is an (e,s) expander if 
• 8 S ½ |V|, |S| · s |V|: 

•|{ v 2 Sc : 9 u 2 S, (u,v) 2 E}| ¸ e |S|. 

• Claim (won’t prove): There exists a>0 such that for large k 

and n a random k-regular graph G on n vertices it holds that G 

is a (0.75 k, a/k) expander with high probability. 

•Claim: For graphs as above if p>1-a/2k the graph aggregates 

well with high probability.

• In fact we’ll prove that if at time 0 the fraction of + is at 

least 1-a/k then the dynamics will converge to all +. 

• Proof is from Kanoria-Montanari-10



Convergence for biased signals 

Claim: For graphs as above if p>1-a/2k the graph aggregates 

well with high probability.

• In fact we’ll prove that if at time 0 the fraction of + is at 

least 1-a/k then the dynamics will converge to all +. 

• Proof is from Kanoria-Montanari-10

• Pf:?



Convergence for biased signals 

Claim If at time 0 the fraction of + is at least 1-a/2k then the 

dynamics will converge to all +. 

• Pf:

• We will show that # of – contracts by ¾ at each iteration. 
• Let S(-) := set of –, s :=|S(-)| · a n / k.  

• n(+) := #  of +’s with at most k/2 nbrs in S(-)      

• n(-) := #   of  +’s with at least k/2 nbrs in S(-). 

• l      := #  of edges from S(-) to itself. 
• Then by expansion: n(+) + n(-) ¸ 0.75 k s 

• n(+) + k/2 n(-) + 2l · k s.

• So: (0.5 k – 1) n(-) + 2l · 0.25 ks. 

• So for k large enough: 0.5 k n(-) + 2l · 0.3 k s

• So: n(-) + 2l / (k/2) · 0.6 s 

• So # of –’s in next iteration at most 0.6s. 



Convergence to the same action - conclusions

• Many examples where it is easy to establish it is not the case 

that all voters converge to the same vote. 

• In some rare examples possible to show convergence to the 

same vote. 

• Arguments use strong bias and “expansion”. 



Asking a different question

• So far we analyzed if repeated majority results in achieving 

consensus. 

• Since we know in real life consensus is often not reached … 

• Perhaps we should aim for less: 

• What is the effect of repeated majority on the outcome of 

the vote? 



Asking a different question

• Setup: 

• Originally voters receive (+,-) signal which is correct with 

probability p > ½. 

• Optimal fair voting: majority of original signals.

• Instead: 

• voters converse/learn and change their opinions for 100 days

• Each day update to the view of the majority of the people 

they appreciate. 



Example 1: “US Media”

• There are 11 media outlets. 

• n=200,000,000 voters. 

• Each media outlet takes a majority vote among 1-11 other 

media outlets. 

• Each voter takes a majority vote among 1-3 friends and 5-11 

media outlets. 

• Repeat for d days. 

• Then a majority vote among all voters. 

• Does aggregation hold? 



Example 1: “US Media”

• There are 101 media outlets. 

• n=200,000,000 voters. 

•Each media outlet takes a majority vote among 1-101 other 

media outlets. 

• Each voter takes a majority vote among 1-10 friends and 30-

50 media outlets. 

Q: Does aggregation hold if repeat for d days?

• A: No! Enough that media gets the wrong signal on first 

round. 

•Q: Does this happen in “real life”? topics not covered by 

media?

• Note:  Possible to construct more realistic examples. 

• In particular suffices that positive fraction of population give 

more weight to media,



Comments on Example 1: “US Media”

•Note:  Possible to construct more realistic examples. 

• In particular suffices that positive fraction of population give 

more weight to media, for example: 

• 10% of people give more weight do media then to their 

friends. 

• 10% of people give more weight to the media and people in 

previous group than to the rest of their friends. 

• etc. (for say 60% of voters). 

• Can we make an example like this when the media also takes 

the opinions of people into account? (an undirected example)?



Example 1: “US Media (2)”

• Can we make an example like this when the media also takes 

the opinions of people into account? 

• Yes! For example …

• Suppose there is 1 media outlet.

• n voters partitioned into pairs. 

• outlet takes majority over all voters. 

• voters take majority of outlet with pair views.  

• Suppose true signal is given with probability p=0.51. 

• If media outlet gives wrong signal at round 0. 

• Then at round 1 a fraction 1-0.51^2 of the pairs will have the 

wrong signal.  

• This will remain so for all following rounds. 



Questions

• We see that repeated majority can kill the aggregation of 

information. 

• Are there any situations where it does not? 

• Previous examples and follow up discussion from Mossel-

Tamuz.  



Questions

• We see that repeated majority can kill the aggregation of 

information. 

• Are there any situations where it does not?  

• Yes! 

• Many examples … 

• As usual democratic examples are good … 

• For simplicity assume all degree are odd and a simple 

majority rule. 

. 



Questions

• We see that repeated majority can kill the aggregation of 

information. 

• Are there any situations where it does not?  

• Yes! 

• Some easy examples:

• Suppose voters partitioned to many groups and in each group 

do repeated majority among all members of the group. 



Questions

Some easy examples:

• Suppose voters partitioned to many groups and in each group 

do repeated majority among all members of the group. 

• Each group decision is a monotone fair function so correct 

with probability at least p. 

• If there are many groups by LLN we have aggregation.



Questions

Other easy examples:

• Suppose voters partitioned to many groups and in each group 

do repeated majority among all members of the group. 

• There are only 5 groups of size n/5. 

• In each group with prob  1 get consensus to correct 

decision. 



Questions

Are there more interesting examples? 

• Information bounded. 

• But can still flow around the network? 



Questions

• As usual democratic examples are good … 

• For simplicity assume all degree are odd and a simple 

majority rule. 

• Let G be the directed graph where uv means u takes v as 

part of its majority rule. 

• We say that G is transitive if there exists a group \Gamma 

action on G which maps edges to edges. 

• Claim: (M-Tamuz): If G is transitive then we have aggregation 

of information. 

• Proof: Overall aggregation function is fair, monotone and 

transitive! 



Questions

• Claim: (M-Tamuz) If G is transitive then we have aggregation 

of information. 

• In fact a much weaker condition suffice. 

• Let  be a group acting on G=(V,E). 
• The orbits ofa are the sets a v$ for v2n V. 

• Let m=minimal size of an orbit.  

• Claim: (M-Tamuz):  acts on G then  we have aggregation at 

p=0.5 + 1/log m. 

• Moral: It is fine to have newspapers as long as there are 

many! 



HW 1 – Plurality 

• Let n = # voters, k = # of alternatives. 

• Prove that for all n and k every plurality function is a monotone.

• Prove that for all n and k there exist a fair plurality function. 

• Prove that for all n and k there exist a transitive plurality 

function. 

• Prove that if n>1 and k>2 there exist no fair transitive plurality 

function. 



HW 2 – Borda Rule 

• Give two different distributions of signals which result in the 

Borda rule being an optimal voting rule. 



HW 3 – Aggregating permutations

• Consider an aggregation model of permutations over k 

alternatives with a uniform prior over rankings and where: 

• Each voter either receives the correct ranking with prob 1/k

• Or receives a ranking that is obtained from it by flipping the 

order of a single pair of adjacent alternatives. 

• Define an efficient algorithm to estimate the true order given 

sampled signals. 



HW 4 – The Gaussian Learning Model

• Consider the Gaussian learning model:

• Let G be a path with 6 nodes and assume that the original 

signals are: 0,0.2,0.4,0.6,0.8,1. Describe all of the 

declarations in the process and what it converges to. 

• Find a graph where the number of iterations until 

convergence is greater than the diameter. 

• (Open problem): Is there a family of graph where the number 
of iterations needed i(n) satisfies i(n)/d(n)  1 where d(n) is 

the diameter of the n’th graph.



HW 5 – Cheaters on the de-Groot model

• Consider the de-Groot model on a weighted graph 

corresponding to a Markov chain. 

• Suppose m out of the n players are cheaters. A cheater v 

repeatedly declares x(v) over and over again. 

• Show that all players declarations converge to the same value. 

• Write a system of linear equations for the resulting signal in 

terms of the cheaters declarations. 

• Conclude that the non-cheaters declarations have no effect on 

the final signal.  



HW 6 – Cheaters on Iterated Majority Models

• Consider the iterative majority model on (0.75 k, a/k) 

expanders and assume at least 1- a/(2k) receive the correct 

signal and there are at most  a/(2k) cheaters. 

• Derive bounds on the fraction f(t,) of vertices who hold the 

correct opinion at each iteration (f(t,) should not depend on n).

• Show that lim f(t,)  1 as t 1 and  0.


