Social Choice and Social Networks

Bayesian Martingale Models

Elchanan Mossel
UC Berkeley
All rights reserved

The Bayesian View of the Jury Theorem

- Recall: we assume +/- with prior probability (0.5,0.5).
-Each voter receives signal x_{i} which is correct with probability p independently.
- Note that if this is indeed the case, then after the vote has been cast, all voters can calculate:
- $P[s=+\mid x] / P[s=-\mid x]$.
- Obtain posterior probability of,+- .
- Everybody agree about the posterior.

Critique of The Bayesian View

- The main critique is:
- In real elections people don't all converge to the same posterior!
- The common prior assumption is obviously violated
- However, the Bayesian setup may still be useful:

Usefulness of the Bayesian View

- However, the Bayesian setup is still useful:
- Since it is has nice theory.
- It allows to compare different networks, modes of communication etc.
- Allows to test in what way people deviate from "rational behavior"
- Perhaps more applicable to learning: ask people to predict outcome of elections
- Perhaps more applicable to computational agents.

Challenges in The Bayesian View

-In Condorct Jury Theorem - the theory was easy.

- Why?

Challenges in The Bayesian View

-In Condorct Jury Theorem - the theory was easy.

- In general: the theory is easy if every agent can see the information of all other agents at some finite time.
- Theory is more interesting if only partial information is revealed. Examples:
- Each player only says how much she believes in something and not why.
-You only see some of the agents and not all.

A few examples of Bayesian Analysis

- In the first family of examples the goal is to evaluate the expected value of some function (prob. of some event).
- 2 players - agreeing to disagree (Aumann 1976)
- General directed graph (Parikh Krasucki 90s)
- Guassian signals (P. DeMarzo, D. Vayanos, and J.

Zwiebel , M+Tamuz)

- In the 2nd family of examples the actions of players are very limited (binary) while the signal space is very rich (continuous).
- Voting on social networks (Gale Kariv 2003)
- The comolete oranh rase (M + Tamu7)

Aumann's example

- Two agents have a complete common prior.
- Agent $\mathrm{i}=1,2$ initially receives signal $\mathrm{s}(\mathrm{i})$.
- There is a bounded function from the space to R say.
- Then for each time t :
- Agent 1 declares $f(2 t)=E[f \mid s(1), f(1), \ldots, f(2 t-1)]$
- Agent 2 declares $f(2 t+1)=E[f \mid s(2), f(1), . ., f(2 t)]$
- Th (Aumann 76, Geanakoplos \& Polemarchakis 82)
- The sequence $f(t)$ converges almost surely.
- Interpretation: let f be the indicator of some event.
- By repeatedly announcing their beliefs of the event the two agents will converge to the same posterior probability.
-Examples: Biased dice and samples.

Aumann's example

- Agent 1 declares $f(2 t)=E[f \mid s(1), f(1), \ldots, f(2 t-1)]$
- Agent 2 declares $f(2 t+1)=E[f \mid s(2), f(1), . ., f(2 t)]$
- Th (Aumann 76, Geanakoplos \& Polemarchakis 82)
- The sequence $f(t)$ converges almost surely.
- Proof idea
-Let $\mathrm{F}(\mathrm{t})$ denote the sigma algebra generated by the functions $\{f(1), \ldots, f(t)\}$.
- Then $E[f \mid F(t)], t \geq 0$ is bounded martingale $=$ view from the outside.
- Moreover: $f(t)=E[f \mid F(t)]$ a.s.
- Comment: Note that the same argument applies to
- n agents as well.

A generalization to directed graphs

- We now consider the same story but with n agents on a directed graph G :
- At time t each vertex v declares it's expected value of f conditioned on its signal and what it has seen up to time t :
- $\mathrm{f}(\mathrm{v}, \mathrm{t}):=\mathrm{E}[\mathrm{f} \| \mathrm{s}(\mathrm{v}), \mathrm{f}(\mathrm{w}, \mathrm{s}), \mathrm{w} \in \mathrm{N}(\mathrm{v}), 1 \leq \mathrm{s} \leq \mathrm{t}-1]$
- Directed/Undirected <--> Phone vs. Email.
- Social Network aspect.
- Assume social network is known.
- Example: interval of length 3 and dice.
- $\mathrm{Q}:$ Do $\mathrm{f}(\mathrm{v}, \mathrm{t})$ all converge to the same value?

A generalization to directed graphs

- Q : Is it the case that $\mathrm{f}(\mathrm{v}, \mathrm{t})$ all converge to the same value?
- Obviously not:
- If there are two connected components they will not converge to the same value.
- In fact the graph $u \rightarrow v$ also does not converge.

A generalization to directed graphs

- $\underline{Q}:$ Is it the case that $f(v, t)$ all converge to the same value?
- Obviously not:
- If there are two connected components they will not converge to the same value.
- In fact the graph $u \rightarrow v$ would also not converge.
- Thm (Parikh, Krasucki):
- In the graph G is strongly connected, all agents will a.s. converge to the same value.
- Recall: Strongly connected means that for every pair of vertices there is a directed path connecting them.

A generalization to directed graphs

Proof Sketch: :

- Let $\mathrm{F}(\mathrm{v}, \mathrm{t})$ be generated by $\{\mathrm{f}(\mathrm{v}, \mathrm{s}): \mathrm{s} \leq \mathrm{t}\}$ and conclude that $f(v, t)$ converges to $f(v)=E[f \mid F(v)], F(v)=\{f(v, s)\}$
- $f(v)$ is the function closest in $L^{2}(F(v))$ to f.
- Next we do the same with $F^{\prime}(v, t)$ generated by
- $\{\mathrm{f}(\mathrm{v}, \mathrm{s}): \mathrm{s} \leq \mathrm{t}\} \cup\{\mathrm{f}(\mathrm{w}, \mathrm{s}): \mathrm{s}<\mathrm{t}: \mathrm{w} \in \mathrm{N}(\mathrm{v})\}$
- Again we get that $f(v, t)$ converges to $f(v)=E\left[f \mid F^{\prime}(v)\right]$
- Implies that if $v \rightarrow w$ in G then $|f(v)-f|_{2} \leq|f(w)-f|_{2}$.
- Strongly connectivity $\Rightarrow \forall \mathrm{u}, \mathrm{v}:|\mathrm{f}(\mathrm{v})-\mathrm{f}|_{2}=|\mathrm{f}(\mathrm{w})-\mathrm{f}|_{2}$
- If $v \rightarrow \mathrm{w}$ and $\mathrm{f}(\mathrm{v}) \neq \mathrm{f}(\mathrm{w})$ then $\mathrm{g}=0.5(\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{w})) \in \mathrm{F}^{\prime}(\mathrm{v})$ and g closer to f than either $f(v)$ or $f(w)$.
- Strongly connectivity $\Rightarrow \forall \mathrm{u}, \mathrm{v}: \mathrm{f}(\mathrm{v})=\mathrm{f}(\mathrm{w})$.

Some Things we do know about the model

- Players do not have to converge to the correct posterior.
- Example (Greg): prior $(0.5,0.5)$ two players are given uniformly at random two bits whose e-xor is the state.
- For a finite state space: \# of steps to convergence is at most \# of sigma-algebras on the state.
- Pf: (Geanakoplos \& Polemarchakis; Joe):
- When the two sigma-algebras remain the same for both players this will remain like that forever.
- More in GP: Examples where for n steps nothing happen and then converge to the same opinion.

Some Things we do know about the model

- Example: State space [n^{2}] with uniform prior.
- Player 1 observes groups $\{1 \ldots, n\},\{n+1, . ., 2 n\}$ etc.
- Player 2 observes groups $\left.\{1, \ldots, n+1\}, \ldots, n^{2}\right\}$
- True value is 1.
- The event is $\left\{1, n+2,2 n+3, \ldots, n^{2}\right\}$.
- What will happen?
- Player 1 will say $1 / n$
- Player 2 will say $1 /(n+1)$
- Player 1 learns that it is not n^{2} but will still say $1 / \mathrm{n}$.
- Player 2 learns that player 1 was not in the last group but will still say $1 /(n+1)$.
- etc.

Many things we do not know about this model

Many things we do not know about this model

- We do not know how long it takes to converge.
- We do not if it converges to a "good answer".
- What is the computational complexity of the Bayesian process?
- It is known that if the original space is finite convergence will hold after finitely many steps.

Some aspects of the Bayesian approach

- We do not know how long it takes to converge.
- We do not if it converges to a "good answer".
- What is the computational complexity of the Bayesian process?
-Some partial answers are known.
- We will talk about a Gaussian model which is:
- Computationally feasible
- Has rapid convergence.
- Converges to the optimal answer for every connected network.
- Following model was studied in P. DeMarzo, D. Vayanos, and J. Zwiebel. and by Mossel and Tamuz.

The Gaussian Model

- The original signals are $N(\mu=?, 1)$.
- In each iteration
- Each agent action reveals her current estimate of μ to her neighbors.
- E.g. set price by min utility $(x-\mu)^{2}$
- Each agent calculates a new estimate of μ based on her neighbors' broadcasts.
- Assume agents know the graph structure.
- Repeat ad infinitum
- Assume agents know the graph structure.
- Example: interval of length 4.
- "Network Learns" Avg (X_{v})
- Variance of this estimator is $1 / n$.
- Could be achieved if everyone was friends with everyone.
- Technical comments: This is both the
- ML estimator \&
- Bayesian estimator with uniform prior on $(-\infty, \infty)$
- For every connected network:
- The best estimator is reached within n^{2} rounds where $\mathrm{n}=$ \#nodes (DVZ \& MT)
- Convergence time can be improved to 2* n * diameter (MT)
- All computations are efficient (MT)
- Claim 1: At each iteration
$X_{v}(\mathrm{t})=$ Bayes Estimator
= Maximum Like estimator
- Moreover, $X_{v}(t) \in L_{v}(t)$, where $L_{v}(t)=\operatorname{span}\left\{X_{w}(0), \ldots, X_{w}(t-1): w \sim v\right\}$
- $X_{v}(t)$ is argmin of
$\left\{\operatorname{Var}(\mathrm{X}): \mathrm{X} \in \mathrm{L}_{\mathrm{v}}(\mathrm{t}), \mathrm{E}[\mathrm{X}]=\mu\right\}$
- Claim: Can be calculated efficiently
- Cor: $\operatorname{Var}\left(X_{v}(t)\right)$ decreases with time
- Note: If $X_{v}(t) \neq X_{u}(t)$, dim of either L_{v} or L_{u} goes up by $1(v \sim u)$
- \Rightarrow Converges in n^{2} rounds.
- Claim: Weight that agent gives own estimator has to be at least 1/n (prove it!)
- \Rightarrow converges to optimal estimator

Convergence in $2 n *$ d steps

- Claim: If an agent u estimator X remains for $2^{* d}$ steps $\mathrm{t}, \mathrm{t}+1, \ldots \mathrm{t}+2 \mathrm{~d}$ then the process has converged.
- Pf:
- Let $L=L_{u}(t+2 d)$
- Let v be a neighbor of u.
- $X_{t+1}(v), \ldots X_{t+2 d-1}(v) \in L$.
- $X \in L_{v}(t+1)$
- So $X_{t+1}(v)=\ldots=X_{t+2 d-1}(v)=X$
- If w is a neighbor of u then:
- $X_{t+2}(\mathrm{v})=\ldots=X_{t+2 d-2}(\mathrm{v})=X$
- By induction at time $\mathrm{t}+\mathrm{d}$ all estimators are X .

Truncated information

- Why could we analyze the cases so far?
-A main feature was that agents declarations were martingales.
- A more difficult case is where agents declarations are more limited.
- Example: +/- actions / declarations.
- This will be discussed next week.

