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Lecture: Some non-martingale learning models

Lecturer: Elchanan Mossel Scribe: Miklos Racz

In the previous lectures we discussed Bayesian martingale models; in these two lectures we turn our attention
to non-martingale learning models. We first look at a Bayesian model introduced by Gale and Kariv [2], and
then briefly discuss the special case of the Gale-Kariv model on the complete graph, as analyzed by Mossel
and Tamuz [6]. Next, we study heuristic models of repeated voting: we first look at the DeGroot model,
and then we analyze the repeated majority model.

1 Gale-Kariv model

We now study a model introduced by Gale and Kariv [2], which is more complicated than the models we have
seen before. In this model there are two possible states of the world, and a finite number of agents trying to
figure out the true state. In the beginning each agent receives an independent private signal picked from a
distribution that depends on the state of the world, and from this they form a belief regarding the state of
the world. Next, there are multiple rounds of voting in which each agent acts and observes simultaneously:
they each make a declaration of the state of the world according to their current beliefs and observe the
declarations of their neighbors. After each round, each agent calculates an updated posterior belief based
upon what he or she observed. This is a Bayesian model, in the sense that the agents are Bayesian and their
actions are aimed at maximizing their expected utility (i.e. figuring out the true state of the world) at each
round.

1.1 Setup of the Gale-Kariv model

The state of the world is denoted by S, and it can take on two possible values: + or −. A priori both states
have the same probability, 1/2.

Let V = {1, . . . , n} denote the set of n agents, each agent trying to figure out the true state of the world.
As suggested by the notation V , there is a graph structure in the background, the agents corresponding to
vertices of this graph.

At the beginning, each agent receives an independent private signal giving some indication as to which is
the true state of the world. More precisely: agent v receives a signal sv ∈ Ω where (Ω,O) is a σ-algebra.
What is the distribution of sv? In the model we have two probability measures on (Ω,O), F+ and F−, and
if the state of the world S is +, then sv is distributed according to F+, while if S = −, then sv is distributed
according to F−.

We make some assumptions on F+ and F−. We assume that the Radon-Nykodim derivative x (s) := dF+

dF−

∣∣∣
s

exists and is positive for all s ∈ Ω. Furthermore, we assume that x is non-atomic and has a density over the
reals. This is done to make the analysis simpler and to avoid situations in which an individual is undecided.

After receiving the private signal, each agent v forms a posterior belief: E (S|sv), and based on this,
sgnE (S|sv) is more likely to be the state of the world, according to the belief of v.
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2 Lecture: Some non-martingale learning models

Example 1.1
Before moving on, let us look at a simple example. Suppose that Ω = [0, 1], i.e. the signals are between 0
and 1, and suppose that F+ and F− both have densities, f+ (s) = 2s and f− (s) = 2− 2s, respectively. In
this case the Radon-Nykodim derivative / likelihood ratio is

x (s) =
dF+

dF−

∣∣∣∣
s

=
f+ (s)

f− (s)
=

2s

2− 2s
.

If agent v receives a private signal sv, the probability he or she assigns to the state of the world being + is:

P (S = +|sv) =
f+ (sv)

f+ (sv) + f− (sv)
=

2sv
2

= sv.

So for instance if v receives the signal sv = 0.3, then E (S|sv = 0.3) = P (S = +|sv = 0.3)−P (S = −|sv = 0.3) =
0.3− 0.7 = −0.4 and so v—given no other information—believes that the state of the world is more likely to
be sgnE (S|sv = 0.3) = −, and there is also a “strength” to his/her belief given by: P (S = −|sv = 0.3) = 0.7.

Now let us turn back to describing the Gale-Kariv model. After receiving the private signals, there are
multiple rounds of voting in which each agent acts and observes simultaneously. At time t = 0 (right after
receiving the signals), the declaration of agent v is dv (0) := sgnE (S|sv). Now each agent observes the
declarations of his/her neighbors, and updates his/her belief of the state of the world accordingly. Then in
each subsequent round the agents again make declarations and observe the declarations of their neighbors.
The declaration of agent v at time t is

dv (t) := sgnE (S|sv, dw (s) : w ∈ N (v) , s < t) ,

where N (v) denotes the neighbors of agent v in the underlying graph. After the declarations at time t, the
belief of agent v is updated to E (S|sv, dw (s) : w ∈ N (v) , s ≤ t).

One way to think about the process is the following. Suppose the agents are traders on the stock market,
and the “state of the world” S being + or − indicates whether it is better to buy or sell in the market. The
traders are busy and they don’t have time to talk, the only way they communicate is when they pass each
other in the hall / meet in the elevator, when they show each other a thumbs up or thumbs down, indicating
their current beliefs of what the state of the world is (whether it is better to buy or sell).

Example 1.2
Let us again look at a simple example to understand how the process works. Suppose the setup (Ω, f+, f−)
is the same as in Example 1.1, and suppose there are 3 agents, with the underlying graph being the triangle
(i.e. the complete graph on 3 vertices). Suppose the received signals are s1 = 0.8, s2 = 0.3, s3 = 0.4. The
3 agents calculate the likelihood ratio given their signal: x (s1) = 4, x (s2) = 3/7, x (s3) = 2/3. Now the
process starts, the players make their declarations. From the signals and likelihood ratios it is easy to see
that the first round of declarations will be d1 (0) = +, d2 (0) = −, d3 (0) = −.

The agents then update their beliefs according to what they have seen. Let us look at how agent 1 updates
his/her beliefs. Agent 1 sees that the other two agents declared −, so both of them received a signal between
0 and 1/2. Agent 1 then calculates the likelihood ratio of the things he has seen given that the real signal
is + and −, respectively. This likelihood ratio is the product of three likelihood ratios: the likelihood ratio
of him receiving the signal s1 = 0.8 and the likelihood ratios of agent 2 and 3 receiving a signal between 0
and 1/2. So the updated likelihood ratio of agent 1 is

f+ (0.8)

f− (0.8)

(∫ 1/2

0
f+ (s) ds∫ 1/2

0
f− (s) ds

)2

=
1.6

0.4

(
1/4

3/4

)2

=
4

9
.
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So the belief of agent 1 changes after the declarations, his/her new belief is

E (S|s1, d2 (0) , d3 (0)) =
4

13
− 9

13
= − 5

13
,

so in the next round agent 1 will declare − as the state of the world. It can also be seen that the beliefs of
agents 2 and 3 do not change after the initial declarations, so they too will declare − as the state of the world
in the next round. The agents thus reach consensus in the second round, and once consensus is reached,
everything stays the same.

1.2 Filtrations and martingales in the Gale-Kariv model

There are many natural filtrations and consequently many natural martingales in the Gale-Kariv model. Let

Fv,t := σ {sv, dw (s) : w ∈ N (v) , s < t}

be the σ-algebra generated by the information that is available to agent v at time t and let

Fv := σ

∪
t≥0

Fv,t


be the σ-algebra generated by the information that is available to agent v over the whole process. The belief
of agent v at time t is fv (t) = E (S|Fv,t), which is a martingale with respect to the filtration Fv,t and which
converges to fv := E (S|Fv) as t → ∞.

Note that the declaration of agent v at time t is dv (t) = sgn fv (t). Define dv to be + if fv > 0, to be −
if fv > 0, and define it arbitrarily if fv = 0. The convergence limt fv (t) = fv implies that if fv ̸= 0 then
limt dv (t) = dv. (We cannot say anything about the sequence of declarations if fv = 0.) Furthermore, let
ev = + if limt dv (t) = +, and otherwise let ev = − (this definition will be used in the next subsection).

Another natural filtration is the following. Let

Gv,t := σ {dv (s) : s < t}

be the σ-algebra generated by the information available to a friend of agent v at time t, who sees nothing
else but the declarations of agent v at every round. As before, let

Gv := σ

∪
t≥0

Gv,t


be the σ-algebra generated by the information that is available to the friend of agent v over the whole process.
The belief of this friend at time t is gv (t) = E (S|Gv,t), which is a martingale with respect to the filtration
Gv,t and which converges to gv := E (S|Gv) as t → ∞.

Note: if fv > 0 then gv > 0, since “the friend of agent v knows that agent v is the professional”. In fact
more is true, the quality of prediction is the same for the friend and the agent. If the agent says only + from
one point on, then so will the friend. Similarly, if the agent says only − from one point on, then so will the
friend. If the declarations of the agent do not converge, then the agent has 1/2 - 1/2 chance of guessing the
correct state of the world. But if the declarations of the agent do not converge, then the friend knows that
the agent does not know the state of the world, and so the friend might as well flip a fair coin to decide.
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1.3 Results and challenges in the Gale-Kariv model

The following result says that it is not possible that different agents converge to different actions. However,
this does not rule out the possibility that the actions do not converge at all.

Proposition 1.1 (Gale, Kariv [2]). Assuming that u is a neighbor of v then it cannot happen that fv > 0
and fw < 0.

Proof. Our first claim is that the functions dv and ev both maximize the prediction probability of the signal
given Fv. Now let us introduce the filtration

Gv,w,t := σ {dv (s) , dw (s) : s < t}

which is generated by the information available to a common friend of agents v and w and similarly as before
let

Gv,w := σ

∪
t≥0

Gv,w,t

 .

Furthermore, let cv,w maximize the prediction probability given Gv,w. Clearly

ev ≤ cv,w ≤ dv,

since agent v has more information than the friend of agents v and w, who in turn has more information
than the friend of agent v. But unless fv = 0, ev = dv, and consequently ev = cv,w = dv. Similarly, unless
fw = 0, ew = cv,w = dw. So unless fv = 0 or fw = 0, we have dv = dw. This proves Proposition 1.1, since if
we would have fv > 0 and fw < 0, then we would also have dv = + and dw = −, which contradicts with the
conclusion obtained in the previous sentence.

In conclusion, we can say that the Gale-Kariv model is a very natural model to study, but there are many
challenges related to it. For one, the model in its full generality is computationally intractable. Furthermore,
it is very hard to tackle analytically, and consequently there are many open questions. It is not known how
long it takes for the process to converge. It is also not known which networks aggregate well. It is provable
that the complete graph and the star aggregate well (in the case of a star the central agent knows everything),
and so do graphs with high degrees, e.g. graphs where every degree is at least of order logn. However, it is
not known whether trees or graphs with small diameter aggregate well.

1.4 Gale-Kariv model on the complete graph

Mossel and Tamuz consider the Gale-Kariv model on the complete graph in [6]. The discussion of this paper
as seen on the slides was skipped during class, so we now just summarize the main results and refer the
reader to the original article [6] for details. The main results are the following:

• Consensus is always reached, i.e. all agents converge to the same outcome a.s.

• The calculations of the agents are efficient. This is very important, in order for the framework to be
implementable.

• Each round of voting improves the aggregation of information.

• The chance of a correct decision quickly approaches one as the number of agents increases. In particular,
with high probability the agents reach consensus in the second round. (Proof idea: after the first vote,
the individuals see n independent signals on the state of the world.)
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2 Heuristic models

So far we haved discussed various Bayesian models for opinion updates. In this section we discuss simpler
heuristic models of repeated voting. Why look at other models? First of all, real “agents” are probably not
fully Bayesian, and instead apply some kind of heuristics (but which?). Also, a simpler update rule may lead
to more complete analysis in understanding various features of the behavior.

In the following we analyze two models, the DeGroot model and the iterated majority model.

2.1 DeGroot model

The DeGroot model is the repeated weighted averaging of the opinions of one’s self and one’s neighbors.
There are n individuals, denoted by 1, . . . , n, who at time t = 0 have some initial beliefs f0 (i) = f (i)
for i ∈ [n]. There are averaging weights wij ≥ 0 which satisfy

∑n
j=1 wij = 1, and the update rule is

ft+1 (i) =
∑n

j=1 wijft (j). If W = (wij)
n
i,j=1 denotes the stochastic matrix given by the weights and we think

of the beliefs ft at time t as a column vector, then the update rule in matrix notation is ft+1 = Wft, so
ft = W tf .

This linear model was introduced by Morris H. DeGroot (June 8, 1931 - November 2, 1989) in 1974 [1].

2.1.1 Examples

To familiarize ourselves with the model, let us look at a few examples.

• If W = I, i.e. wij = δij , then the network consists of n nodes and no edges, so nothing happens.

• If wij = 1/n for all i, j, then everyone converges to the average of the initial beliefs in one round.

• Suppose wij = 1/3 for (i− j) mod n ∈ {0, 1, n− 1}, i.e. the graph consists of a cycle plus loops on the
nodes. Again all beliefs will converge to the average of the initial beliefs. [Note that, by symmetry, if
the beliefs converge, then all beliefs converge to the same belief.]

• Suppose wij = 1/2 for (i− j) mod n ∈ {1, n− 1}, i.e. the graph consists of a cycle on n nodes. The
behavior in this case depends on the parity of n. If n is odd, then just like before, the beliefs converge
to the average of the initial beliefs. However, if n is even then we might have a “blinking effect”, see
Figure 1.

1 0

10

0 1

01

Figure 1: Blinking effect.
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• Suppose the graph is a star with a loop at every node. That is, win = wii = 1/2 for i < n, and
wn,j = 1/n for all j. In this case all beliefs converge to the same belief as before; however, this
common belief will not be the average of all initial beliefs, but rather it will give greater weight to the
initial belief of the central node of the star. The exact ratio can be calculated easily from the discussion
below.

2.1.2 Markov chains and convergence

If µi denotes the row vector with 1 in the ith coordinate and 0 elsewhere, then

ft (i) = µift = µi

(
W tf

)
=
(
µiW

t
)
f = µi,tf = Ei,t (f (X)) ,

where µi,t is the distribution of the Markov chain with transition matrix W started at i and run for t steps,
and Ei,t denotes expectation according to this distribution. So we can see that the beliefs at time t are
simply the expected beliefs according to the Markov chain with transition matrix W started at i and run
for t steps. Due to this, we can use the theory of Markov chains to say things about the DeGroot model. In
fact, almost everything we want to know follows from Markov chain theory. So in order to say things about
the DeGroot model, we need to review some facts about Markov chains.

The total variation distance between two distributions P and Q (on a finite state space) is given by

dTV (P,Q) =
1

2

∑
x

|P (x)−Q (x)| .

A finite state space Markov chain given by transition matrix P is called ergodic if there exists a finite k such
that all entries of P k are positive.

We know that if W corresponds to an ergodic chain, then there exists a unique stationary distribution π
(i.e. πW = π). We also know that

dTV (µi,t, π) → 0

as t → ∞ for any i, i.e. no matter where the Markov chain starts, its distribution at time t converges to
the stationary distribution (in the total variation metric) as t → ∞. Furthermore, if Eπ denotes expectation
with respect to π, we also have

|Ei,t (f (X))− Eπ (f (X))| → 0

as t → ∞ for any i. In other words, if the chain is ergodic, then all beliefs converge to the same value, which
is

Eπ (f (X)) =
∑
i

π (i) f (i) .

What is the stationary distribution π? If W is an ergodic random walk on an undirected graph, then the
stationary distribution is proportional to the degrees of the nodes, i.e.

π (i) =
deg (i)∑
j

deg (j)
.

So the importance of a node is determined by the number of neighbors it has.

2.1.3 Examples revisited

Let us look at the examples from Section 2.1.1 again.
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• If W = I, i.e. wij = δij , then the network consists of n nodes and no edges, so nothing happens. The
Markov chain corresponding to W is evidently not ergodic.

• If wij = 1/n for all i, j, then the corresponding Markov chain is ergodic, with uniform stationary
distribution. Furthermore, the Markov chain reaches stationarity in one round, so everyone converges
to the average of the initial beliefs in one round.

• Suppose wij = 1/3 for (i− j) mod n ∈ {0, 1, n− 1}, i.e. the graph consists of a cycle plus loops on the
nodes. The corresponding Markov chain is ergodic with uniform stationary distribution, so all beliefs
will converge to the average of the initial beliefs.

• Suppose wij = 1/2 for (i− j) mod n ∈ {1, n− 1}, i.e. the graph consists of a cycle on n nodes. The
behavior in this case depends on the parity of n. If n is odd, then the corresponding Markov chain is
ergodic with uniform stationary distribution, so just like before, the beliefs converge to the average of
the initial beliefs. However, if n is even, then the chain is not ergodic, and consequently we might have
a “blinking effect”, as shown above.

• Suppose the graph is a star with a loop at every node. That is, win = wii = 1/2 for i < n, and
wn,j = 1/n for all j. The corresponding Markov chain is ergodic, so all beliefs converge to the same
belief as before; however, this common belief will not be the average of all initial beliefs, since the
stationary distribution is not the uniform distribution. The common belief will give greater weight to
the initial belief of the central node of the star, since the central node has a higher weight in stationarity.
Calculation shows that πi =

2
3n−2 for i < n and πn = n

3n−2 , so the common belief will be

Eπ (f (X)) =
∑
i

π (i) f (i) =
2

3n− 2

n−1∑
i=1

f (i) +
n

3n− 2
f (n) .

2.1.4 Rate of convergence

An important question is the rate of convergence to the common opinion. In the theory of Markov chains
there are many ways to measure the rate of convergence of a chain. We can directly use any of them to
obtain bounds on the rate of convergence to the common opinion via

max
i

|ft (i)− Eπ (f (X))| ≤ 2 ∥f∥∞ max
i

dTV (µi,t, π) ,

where ∥f∥∞ = maxi f (i).

The techniques include spectral gap bounds, conductance bounds, and many more (log-Sobolev bounds,
coupling bounds, etc.). We now briefly talk about these.

Spectral gap bounds. Suppose our ergodic Markov chain has transition matrix P , and let g be the smallest
non-zero eigenvalue of I − (P + P ∗) /2, where I is the identity matrix. This is known as the spectral gap.
Then for

t = s
1 + maxi ln (1/πi)

g

we have
max

i
dTV (µi,t, π) ≤ e−s.

Conductance bounds. Define the edge measure Q as

Q (x, y) := wx,yπ (x) + wy,xπ (y) Q (A,B) :=
∑

x∈A,y∈B

Q (x, y) ,
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and define the conductance of the Markov chain as

ℓ = min
π(A)≤ 1

2

Q (A,Ac)

π (A)
, (1)

which is also known as the bottleneck ratio of the chain. Then Cheeger’s inequality says

ℓ2

8
≤ g,

and so for time

t = 8s
1 + maxi ln (1/πi)

ℓ2

we have
max

i
dTV (µi,t, π) ≤ e−s.

This means that if there are no “isolated communities” or “bottlenecks” in the graph, then convergence is
quick. Note: in the minimum in (1) it is enough to look at connected sets.

Exercise. Compute the spectral gap of each of the Markov chains considered in Section 2.1.1.

Exercise. Compute the spectral gap of the transition matrix P given by a random walk on the graph G
which consists of two Kn components connected with one single edge. This single edge is a “bottleneck” in
the graph, so the Markov chain mixes slowly.

2.1.5 Cheaters in the DeGroot model

What if somebody cheats? Can they convince the rest of the group to reach whatever value they want?

Proposition 2.1. If the chain is ergodic and there is one cheater by repeatedly stating a fixed value, then
all opinions will converge to that value.

Proof. First, assume wij > 0 for all i, j ∈ [n]. Let player 1 be the cheater, i.e. ft (1) = x for all t ≥ 0. We
then know that

ft (i) = wi1x+

n∑
j=2

wijft−1 (j) . (2)

Now the map ft → ft+1 = Wft is a contraction with contraction constant c = 1−mini wi1 < 1 since by (2)
we have

sup
i∈[n]

|ft (i)− gt (i)| = sup
i∈[n]

∣∣∣∣∣∣
n∑

j=2

wij (ft (j)− gt (j))

∣∣∣∣∣∣
≤ sup

i∈[n]

n∑
j=2

wij |ft (j)− gt (j)|

≤ c sup
j∈[n]

|ft (j)− gt (j)| .

From (2) it is easy to see that the vector containing x in every coordinate is a fixed point of the map. By
the Banach fixed point theorem this is the unique fixed point of the map, and furthermore ft converges to
this fixed point as t → ∞.

If not all wij are positive, then ergodicity of the chain guarantees that there exists a finite k such that W k

contains strictly positive entries. We can then look at the map at every k steps, this new map will be a
contraction, and the proof follows as above. The details are left to the reader.
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Proposition 2.2. Suppose the chain is ergodic and m out of the n players are cheaters. Then all players’
declarations converge, and the final signal only depends on the cheaters’ declarations.

Proof. Let us number the nodes from 1 to n, numbering the cheaters from n − m + 1 to n. Write the
stochastic matrix W in the following block matrix form:

W =

[
A B
C D

]
,

where A is an (n−m) × (n−m) matrix, B is an (n−m) × m matrix, C is an m × (n−m) matrix, and
finally D is an m×m matrix. Now

Q =

[
A B
0 I

]
is the transition matrix corresponding to the case when there are m cheaters, i.e. if there are m cheaters
then ft+1 = Qft, and so ft = Qtf . Now calculation shows that

Qt =

At

(
t∑

k=0

Ak

)
B

0 I

 .

We know that Q corresponds to a Markov chain which has the nodes of the cheaters as absorbing states.
The matrix At gives the probabilities that we started the Markov chain at a non-cheater node and at time t
we are still at a non-cheater node. Assuming the graph is connected, the Markov chain governed by Q gets
absorbed eventually, so At → 0 as t → ∞. Consequently

Qt → Q∞ :=

[
0 (I −A)

−1
B

0 I

]
as t → ∞, and so

ft = Qtf → f∞ := Q∞f.

Since the first (n−m) columns of Q∞ are 0, f∞ only depends on the cheaters’ declarations. If we write x
for the column vector of length m containing the cheaters’ declarations, then we have

f∞ =

[
(I −A)

−1
B

I

]
x.

2.2 Iterated majority

A model that avoids this “cheating effect” is repeated majority. The setup is the following. Now the original
signals si (0) are + or −. There are again weights wij (this time they do not have to be normalized) and the
update rule is

st+1 (i) = sign

 n∑
j=2

wijst (j)

 .

This model is a non-linear analogue of the DeGroot model. In the following we assume that the weights are
chosen in such a way that ties (i.e. when the weighted sum of signals is 0) are impossible. A way of achieving
this is the following: nodes of odd degrees take the majority of their neighbors, while nodes of even degrees
take the majority of their neighbors and themselves. [Another solution would be to toss a fair coin in case
of a tie.]

Cheating in this model is hard, consider the following two examples.
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• Suppose the graph of the network of is a star, and the number of +’s initially is at least 3 greater than
the number of −’s initially. Then a leaf cheating and saying − in every round does not change the
other peoples’ final opinions (which will be +).

• Similarly, consider a complete graph, where the number of nodes with a + signal initially is at least 4
greater than the number of nodes with a − signal initially. Then a cheating node that says − in each
round does not change the other peoples’ final opinions (which will be +).

To familiarize ourselves with the model, let us look at a few examples.

• If W = I, i.e. wij = δij , then the network consists of n nodes and no edges, so nothing happens.

• If wij = 1 for all i, j and n is odd, then this is exactly simple majority.

• Suppose wij = 1 for (i− j) mod n ∈ {0, 1, n− 1}, i.e. the graph consists of a cycle plus loops on the
nodes. Then there is the possibility of a “blinking effect”, see Figure 2. In the same example, there

+ −

+−

− +

−+

Figure 2: Blinking effect.

are fixed points which are not all + or all −, see Figure 3.

+ + + + +
+

−−−−−
−

Figure 3: Fixed point which is not all + nor all −.

• Suppose the graph is a star with a loop in the middle. That is, wij = 0 if i, j < n, and wi,j = 1 if
max {i, j} = n. Suppose further that n is odd. Then after the first round the central node changes to
simple majority, and in the second round each leaf copies this vote from the central node. So there is
convergence to the majority vote in two rounds.

2.2.1 Convergence

In general we can ask: does the iterated majority process converge? If so, to what? If it does not converge,
what can we say about the dynamics? Many of these questions are open!
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From the example in Figure 2 we see that the process does not necessarily converge. In general, if the graph
is a bipartite graph and at time t = 0 one component has all + votes, the other component has all − votes,
then we see the same blinking effect among the two components. More generally, suppose we can partition
the graph into two parts such that each node has more neighbors in the component they do not belong to.
Then if at time t = 0 one component has all + votes and the other component has all − votes, then we see
the same blinking effect among the two components.

Since there are at most 2n possible declarations of the n nodes as a whole, we know that if there is no
convergence then the declarations will fall into a cycle. A trivial upper bound for the length of the cycle
is 2n. In case of directed graphs examples can be created where the length of the cycle is exponential in
n. What is a tight upper bound for the length of the cycle for directed graphs? How about for undirected
graphs: what is the longest possible cycle? These are open questions.

Even if the process converges, it is hard to say what it converges to from an arbitrary starting condition.

2.2.2 Convergence for biased signals

What happens for biased signals? Some partial results are known for asynchronous dynamics. In this setup
the updates do not all occur at the same time, but rather there is an exponential clock (corresponding to
a Poisson process) at every node, and when this rings the node updates its signal to the majority of its
neighbors (flipping a fair coin in case of a tie). The following results come from statistical physics. For
infinite grids in dimensions 2 and higher (Z2 is the “social network of beggars in New York”), and for regular
trees there exists a q < 1 such that if the signals are iid with P (s = +) = p > q then almost surely all
signals converge to +. Howard studied the process on infinite 3-regular trees in [4], showing that there exists
a p > 1/2 for which there is no convergence to all + signals. So combining the two results we have the
following picture for infinite 3-regular trees: there exist 1/2 < q1 ≤ q2 < 1 such that for 1/2 ≤ p ≤ q1 there
is no convergence to all + signals, for p > q2 there is convergence to all + signals, and for q1 ≤ p ≤ q2 we do
not know what happens.

The process on finite and infinite graphs behaves very differently, which can be seen on the following example.

Proposition 2.3. Let Tn be the n-level binary tree (with a loop at the root to make the root’s degree odd),
and let 1/2 < p < 1. Then the probability of convergence to all + goes to 0 as n → ∞.

Proof. If there is a cherry at the bottom (a node at level n − 1 and its two children) where all three nodes
have a − signal, then these signals will stay like this forever. The probability of no cherry at the bottom
having all − signals goes to 0 as n → ∞.

An interesting question is the following problem (which may or may not be open): find a big family of graphs
with only all + or all − as fixed points. The previous paragraph shows that binary trees do not provide such
an example. On the other hand, complete graphs do. Are there any other examples?

What is an example of families of graphs for which majority dynamics aggregates well? Expander graphs
provide such an example. A graph G = (V,E) is an (e, s) expander if for every S ⊆ V such that |S| ≤ s |V |
we have

|{v ∈ Sc : ∃ u ∈ S such that (u, v) ∈ E}| ≥ e |S| .

The following statement (which we do not prove, but which can be found in the survey by Hoory, Linial,
and Wigderson [3]) shows that expanders exist, and that actually there are many of them.

Proposition 2.4. There exists a > 0 such that for large k and n, a random k-regular graph G on n vertices
is a (0.75k, a/k) expander with high probability.
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The next result gives an answer to the question asked at the beginning of the paragraph.

Proposition 2.5. For k-regular (0.75k, a/k) expanders on n vertices (with k and n large enough), if p >
1 − a/ (2k) then the graph aggregates well with high probability. In fact, we show that if at time t = 0 a
fraction of at least 1 − a/ (2k) of the voters receive a + signal, then the dynamics will converge to all +
signals.

Proof. The proof is from Kanoria and Montanari [5]. We show that the number of nodes with a − signal
contracts by 5/6 at each iteration. Let S denote the set of vertices with a − signal at time t = 0, let Sc

denote the set of all other vertices, and let s := |S|. Define the following quantities:

n (+) := |{v ∈ Sc : v has at least 1 but at most k/2 neighbors in S}|
n (−) := |{v ∈ Sc : v has at least k/2 neighbors in S}|

l := # of edges from S to itself.

Since s ≤ a
2kn by the hypothesis, we can apply the expansion condition to S, which says that

n (+) + n (−) ≥ 0.75ks. (3)

Now let us count the sum of the degrees of vertices in S. On the one hand, this quantity is exactly ks
since our graph is k-regular. On the other hand, there are l edges connecting two nodes in S, each edge
contributing 2 to the sum; there are n (+) vertices in Sc contributing at least 1 to the sum; and there are
n (−) vertices in Sc contributing at least k/2 to the sum. This gives us

ks ≥ 2l + n (+) +
k

2
n (−) . (4)

Summing (3) and (4) we arrive at

0.25ks ≥ 2l +

(
k

2
− 1

)
n (−) ,

dividing by k/2 gives us

0.5s ≥ 2l

k/2
+

(
1− 2

k

)
n (−) ,

from which it follows that
2l

k/2
+ n (−) ≤ 0.5

1− 2/k
s ≤ 5

6
s, (5)

using that k ≥ 5. We know that the number of vertices with a − signal after the first iteration is at most
2l/ (k/2) + n (−); there are n (−) vertices that had a + signal and now changed to a − signal, and there are
at most 2l/ (k/2) vertices in S which continue to have a − signal after this iteration. So (5) says that S is a
contracting set.

Concluding remarks. We have seen many examples where it is easy to establish that not all voters converge
to the same vote. In some rare examples it is possible to show convergence to the same vote, using strong
bias and expansion arguments.

2.2.3 Asking a different question

So far we analyzed whether or not repeated majority results in achieving consensus. Since we know that
in real life consensus is often not reached, we should perhaps aim for less: what is the effect of repeated
majority on the outcome of the vote?
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Let us look at the following setup. Originally voters receive a + or − signal which is correct with probability
p > 1/2. We know that the optimal fair vote is to take the majority of the original signals. What we do
instead is let the voters learn, converse among each other, and change their opinions for d days. This is done
by each day updating their view to the majority of the people they appreciate. Then at the end of the d
days we take a majority vote. Does this make the quality of the vote worse? We have seen in the electoral
college example that it destroys optimality. But does it destroy aggregation? The following example shows
that it can.

Example 2.1 US Media
Suppose there are 100 media outlets and 2000000 voters. Each media outlet takes a majority vote among
some number of other media outlets, while each voter takes a majority among 1-10 friends and 30-50 media
outlets. Does aggregation hold if we repeat for d days? No! It is enough that the media gets the wrong
signal in the first round.

This is perhaps not such a realistic example, but it is possible to construct more realisic ones. In particular
it suffices that a positive fraction of the population gives more weight to the media than their friends.

Example 2.2 US Media, part 2
Suppose 10% of the people give more weight to the media than to their friends. Suppose 10% of the people
give more weight to the media and people in the previous group than to the rest of their friends. And so on,
for say 60% of the voters. This does not aggregate either.

In the previous two examples we had directed graphs: voters took into account media outlets, but media
outlets did not take into account voters. Can we construct such an example? Yes, see the following.

Example 2.3 US Media, part 3
Suppose there is 1 media outlet, and the n voters are partitioned into pairs. The media outlet takes majority
over all voters, while voters take the majority of the view of the outlet, the view of their pair, and the view
of their own self. Suppose the true signal is given with probability p = 0.51. Now if initially the media outlet
gives the wrong signal, then after the first round a fraction of roughly 1 − 0.512 of the pairs will have the
wrong signal, and these pairs will remain so for all following rounds.

We see that repeated majority can kill the aggregation of information. Are there any situations where it
does not? Yes, as usual the democratic examples are good. For instance, the following are good examples.

• Suppose the voters are partitioned into many groups and in each group we do repeated majority
among all members of the group. Each group decision is a monotone fair function, so it is correct with
probability at least p. If there are many groups, then by the law of large numbers we have aggregation.

• Suppose the voters are partitioned into 5 groups, each of size n/5. Then in each group we reach the
correct decision with probability tending to 1, so there is aggregation of information.

Are there more interesting examples? Let G be the directed graph where u → v means that u takes v as
part of its majority rule. We say that G is (vertex-)transitive if there exists a group Γ acting transitively on
V (G) mapping edges to edges.

Proposition 2.6 (Mossel-Tamuz). If G is transitive then we have aggregation of information.

Proof. The overall aggregation function is fair, monotone, and transitive!

In fact a much weaker condition suffices.
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Proposition 2.7 (Mossel-Tamuz). Let m be the minimal size of an orbit under the action of Γ. Then we
have aggregation of information at p = 1/2 + 1/ logm.

Moral: it is fine to have newspapers as long as there are many!
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