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This lecture covered Arrow’s Impossibility Theorem and its generalization Wilson’s Theorem.
Informally, this theorem states that if we have n ≥ 3 voters trying to rank k ≥ 3 alternatives, then
the dictator function is the only way to aggregate each voter’s ranking to yield a complete ranking
of the alternatives that satisfy:

• the relative positions of alternatives a and b depend only on each voter’s relative ranking of
a and b,

• if all voters prefer a to b, then a must be above b in the final ranking.

To motivate the intuition behind Arrow’s theorem, we consider Condorcet’s Paradox, defined
by the Marquis de Condorcet in 1785 in his Essay on the Application of Analysis to the Probability
of Majority Decisions (the same essay that outlined his “Jury Theorem”).

Example 1 (Condorcet’s Paradox). Consider the preferences of voters v1, v2, and v3 for alterna-
tives a, b, c, where v1 ranks a > b > c, v2 ranks b > c > a, and v3 ranks c > a > b. A majority (2/3)
of the voters rank a > b, but similarly, 2/3 of the voters also rank b > c and c > a, and thus there
seems to be no rational ranking of a, b, c in a manner consistent with the voters’ preferences.

Before formally stating Arrow’s Impossibility Theorem, we will need some notation and def-
initions. For n voters ranking k alternatives, let the ranking submitted by voter i be denoted
σi ∈ S(k), and let σ := (σ1, . . . , σn) denote the list of rankings given by the n voters.

We will now focus on the instance when k = 3, and we will denote the three alternatives as a, b,
and c. For ease of notation, we will map each voter’s ranking, σi to a tuple (xi, yi, zi) ∈ {−1, 1}3,
where xi = 1 if σi(a) > σi(b), and −1 otherwise. Similarly, yi = 1 if σi(b) > σi(c) and −1
otherwise, and zi = 1 if σi(c) > σi(a), and −1 otherwise. Finally, we will let x := (x1, . . . , xn),
y := (y1, . . . , yn), and z := (z1, . . . , zn).

Remark 2. Note that (xi, yi, zi) corresponds to a σi if, and only if, (xi, yi, zi) ∈ {−1, 1}3 \
{(1, 1, 1), (−1,−1,−1)}.

We now state the main definitions:

Definition 3. A constitution is a map F : S(3)n → {−1, 1}3.

The first coordinate of the image of F is the a vs. b outcome, the second is the b vs. c outcome
and the third the c vs. a coordinate.

We now define three basic properties that, intuitively, are reasonable guidelines that we might
hope “good” constitutions satisfy.



Definition 4. A constitution F is Transitive if, for all sets of rankings σ, F (σ) ∈ {−1, 1}3 \
{(1, 1, 1), (−1,−1,−1)}; that is, F is transitive if for all σ, F (σ) is a proper ranking of the alter-
natives.

Definition 5. A constitution F is Independent of Irrelevant Alternatives (IIA) if there exist func-
tions f, g, h : {−1, 1}n → {−1, 1} such that for all σ, we have F (σ) = (f(x(σ)), g(y(σ)), h(z(σ))).

Definition 6. A constitution F satisfies Unanimity if σ1 = σ2 = . . . = σn ⇒ F (σ) = σ1.

Example 7.

• The dictator function F (σ) = σi clearly satisfies Transitivity, IIA, and Unanimity.

• The majority function F (σ) = (Maj(x),Maj(y),Maj(z)), where Maj(v) = 1 if v contains
at least as many 1s as −1s, satisfies IIA and Unanimity, but, as Condorcet’s Paradox demon-
strates, does not satisfy Transitivity.

• The function F (σ) = τ, where τ is the most frequently occurring permutation in σ satis-
fies Transitivity, Unanimity, but not IIA, as can be seen by considering the outcomes corre-
sponding to σ = ((a, b, c), (a, b, c), (b, a, c), (b, c, a)) and σ = ((a, b, c), (a, c, b), (b, a, c), (b, a, c)).
F (σ) = (1, 1,−1) 6= (−1, 1,−1) = F (σ′), yet in both sets of rankings, a > b for the first two
voters, and b < a for the second two voters, but the first coordinate of F (σ) and F (σ′) differ,
thus F is not IIA.

We now state Arrow’s “Impossibility” Theorem:

Theorem 1 (Arrow’s “Impossibility” Theorem). Any constitution F on k ≥ 3 alternatives that
is transitive, IIA, and satisfies unanimity is a dictator function; that is there exists some i ∈
{1, . . . , n} such that for all σ, F (σ) = σi.

The following definition will be helpful in our proof of Arrow’s theorem.

Definition 8. Voter 1 is pivotal for f : {−1, 1}n → {−1, 1} (denoted I1(f) > 0)if there exist some
x2, . . . , xn such that f(−1, x2, . . . , xn) 6= f(1, x2, . . . , xn); we say voter i is pivotal if the analogous
statement holds.

Note that saying that voter i is pivotal for f exactly corresponds to saying that for the function
f , the ith variable has nonzero influence.

The proof of Arrow’s theorem follows easily from the following lemma, due to Barbera;

Lemma 9 (Barbera ’82). Any IIA constitution F = (f, g, h) on 3 alternatives that has I1(f) > 0
and I2(g) > 0 is non-transitive.

Proof. Since I1(f) > 0 and I2(g) > 0, there exist x2, . . . , xn and y1, y3, y4, . . . , yn such that

f(1, x2, . . . , xn) 6= f(−1, x2, . . . , xn) and g(y1, 1, y3, . . . , yn) 6= g(y1,−1, y3, . . . , yn).

Let v = h(−y1,−x2,−x3, . . . ,−xn), and note that we can choose x1, y2 such that f(x1, x2, . . . , xn) =
g(y1, y2, . . . , yn) = v. To conclude, note that the rankings given by x = (x1, . . . , xn), y = (y1, . . . , yn),
and z := (−y1,−x2,−x3, . . . ,−xn) are valid rankings, since for all i (xi, yi, zi) 6∈ {(−1,−1,−1), (1, 1, 1)},
yet f(x) = g(y) = h(z), thus F is not transitive.
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Proof of Theorem 1: We first prove the theorem for the case that there are 3 alternatives. Since F is
IIA, by assumption, without loss of generality let F = (f, g, h). Let I(f) := {pivotal voters for f}.
Since F satisfies Unanimity, none of f, g, or h can be constant functions, and thus I(f), I(g), I(h),
are all nonempty. Assume for the sake of contradiction that it is not the case that |I(f)| = 1
and I(f) = I(g) = I(h), then there is a pair of voters i 6= j which each are, respectively, pivotal
for functions f, g or f, h or g, h; by Barbera’s lemma F is not transitive, a contradiction, thus we
conclude that F (σ) = G(σi), for some function G. By the unanimity condition, G must be the
identity function, so F (σ) = σi, as desired.

We now prove the theorem for k > 3 alternatives. First observe that given a transitive IIA
function F for k > 3 alternatives that satisfies unanimity, the restriction of F to any subset of
just 3 alternatives will be a transitive IIA function on three alternatives that satisfies unanimity,
and thus, from the above, we know that the restriction of F must be a dictator function. All that
remains is to show that for all pairs of alternatives (a, b), (a′, b′), for distinct a, b, a′, b′, the same
dictator decides the relative position of a, b as a′, b′. To see this, let voter i be the dictator that
decides the relative positions of a, b, a′, and voter j the dictator that decides the relative positions
of a, b, b′, and note that i = j, because the relative positions of a, b can not be decided by different
dictators. �

Given Arrow’s theorem, a natural direction is to relax our notions of a reasonable aggregation
function. Along these lines, a natural question is:

What happens if we remove the unanimity constraint?

The first easy observation is that we only used the unanimity assumption in our proof of Arrow’s
theorem in two places; concluding that I(f), I(g), I(h) are all nonempty, and in the final step where
we say that since F (σ) = G(σi) it must be the case that G is the identity function. If, instead of
assuming that F satisfies unanimity, we assume that for all pairs of alternatives (a, b), there exists
voter rankings σ, σ′ such that a > b in F (σ) but a < b in F (σ′), then we can still conclude that
I(f), I(g), I(h) are nonempty, and the proof goes through to yield that F (σ) = G(σi) for some
voter i and some function G. What functions G can we use without violating the IIA condition?

Proposition 10. Given constitution F (σ) = G(σi) that is IIA and transitive, and for which for
every pair of alternatives (a, b), there exists some σi, σ

′
i for which G(σi) ranks a > b and G(σ′i)

ranks a < b, then either G(σi) = σi, or G(σi) = −σi, where −σi denotes the “reverse” of ranking
σi.

Proof. Note that G : {−1, 1}|S(k)| → {−1, 1}|S(k)|. Additionally, since F , and thus G is transitive,
we can write G = (g1, . . . , g|S(k)|), where gi : {−1, 1} → {−1, 1}. Note that the conditions of the
proposition now imply that gi can not be the constant function, and thus gi = ±Id. Phrased
such, the claim now amounts to showing that for all i, j, gi = gj (ie either they are all the identity
function, or all (−1) times the identity function). Assume for the sake of contradiction that there
exist i, j s.t. gi = −gj .

For clarity of notation, we replace the subscripts i, j by the pair of alternatives to which they
refer, thus ga,b indicates the relative ranking of a, b. Thus we have two pairs (a, b) and (c, d) such
that ga,b = −gc,d. We now claim that we can find a triple r, s, t s.t. gr,s = −gs,t. Indeed, consider
ga,b and gc,d, and assume without loss of generality that a 6= d. If c = b, then we have found such a
triple. Otherwise, consider ga,b and gb,d; if ga,b = −gb,d, then we have found such a triple, otherwise
we must have gb,d = −gc,d.
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To conclude, given gr,s = −gs,t, without loss of generality assume that gr,s = Id and that
gs,t = −Id. We now consider the two cases that gr,t = Id and gr,t = −Id. First, consider gr,t = Id:
consider G((t > r > s)) : in the result, it must be that r > s, s > t and t > r, which is not a valid
ordering. Similarly, if gr,t = −Id: consider G((s > t > r)) : in the result, it must be that s > r,
t > s and r > t, which is not a valid ordering.

We now characterize the set of constitutions that are IIA and transitive (and drop the condition
that every pair a, b of alternatives can be ranked in both relative orderings a > b and b > a).

Definition 11. For a constitution F , we write A >F B if for all σ and all alternatives a ∈ A and
b ∈ B, it holds that F (σ) ranks a above b.

Theorem 2 (Wilson, ’72, Mossel ’10). A constitution F on k alternatives satisfies IIA and tran-
sitivity if, and only if there exists a partition of the alternatives into sets A1, . . . , As such that:

• A1 >F A2 >F . . . >F As,

• If |Ar| > 2 then F restricted to Ar is a dictator on some voter j, in that FAr(σ) = ±σAr
i ,

where the superscript Ar denotes the restriction to the alternatives in Ar.

Clearly any function of the above form is IIA and transitive, so it remains to prove that if F
is IIA and transitive, then it has the claimed form. The following definitions will be helpful in our
proof of Wilson’s theorem:

Definition 12. For a constitution F , and two alternatives a, b write a >F b if, for all σ, F (σ)
ranks a > b. Write a ∼F b if there exist σ, σ′ such that F (σ) ranks a > b and F (σ′) ranks a < b.

Lemma 13. For a transitive and IIA function F , if there exists two sets of voter rankings σ, σ′ for
which F (σ) ranks a > b, and F (σ′) ranks b > c then there exists a set of voter ranking τ such that
in F (τ), a > c.

Proof. Letting x, y ∈ {−1, 1}n denote the vectors of relative preferences between a, b and b, c,
respectively, consider the voter rankings in which x = xσ, and y = yσ′ . We can extend these
preference lists into a set of valid rankings by setting the relative preferences between a, c to be
z = −x, and the preferences between all other pairs to be some arbitrary unanimous ranking. Thus
we have constructed a set of voter preferences τ which agrees with σ on the relative ranking a > b
and agrees with σ′ on the relative ranking b > c.

Corollary 14. For a transitive, IIA function F , the relations >F , and ∼F are transitive. Addi-
tionally, if a >F b and a ∼F c and b ∼F d then c >F d..

Proof. The transitivity of >F is obvious, and the transitivity of ∼F follows immediately from
Lemma 13. If a >F b and a ∼F c, then c >F b, since otherwise, given an instance σ for which F (σ)
ranks c < b, by Lemma 13 we can compose it with an instance for which a < c, yielding an instance
in which a < b, contradiction a >F b. Thus if a >F b, a ∼F c, b ∼F d then c >F b. Applying the
same argument to c >F b and b ∼F d yields that c >F d, as desired.

The proof of Wilson’s theorem now follows easily from the above corollary and Arrow’s theorem.
Proof of Theorem 2: We first leverage Corollary 14 to show that there exists a partition of the
alternatives into sets A1 >F A2 >F . . . >F As. Indeed, for a given alternative a, let A := {b :
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a ∼F b}. For a′ 6 inA, define the set A′ analogously, and note that since a′ 6∈ A, without loss of
generality we may assume that a <F a′. By Corollary 14, A <F A′, and thus the construction of
the partitions is well-defined. To conclude, we note that for every pair of alternatives a, b that lie
in the same partition, from the definition of ∼F , there exist outcomes for which F ranks a > b and
b > a, and thus we may apply Arrow’s theorem to the restriction of F to each partition, yielding
that the restriction of F to a partition Ai is a dictator function G(σi), and thus by Proposition 10,
the restriction of F to any partition is either the dictator function σi or −σi, as claimed. �

We concluded with a final remark that if voters don’t need to provide strict ordering, and
instead can indicate ties, then one-sided versions of Arrow’s and Wilson’s theorem hold—though
considering such a general settings seems to only obfuscate the interesting characterizations.
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