
Social Networks and Social Choice Lecture Date: August 31, 2010

Lecture: Condorcet’s Theorem

Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler

Condorcet’s theorem, the most basic jury theorem in social choice, is named for Marie Jean Antoine Nicolas
de Caritat, marquis de Condorcet (17 September 1743 - 28 March 1794), known as Nicolas de Condorcet.
This lecture focuses on the original theorem and some generalizations.

1 The original theorem

Condorcet’s Jury theorem applies to the following hypothetical situation: suppose that there is some decision
to be made between two alternatives + or −. Assume that one of the two decisions is ‘correct,’ but we do
not know which. Further, suppose there are n individuals in a population, and the population as a whole
needs to come to a decision. One reasonable method is a majority vote. So, each individual has a vote Xi,
taking the value either +1 or −1 in accordance with his or her opinion, and then the group decision is either
+ or − depending on whether Sn =

∑n
i=1Xi is positive or negative.

Theorem 1.1. (Condorcet’s Theorem) [4] If the individual votes Xi, i = 1, . . . , n are independent of one
another, and each voter makes the correct decision with probability p > 1

2 , then as n→∞, the probability of
the group coming to a correct decision by majority vote tends to 1.

Proof: This is a consequence of the law of large numbers, see [5] Theorem 4.23. Let a = p− 1/2 > 0. Since
the problem is fair in + and −, we may without loss of generality assume the correct answer is +.

Then EX1 = −( 1
2 − a) + ( 1

2 + a) = 2a > 0, and the weak law of large numbers states that Sn

n converges
in probability to EX1 = 2a, where by converging in probability we mean that for any ε1, ε2 > 0 there is N
large enough such that for every n ≥ N, P (|Sn

n − EX1| < ε1) > 1− ε2.

Taking ε1 = 2a, we see that the probability of a correct decision is

P (Sn > 0) = P

(
Sn

n
> 0

)
≥ P

(∣∣∣∣Sn

n
− 2a

∣∣∣∣ < 2a

)
→ 1,

which is what we needed to show.

This theorem is not realistic for many social situations for a number of reasons, including that individual
opinions are not likely to be independent, but for the moment we put such concerns aside. Two natural
questions to ask within the context of independence are:

• We know the theorem holds for any fixed p > 1
2 , but what if we let pn depend on n? How small can

pn be for the theorem to hold?

• The theorem tells us that the probability of a correct decision tends to one as n→∞, and we will see
that for pn >

1
2 shrinking slowly enough to 1

2 it still holds. But what happens for finite n? How large
does n need to be for us to know that the probability of a correct decision is high?
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• We made our decision based on whether Sn, a function of X = (X1, ..., Xn), was positive or negative.
But what about other aggregation functions? We could, for instance, use f(X) = X1, the dictator
function, or the more complicated electoral college function in which individual states take a majority
vote, and then we take a weighted majority vote of the states.

The remainder of the lecture will examine these issues.

2 Generalization: pn varies with n

First, consider the following sequences pn :

• pn = 1− 1
n .

• 1 > pn >
1
2 fixed.

• pn = 1
2 + (log n)−1

• pn = 1
2 + n−1/3

• pn = 1
2 + 2−n.

We will see in this section that the probability that a majority vote gives the correct decision when the
individual voters are correct independently with probability pn tends to one for all of the sequences above
except the last. But first, note that for large n the sequences above are nested, i.e. the top one 1 − 1/n is
eventually larger than any 1 > p > 1

2 which is eventually larger than 1
2 + (log n)−1, and so on. The following

result lets us determine whether the probability of a correct decision tends to one by comparison, instead of
having to deal with each case separately:

Proposition 2.1. Let Xn
i be independent, and equal to 1 with probability pn and −1 with probability (1−pn),

1 ≤ i ≤ n. Let Y n
i be independent, and equal to 1 with probability qn and −1 with probability (1 − qn),

1 ≤ i ≤ n. Define SX
n :=

∑
iX

n
i and SY

n =
∑

i Y
n
i . Then whenever pn ≥ qn, P (SX

n > 0) ≥ P (SY
n > 0).

Proof: By the binomial formula and the fact that SX
n is positive iff a majority of the Xn

i are equal to 1, we
have

P (Xn > 0) =
∑

n/2<k≤n

(
n

k

)
pkn(1− pn)n−k = 1−

∑
n/2≥k

(
n

k

)
pkn(1− pn)n−k,

and

P (Yn > 0) =
∑

n/2<k≤n

(
n

k

)
qkn(1− qn)n−k = 1−

∑
n/2≥k

(
n

k

)
qkn(1− qn)n−k.

It is enough to show that each term in the sum at right is smaller for pn than for qn, and we can do this
by proving that for each k ≤ n/2, tk(1 − t)n−k is decreasing in t for t > 1/2. Taking logarithms, we obtain
k log t + (n − k) log(1 − t), and taking derivatives we have k

t −
n−k
1−t . Since n − k ≥ k and 1 − t ≤ t, the

derivative is negative, which is enough.

Using Proposition 2.1 for the list we made at the start of this section implies that there is a ‘cutoff’ rate of
shrinkage toward 1

2 , above which we get a correct decision in the limit and below which we do not.

To find the cutoff, we appeal to the central limit theorem, which in this context states that if X1, X2, ... are
i.i.d. taking 1 with probability p = 1

2 + a and −1 with probability 1/p, then
√
n(Sn/n− 2a) has a limiting
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distribution that is normal with mean and variance equal to those of X1, i.e. mean 2a and variance 4p(1−p).
By limiting distribution we mean that

Fn(t) = P (
√
n(Sn/n− 2a) ≤ t)→n→∞ P (Z ≤ t)

for all t, where Z ∼ N(0, 4p(1− p)).

If pn = an + 1/2 with an → 0 then we have that the sum of variances of the first n variables is n(1 + o(1)).
We can apply the Lyapunov central limit theorem (see [2] p. 371), or the central limit theorem for triangular
arrays (see [5], Theorem 5.15) to see that the central limit theorem still holds as long as pn converges, so we
obtain that (Sn −

∑n
j=1 aj)/

√
n converges to a N(0, 1). In particular if aj << j−1/2 then

∑n
j=1 aj/

√
n →

0 and the probability of voting for the correct alternative is approaching 1/2 and if aj >> j−1/2 then∑n
j=1 aj/

√
n→∞ and the probability of voting for the correct alternative is approaching 1.

In particular, returning to our list, all of the sequences given except 1
2 + 2−n satisfy

√
nan →∞, so the jury

theorem holds for all the sequences except that one.

We can actually see that the majority will not be correct in the limit when pn = 1
2 + 2−n even without the

central limit theorem: suppose that an individual’s opinion is + with probability 1/2, ± with probability 2−n,
and − with probability 1

2 −2−n. Then the p = 1/2 case, in which the jury limit theorem clearly fails because
the probability of the majority being correct is exactly 1

2 , corresponds to individuals voting 1 whenever their
opinion is + and a vote of −1 whenever it is ± or −. On the other hand, voting with individuals being correct
with probability pn corresponds to a vote of 1 whenever an individual’s opinion is + or ±, and a vote of −1
otherwise. But since the expected number of individuals with opinion ± is n2−n → 0, in the limit there is
vanishing chance of any individuals having ± opinions, hence taking pn = 1

2 + 2−n is no better than random
voting as n→∞.

3 Results for finite n

To obtain results regarding the probability of a correct outcome for finite n, we can appeal to large deviations
theory. One result by Cramér dating to the early twentieth century [3] states that if Y1, Y2, ..., Yn are iid
Bernoulli (p) random variables, i.e. they are 1 with probability p and 0 with probability 1−p, and Ȳn denotes
their average, then for each b > 0,

P (|Ȳn − p| > b) < 2e−2b
2n.

We framed the jury theorem in terms of votes of ±1 rather than votes of 0 or 1, but if we let Yi = 1 when
Xi = 1 and Yi = 0 when Xi = −1, then the sum of the Xi’s is positive iff the average Ȳn is larger than 1

2 .

Hence, when the probability of a correct vote from each individual is is p = 1
2 + a, then by taking b = a in

the large devation result we obtain, using that t ≤ 1/2 implies |t− 1/2− a| ≥ a,

P (Sn > 0) = P

(
Ȳn >

1

2

)
≥ P

(∣∣∣∣Ȳn − 1

2
− a
∣∣∣∣ < a

)
> 1− 2e−2a

2n.

This provides a good bound on the error for finite n, and since nothing here prevents an from changing with
n since the result holds for each fixed p = 1

2 +a and n and is not about a limit, this also provides another way
of deriving the result from the previous section, that the jury limit theorem holds for pn ↓ 1

2 iff
√
nan →∞.
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4 Electoral College

You will be asked to derive results regarding the actual United States’ electoral college as an exercise, but
for now consider the following idealized version of the electoral college:

We have n = m2 individuals, grouped into m states with m individuals each. Their opinions are independent
and correct with probability pn. When we vote, each state takes a majority vote from its m members, and
then state casts a single vote of ±1, in agreement with its majority vote, in the larger election.

For fixed p it is easy to see that the jury will still vote correctly, because each state by itself votes correctly
with probability tending to one, and then averaging the state votes will give a correct result with probability
tending to 1. For variable pn, the result is less clear. If an

√
m → ∞, then the same reasoning, combined

with previous results, shows that the jury will make a correct decision in the limit, but the exact cutoff is
not as clear.

It turns out, however, that
√
nan → ∞ (a much weaker condition than

√
man → ∞) is still enough. This

will be part of the homework.

5 Other Aggregation Functions

It is reasonable to suppose that in any society, the decisions made by the overall population will depend in
some deterministic way on the opinions held by the individuals. So, we assume that there is some function
f(·) such that, when X ∈ {−1, 1}n describes the individual votes or opinions on an issue, then the society
as a whole makes a decision of + whenever f(X) > 0 and − whenever f(X) < 0.

We would like to explore what the best and worst reasonable choices of f are, i.e. what are the best and
worst possible ways of deciding a group opinion from individual opinions, under this model and assuming
that the goal is to come to a correct decision as often as possible.

First we need to restrict the possible f to prevent unreasonable choices. First, we assume that f is fair, i.e.
f(−X) = −f(X) for all X. We do this because, although, for convenience, we have been letting + denote
the correct choice and − the incorrect choice, in the real world we do not know what is correct and incorrect,
so the function f has to be fair in order to know which choice to make in realistic situations. For instance
f ≡ +1, i.e. always making the correct choice, is not reasonable in the real world.

We also assume that f is monotone: i.e. f(X) ≥ f(X ′) whenever Xi ≥ X ′i for all f. In words, this says
that if the only thing that happens is more people change their opinions to +, then the group opinion can
only change toward +. This ensures that our ‘worst’ choice will not be something stupid, like the minority
opinion.

It turns out that these two simple restrictions are enough to determine the best and worst possible functions
f. The best is the majority vote f(X) =

∑
iXi, and the worst is the dictator function f(X) = X1. The

proof that the dictator function is worst is a bit involved and will be postponed until the next lecture, but
we can prove easily that the majority vote is best:

Proposition 5.1. The best fair monotone function f, in the sense that when the true state of the world is ±
then sign(f(X)) is ± with maximal probability and ∓ with minimal probability, is the majority vote function.

Proof: Because we have restricted attention to fair f, it is enough to find the Bayes procedure [1] under the
prior that the world’s true state is ± with probability one-half each, since by symmetry the probability of a
correct decision is the same regardless of the state of the world, and hence the Bayes procedure is also the
best under any particular state.
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So, let the true state S of the world equal 1 with probability 1/2 and −1 with probability 1/2, and let
P (Xi = s|S = s) = p > 1/2 and P (Xi = −s|S = s) = 1 − p. Then we can use Bayes rule to compute the
probabilities

P (S = 1|X) =
P (X|S = 1) · 12

P (X)
, P (S = −1|X) =

P (X|S = −1) · 12
P (X)

.

The Bayes procedure is to make the decision

δ = sign(P (S = 1|X)− P (S = −1|X)),

i.e. to guess that the state of the world is whichever state has higher posterior probability conditional on the

votes X. So our goal is to show that δ = sign(
∑

iXi). To do this, note that δ = 1 if and only if P (S=1|X)
P (S=−1|X) > 1.

We can compute

P (S = 1|X)

P (S = −1|X)
=

P (X|S = 1)

P (X|S = −1)
=
p
∑

i 1(Xi=1)(1− p)
∑

i 1(Xi=−1)

p
∑

i 1(Xi=−1)(1− p)
∑

i 1(Xi=1)

=

(
p

1− p

)∑
i 1(Xi=1)(

1− p
p

)∑
i 1(Xi=−1)

=

(
p

1− p

)∑
i 1(Xi=1)−

∑
i 1(Xi=−1)

=

(
p

1− p

)∑
i Xi

.

Since p
1−p > 1, the right side above will be greater than 1 if and only if

∑
iXi > 0, and hence the Bayes

procedure and the majority vote agree.
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