

Elchanan Mossel Draft – All rights reserved

Condorcet Paradox

- n voters are to choose between 3 alternatives.
- <u>Condorcet</u>: Is there a rational way to do it?
- More specifically, for majority vote:
- Could it be that all of the following hold:
 - Majority of voters rank a above b?
 - Majority of voters rank b above c?
 - Majority of voters rank c above a?
- Condorcet(1785): Could be.
- Defined by Marquis de Condorcet as part of a discussion of the best way to elect candidates to the French academy of Science.

Properties of Constitutions

 $\bigotimes n$

Ζ

D

 $F_1 = f_1$

b

- n voters are to choose between 3 alternatives
- Voter i ranking := $\sigma_i \in S(3)$ Let:
- $x_i = +1$ if $\sigma_i(a) > \sigma_i(b)$, $x_i = -1$ if $\sigma_i(a) < \sigma_i(b)$,
- $y_i = +1$ if $\sigma_i(b) > \sigma_i(c)$, $y_i = -1$ if $\sigma_i(b) < \sigma_i(c)$,
- $z_i = +1$ if $\sigma_i(c) > \sigma_i(a)$, $z_i = -1$ if $\sigma_i(c) < \sigma_i(a)$.
- <u>Note:</u> (x_i,y_i,z_i) correspond to a σ_i iff (x_i,y_i,z_i) not in ^{F1}
 {(1,1,1),(-1,-1,-1)}
- <u>Def</u>: A <u>constitution</u> is a map $F : S(3)^n \rightarrow \{-1,1\}^3$.
- <u>Def</u>: A constitution is <u>transitive</u> if for all σ : • $F(\sigma) \in \{-1,1\}^3 \setminus \{(1,1,1), (-1,-1,-1)\}$
- <u>Def: Independence of Irrelevant Alternatives (IIA)</u> is satisfied by F if: $F(\sigma) = (f(x),g(y),h(z))$ for all σ and some f,g and h.

Arrow's Impossibility Thm

- <u>Def</u>: A constitution F satisfies <u>Unanimity</u> if $\sigma_1 = \dots = \sigma_n \Rightarrow F(\sigma_1, \dots, \sigma_{\underline{n}}) = \sigma_1$
- <u>Thm (Arrow's "Impossibility", 61)</u>: Any constitution F on 3 (or more) alternatives which satisfies
- IIA,
- Transitivity and
- Unanimity:
- Is a <u>dictator</u>: There exists an i such that:

 $F(\sigma) = F(\sigma_1, ..., \sigma_n) = \sigma_i$ for all σ

Arrow received a nobel Prize in Economics in 1972

Arrow's Impossibility Thm

<u>The Royal Swedish Academy of Sciences</u> has decided to award the Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel, 1972, to

John R Hicks, Oxford University, U K and Kenneth Arrow, Harvard University, USA

for their pioneering contributions to general economic equilibrium theory and welfare theory.

A Short Proof of Arrow Thm • <u>Def:</u> Voter 1 is <u>pivotal</u> for f (denoted $I_1(f) > 0$) if: $f(-,x_2,...,x_n) \neq f(+,x_2,...,x_n)$ for some $x_2,...,x_n$ (similarly for other voters).

- Lemma (Barbera 82): Any constitution F=(f,g,h) on 3 alternatives which satisfies IIA and has
- $I_1(f) > 0$ and $I_2(g) > 0$
- has a non-transitive outcome.
- <u>Pf:</u> $\exists x_2,...,x_n$ and $y_1,y_3,...,y_n$ s.t:
- $f(+1,+x_2,+x_3...,+x_n) \neq f(-1,+x_2,+x_3...,+x_n)$
- $g(+y_1,+1,+y_3,...,+y_n) \neq g(+y_1,-1,+y_3,...,+y_n)$
- $h(-y_1, -x_2, -x_3, ..., -x_n) := v$ and choose x_1, y_2 s.t.: f(x) = g(y) = v \Rightarrow outcome is not transtive.
- Note: $(x_1,y_1,-y_1),(x_2,y_2,-x_2),(x_i,y_i,-x_i)$ not in $\{(1,1,1),(-1,-1,-1)\}$

A Short Proof of Arrow Thm

- Pf of Arrow Thm:
- Let F = (f,g,h).
- Let I(f) = {pivotal voters for f}.
- Unanimity \Rightarrow f,g,h are not constant \Rightarrow I(f),I(g),I(h) are non-empty.
- By Transitivity + lemma \Rightarrow I(f) = I(g) = I(h) = {i} for some i.
- \Rightarrow F(σ) = G(σ_i)
- By unanimity $\Rightarrow F(\sigma) = \sigma_i$.
- Q: How to prove for k> 3 alternatives?
- Q: Can we do without unanimity?

A Short Proof of Arrow Thm

- <u>Q:</u> How to prove for k> 3 alternatives?
- <u>A:</u> For each 3 alternatives there is a dictator so we only need to show it is the same dictator for all pairs of alternatives. If {a,b},{c,d} are two such pairs look at (a,b,c) and (b,c,d).
- <u>Q</u>: Can we do without unanimity?
- <u>A</u>: Except the last step the same proof works if instead of unanimity we have that: for each pair of alternatives in some outcome a beats b and in another b beats a.
- Then in the last step we get $F = G(\sigma_i)$
- Only such F that satisfy IIA is $F(\sigma) = \sigma$ and $F(\sigma) = -\sigma$.

A more general Arrow Theorem

- <u>Def</u>: Write $A \ge_F B$ if for all σ and all $a \in A$ and $b \in B$ it holds that $F(\sigma)$ ranks a above b.
- <u>Thm (Wilson 72 as stated in M'10)</u>: A constitution F on k alternatives satisfies IIA and Transitivity iff
- F satisfies that there exists a partition of the k alternatives into sets A₁,...A_s s.t:
- $A_1 >_F \dots >_F A_s$ and
- If $|A_r| > 2$ then F restricted to A_r is a dictator on some voter j.
- Note: "Dictator" now is also $F(\sigma) = -\sigma$.
- <u>Def:</u> Let F_k(n) := The set of constitutions on n voters and k alternatives satisfying IIA and Transitivity.

Pf of Wilson's Theorem

- <u>Def</u>: Write $A >_F B$ if for all σ and all $a \in A$ and $b \in B$ it holds that $F(\sigma)$ ranks a above b.
- <u>Thm (Wilson 72 as stated in M'10)</u>: A constitution F on k alternatives satisfies IIA and Transitivity iff
- F satisfies that there exists a partition of the k alternatives into sets A₁,...A_s s.t:
- $A_1 >_F \dots >_F A_s$ and
- If $|A_r| > 2$ then F restricted to A_r is a dictator on some voter j.
- Note: every function as above is IIA and transitive, so need to show that if f is IIA and transitive then satisfies the conditions above.

Pf of Wilson's Theorem

- Assume F is transitive and IIA.
- For two alternatives a,b write a $>_F$ b is a is always ranked above b. Write a \sim_F b if there are outcome where a>b and outcome where b>a.
- <u>Claim:</u> $>_{F}$ is transitive.
- <u>Claim</u>: If there exists a profile σ where a>b and a profile τ where b>c then there exists an outcome where a>c.
- <u>Pf</u>: As in Barbera pf look at the configuration with a,b preferences taken from σ and b,c preferences taken from τ .
- <u>Claim</u>: \sim_F is transitive moreover if $a >_F b$ and $a \sim_F c$ and $b \sim_F d$ then $c >_F d$.

Pf of Wilson's Theorem

- <u>Claim</u>: >_F is transitive.
- <u>Claim</u>: ~_F is transitive moreover if a >_F b and a ~_F c and b ~_F d then c >_F d
- <u>Claim</u>: There exists a partition of the alternatives $A_1 >_F A_2 >_F \dots >_F A_s$
- Pf of Wilson's theorem: Apply Arrow thm to each of th_iA_i's.

Ties

- <u>Note:</u> So far we assumed that each voters provides a strict ranking.
- Arrow and other work considered the more general case where voters are allowed to have a ranking with ties such as:
- a > b~c or a~b > c etc.
- Under this condition one can state Arrow's and Wilson's theorems but only one sided versions:
- Arrow theorem with ties:
- If F satisfies unanimity, IIA and transitivity then it is a dictator or null where
- <u>Def</u>: Dictator is a voter whose strict preferences are followed.

Some Examples of dictators

- Example 1: $F(\sigma) = \sigma_1$.
- Example 2: All the strict inequalities of σ_1 are followed and:
- for every pair of alternatives a~b in σ_1 run a majority vote on the pairwise preferences between a and b.
- Note:
- Example 1 satisfies IIA while example 2 doesn't.
- If and only if characterization in M-Tamuz-11.

Random Ranking:

Assume uniform voting

- Note: Rankings are chosen uniformly in S₃ⁿ
- Assume IIA: $F(\sigma) = (f(x),g(y),h(z))$
- <u>Q:</u> What is the probability of a paradox:
- <u>Def:</u> PDX(F) = P[f(x) = g(y) = h(z)]?
- <u>Arrow Theorem implies</u>: If F ≠ dictator and f,g,h are non-constant then: PDX(f) ≥ 6⁻ⁿ.
- <u>Notation</u>: Write $D(F,G) = P(F(\sigma) \neq G(\sigma))$.
- <u>Q</u>: Suppose F is low influence or transitive and fair
 what is the lowest possible probability of paradox?

Paradoxes and Stability

- <u>Lemma 1 (Kalai 02)</u>:
- $PDX(F) = \frac{1}{4} (1 + E[f(x)g(y)] + E[f(x)h(z)] + E[g(y)h(z)])$
- <u>Pf:</u> Look at $s : \{-1,1\}^3 \rightarrow \{0,1\}$ which is 1 on (1,1,1) and (-1,-1,-1) and 0 elsewhere. Then
- $s(a,b,c) = \frac{1}{4} (1+ab+ac+bc).$
- Note that (X,Y) is distributed as:
- $E[X_i] = E[Y_i] = 0$ and $E[X_i Y_i] = -1/3$.
- If **F** is fair then **f**,**g**,**h** are fair and we can write:
- $PDX(F) = \frac{1}{4} (1 E[f(x)g(y)] E[f(x)h(z)] E[g(y)h(z)])$
- Where now (X,Y) is distributed as:
- $E[X_i] = E[Y_i] = 0$ and $E[X_i Y_i] = +1/3$

Paradoxes and Stability

- $PDX(F) = \frac{1}{4} (1 E[f(x)g(y)] E[f(x)h(z)] E[g(y)h(z)])$
- Where now (X,Y) is distributed as:
- $E[X_i] = E[Y_i] = 0$ and $E[X_i Y_i] = +1/3$
- Fairness implies E[f] = E[g] = E[h] = 0.
- By majority is stablest E[f(x)g(y)] < E[m_n(x) m_n(y)] + ϵ .
- <u>Thm(Kalai 02)</u>: If F is fair and of max influence at most δ or transitive then:
- PDX(F) > lim PDX(Maj_n) ε where $\varepsilon \rightarrow 0$ as ($\delta \rightarrow 0 / n \rightarrow \infty$)

<u>Probability of a Paradox</u>

- We already know that we cannot avoid paradoxes for low influence functions.
- <u>Q:</u> Can we avoid paradoxes with good probability for any non-dictatorial function?

<u>Probability of a Paradox</u>

- We already know that we cannot avoid paradoxes for low influence functions.
- <u>Q</u>: Can we avoid paradoxes with good probability with any non-dictatorial function?
- Let f=g=h where $f(x) = x_1$ unless $x_2 = ... = x_n$ in which case $f(x) = x_2$.
- Non-dictatorial system.
- Paradox probability is exponentially small.
- <u>Q (more reasonable)</u>: Is it true that the only functions with small paradox probability are close to dictator?

Probability of a Paradox

- <u>Kalai-02</u>: If IIA holds with F = (f,g,h) and
- E[f] = E[g] = E[h] = 0 then
- PDX(F) < $\varepsilon \Rightarrow \exists$ a dictator i s.t.:
- $D(F,\sigma_i) \leq K \varepsilon$ or $D(F,-\sigma_i) \leq K \varepsilon$
- Where K is some absolute constant.
- <u>Keller-08</u>: Same result for symmetric distributions.

Probability of a Paradox

- Thm M-10: $\forall \epsilon, \exists \delta s.t.$:
- If IIA holds with F = (f,g,h) and
- max {|E[f]|, |E[g]|, |E[h]|} < 1- ε and
- $\min_{i} \min \{ D(F,\sigma_{i}), D(F,-\sigma_{i}) \} > \varepsilon$
- Then $P(F) > \delta$.
- <u>General Thm M-10</u>: $\forall k, \epsilon \exists \delta s.t.$:
- If IIA holds for F on k alternatives and
- min {D(F,G) : $G \in F_k(n)$ } > ε
- Then: $P(F) > \delta$.

• Comment: Can take
$$\delta = k^{-2} \exp(-C/\epsilon^{21})$$

A Quantitative Lemma

- <u>Def</u>: The influence of voter 1 on f (denoted $I_1(f)$) is:
- $I_1(f) := P[f(-,x_2,...,x_n) \neq f(+,x_2,...,x_n)]$
- <u>Lemma (M-09)</u>: Any constitution F=(f,g,h) on 3 alternatives which satisfies IIA and has
- $I_1(f) > \varepsilon$ and $I_2(g) > \varepsilon$
- Satisfies $PDX(F) > \varepsilon^3/36$.
- <u>Pf:</u>
- Let A_f = {x₃,...,x_n : 1 is pivotal for f(*,*,x₃,...,x_n)}
- Let B_g = {y₃,...,y_n : 2 is pivotal for g(*,*,y₃,...,y_n)}
- Then $P[A_f] > \varepsilon$ and $P[B_g] > \varepsilon$
- By "Inverse Hyper-Contraction": $P[A_f \cap B_g] > \varepsilon^3$.
- <u>By Lemma</u>: $PDX[F] \ge 1/36 P[A_f \cap B_g] > \varepsilon^3/36$.

 $F_3 = h$

Inverse Hyper Contraction

- Note: (x_i, y_i) are i.i.d. with $E(x_i, y_i) = (0, 0)$ and $E[x_i, y_i] = -1/3$
- Results of C. Borell 82: \Rightarrow
- Let $f,g: \{-1,1\}^n \to R_+$ then
- $E[f(x) g(y)] \ge |f|_p |g|_q$ if $1/9 \le (1-q) (1-p)$ and p,q < 1.
- In particular: taking **f** and **g** indicators obtain:
- E[f] > ε and E[g] > $\varepsilon \Rightarrow$ E[fg] > ε^3 .
- Implications in: M-O'Donnell-Regev-Steif-Sudakov-06.
- <u>Note:</u> "usual" hyper-contraction gives:
- $E[f(x)g(y)] \le |f|_p |g|_q$ for all functions if
- $(p-1)(q-1) \ge 1/9$ and p,q>1.

Inverse Hyper Contraction The Use of Swedish Technology

IKEA Store Falls Apart! Experts Blame Cheap Parts, Confusing Blueprint From SD Headliner, Mar 25, 09.

Quantitative Arrow - 1st attempt

- Thm M-10: $\forall \epsilon, \exists \delta s.t$ if IIA holds with F = (f,g,h) &
- max {|E[f]|, |E[g]|, |E[h]|} < 1- ε &
- min {D(F,G) : $G \in F_3(n)$ } > 3 ε
- Then PDX(F) > $(\varepsilon/96n)^3$.
- <u>Pf Sketch</u>: Let $P_f = \{i : I_i(f) > \varepsilon n^{-1}/4\}$
- Since $\sum I_i(f) > Var[f] > \varepsilon/2$, P_f is not empty.
- If there exists $i \neq j$ with $i \in P_f$ and $j \in P_g$ then PDX(F) > ($\epsilon/96n$)³ by quantitative lemma.
- So assume $P_f = P_g = P_h = \{1\}$ and $P(F) < (\epsilon/96n)^3$
- $\Rightarrow D(f, \pm x_i) \le \varepsilon$ or $D(f, \pm 1) \le \varepsilon$ (same for g and h)
- \Rightarrow D(F,G) \leq 3 ε where G(σ) = G(σ_1). \checkmark PDX(G) \leq 3 ε + (ε /96n)³ < 1/6 \Rightarrow G \in F₃(n).

Quantitative Arrow - Real Proof

- <u>Pf High Level Sketch:</u>
- Let $P_f = \{i : I_i(f) > \varepsilon\}$.
- If there exists $i \neq j$ with $i \in P_f$ and $j \in P_g$ then $PDX(F) > \varepsilon^3 / 36$ by quantitative lemma.
- Two other cases to consider:
- I. $P_f \cap P_g = P_f \cap P_h = P_g \cap P_h$ is empty
- In this case: use Invariance + Gaussian Arrow Thm.
- II. $P_f \cup P_g \cup P_h = \{1\}$.
- In this case we condition on voter 1 so we are back in case I.

Quantitative Arrow - Real Proof

- <u>The Low Influence Case:</u>
- We want to prove the theorem under the condition that $P_f \cap P_g = P_f \cap P_h = P_g \cap P_h$ is empty.
- Let's first assume that $P_f = P_g = P_h$ is empty all functions are of low influence.
- Recall:
- $PDX(F) = \frac{1}{4} (1 + E[f(x)g(y)] + E[f(x)h(z)] + E[g(y)h(z)])$
- Where now (X,Y) is distributed as:
- $E[X_i] = E[Y_i] = 0$ and $E[X_i Y_i] = -1/3$
- By a version of Maj-Stablest Majority is Stablest:
- PFX(F) > PDX(u,v,w) + error(I) where
- $u(x) = sgn(\sum x_j + u_0)$ and E[u] = E[f] etc.

Quantitative Arrow - Real Proof

- By Majority is Stablest:
- PFX(F) > PDX(u,v,w) + error(I) where
- $u(x) = sgn(\sum x_j + u_0)$ and E[u] = E[f] etc.
- Remains to bound PDX(u,v,w)
- By CLT this is approximately:
- P[U>0,V>0,W>0] + P[U<0, V<0, W<0] where U~N(E(u),1), V~N(E(v),1) and W~N(E(w),1) &
- Cov[U,V] = Cov[V,W] = Cov[W,U] = -1/3.
- For Gaussians possible to bound.

<u>Quantitative Arrow - Real Proof</u>

- In fact the proof works under the weaker condition that $P_f \cap P_a = P_f \cap P_h = P_a \cap P_h$ is empty.
- The reason is that the strong version of majority is stablest (M-10) says:
- If min(l_i(f), l_i(g)) < δ for all i and u and v are majority functions with E[f]=u, E[g] = v then:
- $E[f(X) g(Y)] < \lim n E[u_n(X) v_n(Y)] + \varepsilon(\delta)$ where
- $\varepsilon(\delta) \rightarrow 0 \text{ as } \delta \rightarrow 0.$

<u>Probability of a Paradox for Low Inf</u> <u>Functions</u>

- Thm: (Follows from MOO-05): $\forall \epsilon > 0 \exists \delta > 0 s.t.$ If
- max_i max{I_i(f),I_i(g),I_i(h)} < δ then PDX(F) > lim_{n \to \infty} PDX(f_n,g_n,h_n) - ϵ
 - where $f_n = sgn(\sum_{i=1}^n x_i a_n)$, $g_n = sgn(\sum_{i=1}^n y_i b_n)$, $h_n = sgn(\sum_{i=1}^n z_i c_n)$ and a_n , b_n and c_n are chosen so that $E[f_n] \sim E[f]$ etc.
 - Thm (Follows from M-08): The same theorem holds with max_i $2^{nd}(I_i(f),I_i(g),I_i(h)) < \delta$.
 - So case I. of quantitative Arrow follows if we can prove Arrow theorem for threshold functions.

(Recall case I.: P_f ∩ P_g = P_f ∩ P_h = P_g ∩ P_h is empty)
 Pf for "threshold functions" using Gaussian analysis.

<u>Pf of Majority is Stablest</u>

- <u>Majority is Stablest Conj</u>: If E[f] = E[g] = 0 and f,g have all influences less than δ then $E[f(x)g(y)] > E[m_n(x) m_n(y)] - \epsilon$.
- Ingredients:
- <u>I. Thm (Borell 85): (N_i, M_i) are i.i.d. Gaussians with</u>
- E[N_i] = E[M_i] = 0 and E[N_i M_i] = -1/3, E[N_i²] = E[M_i²] = 1 and f and g are two functions from Rⁿ to {-1,1} with E[f] = E[g] = 0 then:
- $E[f(X) g(Y)] \ge E[sgn(X_1) sgn(Y_1)].$
- By the CLT: $E[sgn(X_1) sgn(Y_1)] = \lim_{n \to \infty} E[m_n(x) m_n(y)]$
- II. Invariance Principle [M+O'Donnell+Oleszkiewicz(05)]:
- c Gaussian case \Rightarrow Discrete case.

The Geometry Behind Borell's Result

- <u>I. Thm (Borell 85): (N_i, M_i) are i.i.d. Gaussians with</u>
- $E[N_i] = E[M_i] = 0$ and $E[N_i M_i] = -1/3$, $E[N_i^2] = E[M_i^2] = 1$ and f and g are two functions from Rⁿ to {-1,1} with E[f] = E[g] = 0 then:
- $E[f(X) g(Y)] \ge E[sgn(X_1) sgn(Y_1)].$
- <u>Spherical Version</u>: Consider $X \in S^n$ uniform and $Y \in S^n$ chosen uniformly conditioned on $\langle X, Y \rangle \leq -1/3$.
- Among functions f,g with E[f] = E[g] = 0 what is the minimum of E[f(X) g(Y)]?
- <u>Answer:</u> f = g = same half-space.

The Geometry Behind Borell's Result

- <u>More general Thm (Isaksson-M 09): (N¹,...,N^k) are k</u> n-dim Gaussain vectors Nⁱ ~ N(0,I).
- $Cov(N^i,N^j) = \rho I \text{ for } i \neq j, \text{ where } \rho > 0.$
- Then if f₁,...,f_k are functions from Rⁿ to {0,1} with E[f] = 0 then:
- $E[f_1(N^1) \dots f_k(N^k)] \leq E[sgn(N^{\underline{1}}_1) \dots sgn(N^k_1)]$
- Proof is based on re-arrangements inequalities on the sphere.
- Gives that majority maximizes probability of unique winner in Condercet voting for low influence functions.

The Geometry Behind Borell's Result

- <u>More general Thm (Isaksson-M 09): (N¹,...,N^k) are k</u> n-dim Gaussain vectors Nⁱ ~ N(0,I).
- $Cov(N^i,N^j) = \rho I \text{ for } i \neq j, \text{ where } \rho > 0.$
- Then if f₁,...,f_k are functions from Rⁿ to {0,1} with E[f] = 0 then:
- $E[f_1(N^1) \dots f_k(N^k)] \leq E[sgn(N^{\underline{1}}_1) \dots sgn(N^k_1)]$
- Proof is based on re-arrangements inequalities on the sphere.
- Gives that majority maximizes probability of unique winner in Condercet voting for low influence functions.

<u>HW 1</u>

- Let f=g=h be the m × m electoral college and consider IIA vote with F=(f,g,h).
- Given a uniform vote x and y obtained from x by a single uniformly chosen voting error, what is lim P[f(x) ≠ f(y)] × m as m ->∞.
- Assume x is obtained from y by flipping each coordinate with probability ε independently.
 What is lim P[f(x) ≠ f(y)] as m →∞
- What is the limiting probability of an Arrow paradox assuming uniform voting and $m \rightarrow \infty$?

<u>HW 2</u>

- Consider the function $\Psi(f,i)$ which given
- a function f: {-1,1}ⁿ → {-1,1} and a voter i returns an x s.t. f is pivotal on x and voter i. The function returns Null if no such x exist.
- Given access to $\Psi(f, ?) \Psi(g, ?)$ and $\Psi(h, ?)$ Design an efficient algorithm that decides if (f,g,h) has a non-transitive outcome and if such an outcome exist it produces it. The running time of the algorithm should be linear in n.

HW 2 - continued

- Assume that the functions f,g and h are monotone and submodular so that for all x,y:
- f(min(x,y)) + f(max(x,y)) ≤ f(x) + f(y) where the maximum is taken coordinate-wise.
 Show that the problems of deciding if all outcome of (f,g,h) are transitive and finding a non-transitive outcomes if such exist can both be solve in linear time (assuming access to f,g and h takes one unit of time)

<u>HW 3</u>

- Consider the 3-reursive majority functions f_n :
- $f_1(x(1),x(2),x(3)) = maj(x(1),x(2),x(3))$
- $f_{k+1}(x(1)...,x(3^{k+1})) = maj(f_1(x),f_2(y),f_3(z))$ where
- $x=(x(1),...,x(3^k)), y=(x(3^{k+1}+1),...,x(2^*3^k)), z=...$
- Let (x,y) be uniform with y different from x in one coordinate. What is P[f_k(x) = f_k(y)]?
- Assuming x is uniform and y is obtained from x by flipping each coordinate with probability ϵ , show:
- $P[f_k(x) = f_k(y)] = \frac{1}{2} + 3^{k \alpha + o(1)}$ for some α . Find $\alpha(\varepsilon)$
- Consider ranking using F=(f(x),f(y),f(z)). What is the limit of P[F(σ) is non-transitive]? What is the next order term (both as $k \rightarrow \infty$)

<u>HW 4</u>

- Consider the Plurality coordination problem on a social network where initially each player receives one of 3 colors.
- Design a protocol using the color and one extra bit of memory that reachs coordination.

<u>HW 5</u>

- Consider the voter model on G=(V,E).
- Assume that the model is run for k different topics and that further
- Assume that for each topic k, time t and all $v \in V$ the opinion of v at topic k denoted v(k,t) is known but:
- The graph E is not known.
- Design an algorithm that finds the edges of the graph G from the record of the votes.
- How large should k and t be for the algorithm to have a high probability of recovering G?