Errors in Binary Voting

Elchanan Mossel,
Draft
All Rights reserved

Unbiased Signals

- In the next few weeks we will deal with the case of unbiased signals / uniformed voters.
- Why do we do it?

Unbiased Signals

- In the next few weeks we will deal with the case of unbiased signals / uniformed voters.
- Why do we do it?
- These measures provide "stress-test" for the voting methods we are using:
- If voters all have strong correlated opinions then:
- Small effects of (small) errors in the voting scheme
- Will not see irrational outcomes.
- Outcome hard to manipulate.

Unbiased Signals

- What are unbiased signals / uniformed voters?

Unbiased Signals

- What are unbiased signals / uniformed voters?
- Worst case scenarios: exists voting configurations resulting in errors/manipulation/etc.
- Average case scenarios: On average there is a good probability of errors/manipulation/etc.
- Average with respect to the most uniformed measure $=$ the uniform measure.

Definition of voting schemes

- Today topic is errors of voting schemes on binary decisions.
- A population of size n is to choose between two options / candidates.

- A voting scheme is a function that associates to each configuration of votes which option to choose.
- Formally, a voting scheme is a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
- Two prime examples:
- Majority vote,
- Electoral college.

Properties of voting schemes

- Some properties of voting schemes:

- We will always assume that candidates are treated equally:
The function f is fair: if $f(-x)=-f(x)$.
- We always assume that stronger support in a candidate shouldn't heart her:
The function f is monotone: $x \geq y \Rightarrow f(x) \geq f(y)$, where x $\geq y$ if $x_{i} \geq y_{i}$ for all i.
- Note that both majority and the electoral college are anti-symmetric and monotone.

Democracy and voting schemes

- Two interpretations of democracy:
- "Weak democracy" - each voter has the same power: There exists a transitive group $\Gamma \subset S_{n}$ such that for all $\sigma \in \Gamma$ and all x it holds that

$$
f\left(\left(x_{\sigma(i)}\right)\right)=f\left(\left(x_{i}\right)\right)(* * *)
$$

- "Strong democracy" - each set of voters has the same power - (***) holds for all σ $\in S_{n}$.
- Easy: Monotonicity + fairness + strong democracy $\Rightarrow f=$ majority.
- But: Electoral college is
weak democracy (mathematically)

Errors in voting

- Claim: Any non-constant voting scheme is prone to errors.
- Pf: Since it is not constant there exist x and y such that $f(x) \neq f(y)$.
- Claim: Any non-constant voting scheme is prone to an error of a single voter.
- Pf: Otherwise whenever we change a single coordinate the value of f stays the same. But this means that any \# of coordinates changes does not $\underset{6}{c} / 62010$ ge the value of f. .

To the uniform measure

- Assume x is chosen uniformly in $\{-1,1\}^{n}$.
- Let $y=N_{\varepsilon}(x)$ is obtained from x by flipping each of x coordinates with probability ε.
- Question: What is the probability that the population voted for who they meant to vote for?
- What is $S_{f}(\varepsilon)=P[f(x)=f(y)]$?
- Which is the most sensitive / stable f?
- Is there an f which is both stable and sensible?
- Maj? Elctoral college?

Stability without democracy

- $N(x, y)=P\left[N_{\varepsilon}(x)=y\right], \eta=1-2 \varepsilon$ and $Z(f, \eta):=\langle f, N f\rangle=E[f(x) f(y)]$
- $S(f, \varepsilon)=(Z(f, \eta)+1) / 2$
- N has the eigenvectors $u_{s}(x)=\prod_{i \in S} x_{i}$, corresponding to the eigenvalues $\eta^{|s|}$.
- $P\left[f(x)=f\left(N_{\varepsilon}(x)\right)\right]=\frac{1}{2}+E\left[f(x) f\left(N_{\varepsilon}(x)\right)\right] / 2=$

$$
=\frac{1}{2}+\langle f, N f\rangle / 2 \text {. }
$$

- Write $f(x)=\sum_{s} f_{s} u_{s}(x)$.
- Since $\langle f, 1\rangle=0,\langle f, N f\rangle=\sum_{s \neq \emptyset} f_{s}{ }^{2} \eta^{|S|} \leq \eta$ and therefore $S_{f}(\varepsilon)=1-\varepsilon$.
- Dictatorship, $f(x)=x_{i}$ is the only optimal function.

Stability with democracy

- How stable can we get with democracy?
- Thm Sheffield (1899):
- $\lim _{n \rightarrow \infty} Z(f, \eta)=\arcsin (\eta) / \pi$ for $f=$ majn. $_{n}$.
- When ε is small $S_{f}(\varepsilon) \sim 1-2 \varepsilon^{1 / 2} / \pi$.
- Pf?

Stability with democracy

- How stable can we get with democracy?
- Thm Sheffield (1899):
- $\lim _{n \rightarrow \infty} Z(f, \eta)=\arcsin (\eta) / \pi$ for $f=$ majn $_{n}$.
- Pf:

Stability with democracy

- How stable can we get with democracy?
- Thm Sheffield (1899):
- $\lim _{n \rightarrow \infty} Z(f, \eta)=\arcsin (\eta) / \pi$ for $f=m a j_{n}$.
- Pf: Let $N=n^{-1 / 2} \sum x_{i}, M=n^{-1 / 2} \sum y_{i}$
- By CLTE[f(x)f(y)] $\rightarrow E[\operatorname{sgn}(N) \operatorname{sgn}(M)]=$

$$
\begin{aligned}
& =1-2 P[\operatorname{sgn}(N) \neq \operatorname{sgn}(M)]= \\
& =1-P[N>0, M<0] .
\end{aligned}
$$

- Write $M=a N-b U$ where $a=\eta$ and $a^{2}+b^{2}=1$ and N are independent. Then
- $P[N>0, M<0]=P[0<N<(b / a) U]=\arctan (b / a) / 2 \pi$
- Why?

This give the result using trigonometric identities.

Stability with democracy

- How stable can we get with democracy?
- Thm Sheffield (1899):
- $\lim _{n \rightarrow \infty} Z(f, \eta)=\arcsin (\eta) / \pi$ for $f=$ majn. $_{n}$.
- When ε is small $S_{f}(\varepsilon) \sim 2 \varepsilon^{1 / 2} / \pi$.
- Claim: An $n^{1 / 2} \times n^{1 / 2}$ electoral college gives $S_{f}(\varepsilon)=\Theta\left(\varepsilon^{1 / 4}\right)$.
- Why?

Stability with democracy

- How stable can we get with democracy?
- Thm Sheffield (1899):
- $\lim _{n \rightarrow \infty} Z(f, \eta)=\arcsin (\eta) / \pi$ for $f=$ majn. $_{n}$.
- When ε is small $S_{f}(\varepsilon) \sim 2 \varepsilon^{1 / 2} / \pi$.
- Thm (Majority is Stablest; M-O'Donnell-Olseskiwsz):

If $f=f_{n}$ satisfies

- $\max \left\{e_{i}(f): 1 \leq i \leq n\right\}=o(1)$, then
- $\lim _{n \rightarrow \infty} S_{f}(\varepsilon) \geq \frac{1}{2}-\arcsin (1-2 \varepsilon) / \pi$.
- \Rightarrow most stable "weak democracy" = maj.
- Won't do proof. Can hear a bit about it tomorrow at 4pmo

Majority is Least Stable

- Interestingly if we are just interested in a single error then:
- Thm:
- Among all monotone functions, majority maximizes the probability $P[f(x) \neq f(y)]$ where y is obtained from x by a random flip of one bit.
- Pf: We want to maximize:
- $\sum\{f(y)-f(x): y$ directly above $x\}=$
- $\sum_{k=0^{n}} \sum\{(k-(n-k)) f(x): x$ s.t. $\#(1, x)=k\}=$
- $\sum_{k=0^{n}} \sum\{(n-2 k) f(x): x$ s.t. $\#(1, x)=k\}$.
- So Majority is least stable for fixed flip probability and most stable for flip probability $\ll 1 / n$.

Getting sensitive

- How sensitive can a fair monotone functions be?
- Interesting in learning, neural networks, hardness amplification ...
- majn maximizes the isoperimetric edge bounds among all monotone functions and $I\left(\text { maj }_{n}\right)^{2} \sim 2 n / \pi$.
- By Russo's formula: $I(f)=Z^{\prime}(f, 1)$.
- But $Z^{\prime}(f, 1)=\Sigma_{S}|S| f_{s}{ }^{2}$.
- Consider the following relaxation of the problem: minimize $\Sigma_{S} a_{S} \eta^{|S|}$ under the constraints:
$-\Sigma_{S} a_{s}=1, a_{s} \geq 0, \Sigma_{S}|S| a_{s} \sim \leq(2 n / \pi)^{1 / 2}:=\alpha$
- We get that $Z(f, \eta) \sim \geq \eta^{\alpha}$
- In particular, any monotone function requires randomly flipping at least order $n^{1 / 2}$ votes to have probability >0.00001 ${ }_{2010}$ to flip the elections.

Getting sensitive

Kalai: Are there any functions that are so sensitive?

- Kalai: Is it enough to flip $n^{1 / 2}$ of the votes in order to flip outcome with probability $\Omega(1)$?
- Thm[M-O'Donnell]:
- rec-maj-k satisfies <f,Nf> $\sim \leq \eta^{\alpha(n, k)}$ where $\alpha(n, k) \sim \eta^{\beta(k)}$ and $\beta(k) \rightarrow \frac{1}{2}$ as $k \rightarrow \infty$ (enough to flip $n^{1-\beta(k)}$)
- rec-maj with increasing arities gives that it is enough to flip $\log ^{\dagger}(n)^{\star} n^{1 / 2}$ where $t=\frac{1}{2} \log _{2}(\pi / 2)$.
- Talgrand's random function gives that it is enough to flip c $n^{1 / 2}$.

