Manipulation & GS Theorem

Elchanan Mossel

Draft - All Rights Reserved U.C Berkeley

Truthfulness in Binary Voting

- n voters to vote if + or -.
- $x_i \in \{+,-\}$ is voter i'th vote.
- Outcome = $f(x_1,...,x_n)$, where
- $f: \{-,+\}^n \to \{-,+\}$
- <u>Def:</u> f is manipulable by voter 1 if there exists x₂,...,x_n such that:
- $f(+,x_2,...,x_n) = -$, $f(-,x_2,...,x_n) = +$.
- Which f cannot be manipulated by any voter?

Manipulation and Montonicity

- <u>Def:</u> f is manipulable by voter 1 if there exists $x_2,...,x_n$ such that: $f(+,x_2,...,x_n) = -$, $f(-,x_2,...,x_n) = +$.
- Which f are non-manipulable?
- Claim: f is manipulable if and only if f is not monotone.
- Recall: f is monotone if \forall i, $x_i \ge y_i \Rightarrow f(x_1,...,x_n) \ge f(y_1,...,y_n)$.

Manipulation: 3 or more alt.

a c h

b c C

b

 Last group of voters could manipulate in Plurality vote.

45

40

15

Manipulation by a Single Voter

- n people rank 3 alternatives.
- Plurality winner = most frequently ranked at top.
- (if tied go according to first voter).
- Example: If second voter knows the preferences of all voters will prefer to vote differently than her true preference.
- Question: Is this avoidable?

а

b

Choice Functions and Manipulation

<u>Definition</u>: **F** is a social choice function if **F** associates to each collection of **n** rankings a winner:

$$F: S(A,B,...,K)^n \rightarrow \{A,B,C,D,...,K\}'$$

<u>Definition</u>: F is manipulable by voter i if there exists two rankings $\sigma = (\sigma_{i_1}, \sigma_{-i}), \sigma' = (\sigma'_{i_1}, \sigma_{-i}), s.t.$ $\sigma_i(F(\sigma')) > \sigma_i(F(\sigma)) \text{ (Voter i with preference } \sigma_i \text{ would prefer}$

 $\sigma_i(F(\sigma)) > \sigma_i(F(\sigma))$ (Voter 1 with preference σ_i would prefer outcome $F(\sigma')$)

Example: Manipulation by voter 2

Examples of non-manipulable Fs

- The "dictator" $F(\sigma) = top(\sigma_i)$ is non-manipulable.
- A function $F: S(A,B)^n \to \{A,B\}$ is non-manipulable if and only if F is monotone.
- Are there other examples?
- <u>Def:</u> F is Neutral if for all σ in S(A,B,...,K) and σ in $S(A,B,...,K)^n$ it holds that: $F(\sigma,\sigma) = \sigma$ F(σ)
- In words: Fair among all alternatives.
- <u>Def:</u> F satisfies Unanimity if $top(\sigma_1) = ... = top(\sigma_n) = a \Rightarrow F(\sigma) = a$
- <u>Def:</u> Non-manipulable = strategy-proof.

Gibbard-Satterthwaite Thm

- Thm (Gibbard-Satterthwaite 73,75):
 If F ranks at least 3 alternatives,
- satisfies unanimity / is onto &
- is strategy proof

Then F is a dictator

. We'll follow proofs in to Lars Gunar Svensson - 99

- Lemma 1 (Monotonicity):
- : If F is strategy proof and $F(\sigma)$ = a and τ satisfies that for all x and all i:
- $\sigma_i(a) \ge \sigma_i(x) \Rightarrow \tau_i(a) \ge \tau_i(x)$
- then $F(\tau) = a$.

- Lemma 1 (Monotonicity):
- If F is strategy proof and $F(\sigma) = a$ and τ satisfies that for all x and all i:
- $\sigma_i(a) \ge \sigma_i(x) \Rightarrow \tau_i(a) \ge \tau_i(x)$
- then $F(\tau) = a$.
- Pf: Suffices to prove when $\tau_i = \sigma_i$ for i>1.
- Assume by contradiction that $a \neq b = F(\tau)$ then from strategy-proofness $\sigma_1(b) \leq \sigma_1(a)$
- therefore $\tau_1(b) \leq \tau_1(a)$ but then voter 1 will prefer to use σ_1 .

•

- Lemma 2 (Pareto):
- Assume that F is onto and strategy-proof.
- Let σ satisfy that $\sigma_i(a) > \sigma_i(b)$ for all i.
- Then $F(\sigma) \neq b$.

- Lemma 2 (Pareto):
- · Assume that F is onto and strategy-proof.
- Let σ satisfy that $\sigma_i(a) > \sigma_i(b)$ for all i.
- Then $F(\sigma) \neq b$.
- Pf: Assume $F(\sigma) = b$.
- Since F is onto there exists a τ with $F(\tau) = a$.
- Let σ'_i put b then a then like in σ .
- Monotonicity lemma implies that $F(\sigma') = F(\sigma) = b$.
- Monotonicity lemma also implies that $F(\sigma') = F(\tau) = a$.

Proof in the case of two voters

- <u>Pf:</u>
- Let u := a>b>others and v := b>a>others.
- We know that f(u,v) is either a or b. Let's assume it's a.
- \Rightarrow for every v' which has b at the top we have f(u,v') = a in particular for v' which has a at the bottom.
- \Rightarrow (by monotonicity lemma) f(u',v') = a for all u' which has a on top.
- Let A_1 be alt. a such that if they are at the top of u outcome is a and similarly A_2 . Then clearly $A_1 \cap A_2 = \text{empty}$
- \Rightarrow f(u,v) = top(u) as needed.

Reduction to two voters

- · <u>Lemma:</u>
- It suffices to prove the GS theorem for the case of two voters.
- <u>Pf:</u> By induction on the number of voters n. For general n define g(u,v) = f(u,v,v,v,v,v,v). Note that:
- Lemma $2 \Rightarrow g$ is Pareto.
- We next argue that if f is strategy proof so is g. Otherwise there are u,v,v' s.t. v(g(u,v')) > v(g(u,v)).
- Define $u_k = (u, k \times v', (n-k-1) \times v)$
- We must have a k where $v(g(u_{k+1})) > v(g(u_k))$
- \Rightarrow g is a strategy proof \Rightarrow g is a dictator.

Reduction to two voters – cont.

- Pf: g(u,v) = f(u,v,v,v,v,v,v) is a dictator.
- : If it is dictator on voter 1 then monotonicty Lemma 1 f is also a dictator on voter 1.
- So assume g is a dictator on voter 2.
- Fix u* and look at $h(v_2,...,v_n) = f(u^*,v_2,...,v_n)$
- The h is onto and strategy proof so it is dictatorial.
- WLOG assume 2 is the dictator and fix $v_3,...,v_n$.
- Then $z(u,v) = f(u,v,v_3,...,v_n)$ is onto and strategy proof and 1 cannot be the dictator.
- So z is a dictator on voter $2 \Rightarrow f$ is dictator on voter 2.

Gibbard-Satterthwaite Thm

- Thm (Gibbard-Satterthwaite 73,75):
 - If F ranks at least 3 alternatives,
- satisfies unanimity (or is onto) &
- is non-manipulable then
 Then F is a dictator.
- Let $D_k(n) = \{dictators on k alt and n voters\}$
- GS Thm: If F is Neutral & Non Manipulable $\Rightarrow F \in D_k(n)$
- More generally:

F depends on two voters & Takes at least 3 values \Rightarrow F is manipulable.

Random Rankings:

• Kelly 95 : Consider people voting according to a random order on $\{A,...,K\}$ = uniformly in S_K^n

What is the probability of a manipulation:

• Def: $M(F) = P[\sigma]$: some voter can manip F at σ]

- GS Thm: If not in D_k(n) then:
- $M(F) \ge (k!)^{-n}$. If manipulation so unlikely perhaps do not care?
- Notation: Write $D(F,G) = P(F(\sigma) \neq G(\sigma))$. $D(F,D_k(n)) = \min \{ D(F,G) : G \in D_k(n) \}$

High Probability Manipulation

- <u>Q:</u>
- Is it true that for all eps exists a delta s.t.
- if F is neutral and
- $D(F,D_k(n)) > \varepsilon$ then $P(F \text{ manipulable}) > \delta$?

High Probability Manipulation

- <u>Q:</u>
- · Is it true that if F is neutral and
- $D(F,D_k(n)) > \varepsilon$ then $P(F \text{ manipulable}) > \delta$?
- A: No
- Example: Plurality function

High Probability Manipulation

- Thm Issakson-Kindler-M-10:
- If F is Neutral and $k \ge 3$ then $M(F) \ge n^{-3} k^{-10} D(F, D_k(n))^2$
- Moreover: the trivial random algorithm manipulates with probability at least n^{-3} k^{-10} $D(F,D_k(n))^2$.

Related Work

- <u>Bartholdi, Orlin (91), Bartholdi, Tovey Trick (93):</u>
 Manipulation for a voter for some voting schemes is NP hard (for large k).
- Conitzer, Sandholm (93, 95) etc.: Hard on average?
- Conj (Friedgut-Kalai-Nisan 08): Random manipulation gives $M(F) \ge poly(n,k)^{-1}$. In particular easy on average.
- Thm (FKN 08): For k=3 alternatives, and neutral F, it holds that $M(F) \ge n^{-1} D(F_k(n),D)^2$ (no computational consequences)

Idea 1: The rankings graph

- We consider the graph with vertex set S(A,B,...K)ⁿ
- e=[x,x'] is an edge on voter i, if x(j) = x'(j) for $j \neq i$ and $x(i) \neq x'(i)$.
- For $F: S(A,...K)^{n \to \{A,...,K\}}$, we call e=[x,x'] a boundary edge if $F(x) \neq F(x')$.

[x,x'] is an edge on voter 3

If F(x) = c and F(x') = a then [x,x'] is a boundary edge

3 Types of Boundary edges

$$F(x) = a F(x') = b$$

This edge is
monotone
and non-manipulable
x ranks a above b
x' ranks b above a

$$F(x) = a F(x') = c$$

This edge is
monotone-neutral
and manipulable:
same order of
a,c in x,x'

$$F(x) = b \quad F(x') = c$$

This edge is
anti-monotone
and manipulable:
x ranks c above b

x' ranks b above c

Idea 2: Isoperimetry

- Assume 4 alternatives, unif. distribution.
- An Isoperimetric Lemma:
- If F is ε far from all dictators and Neutral
- Then there exists voters i ≠ j and s.t:
- $P[e \in \partial_i[A,B]] \ge \varepsilon (6n)^{-2}$, $P[e \in \partial_j[C,D]] \ge \varepsilon (6n)^{-2}$

Idea 3: Paths and Flows on $\partial_i(A,B)$

- Key Property: The space ∂_i[A,B] is "nice":
- One can define "flows" and "paths" on it.
- &: $\partial \partial_i[A,B]$ "=" Manipulation points.
- Lemma: Let $[x,x'] \in \partial_i[A,B]$, $j \in [n] \setminus \{i\}$ $y_{-j} = x_{-j}$ and $y'_{-j} = x'_{-j}$ y_j,y'_j have same A,B order as x_j,x'_j
- Then either $[y,y'] \in \partial_i[A,B]$ or
- ∃ a manipulation point identical to x except in at most 3 voters.
- <u>Pf:</u> If F(y) not in {A,B}
- apply GS fixing all voters but i,j.
- If F(x) = F(y) = F(y') = A, F(x') = Bthen (x',y') is manipulation edge.

aldea 4: Canonical paths

Define a canonical path $\Gamma\{e,e'\}$ for all $e \in \partial_i[A,B]$ and $e' \in \partial[C,D]$ such that:

- The path begins at e and ends at e' and
- Path stays in $\partial_i[A,B] \cup \partial_i[C,D]$ or encounters manipulation
- But: at the transition point m from
- $\partial_i[A,B]$ to $\partial_i[C,D]$, F takes at least 3 values so
- 65 theorem implies there exists manipulation.

of Manipulation Points

- $P[M(F)] \ge (4!)^n R^{-1} P[\partial_i[A,B]] \times P[\partial_j[C,D]]$, where
- R := \max_{m} #{ {e,e'} : m is manipulation for Γ {e,e'} }
- Since: $|M(F)| \ge R^{-1} |\partial_i[A,B]| \times |\partial_j[C,D]|$
- Need to "decode" ≤ poly(k,n) (4!)ⁿ (e,e') from m.
- · Path to use:
- 1. For all $1 \le k \le n$ make k'th coordinate agree with e' except A,B order agrees with e.
- 2. For all $1 \le k \le n$ flip (A,B) if need to agree e'.

of Manipulation Points

- Decoding:
- If e=[x,x'] and e'=[y,y'] suffices to decode (x,y) from $((k!)^2$ "pay" to know x' and y').
- Given a hint of size 4n know step of the path.
- Suffices for each coordinate s: given m_s decode at most 4! Options for (x_s, y_s) .
- Given m_s either know x_s , or y_s or 4!/2 options for x_s and 2 options for y_s .
- Decoding works!
- So $P[M(F))] \ge (4!)^n R^{-1} P[\partial_i(a,b)] \times P[\partial_i(c,d)]$, "gives"
- $P[M(f)] \ge \varepsilon^2 (6n)^{-5}$.
- · QED.

However ...

- In fact, cheating in various places ... most importantly:
- Manipulation point = x or y up to 3 coordinates, so:
- $R \le 2 n 4^n (k!)^3$
- $P[M(f)] \ge (k!)^{-3} \varepsilon^2 (6n)^{-5}$
- Fine for constant # of alternatives k, but not for large k.

Idea 5: Geometries on the ranking cubes

a c b

> c a

c

- To get polynomial dependency on k, use refined geometry:
- (x,x') ∈ Edges if x,x' differ in a single voter and an adjacent transposition.
- · For a single voter:
- refined geometry = adjacent transposition card-shuffling.
- Prove: geometry = refined geometry up to poly. factors in k (spectral, isoperimetric quantities behave the same; Aldous-Diaconis, Wilson).
- · Prove: Combinatorics still works.
- Gives manipulation by adj. transposition.

Open Problems

- Are there other combinatorial problems where high order interfaces play an interesting role?
- Can other isoperimetric tools be extended to higher order interfaces?
- Tighter results for GS theorem?

Thank you for your attention!