Manipularion \& GS Theorem

Elchanan Mossel

Draft - All Rights Reserved U.C Berkeley

Truthfulness in Binary Voting

- n voters to vote if + or -.
- $x_{i} \in\{+,-\}$ is voter i'th vote.
- Outcome $=f\left(x_{1}, \ldots, x_{n}\right)$, where
- $f:\{-,+\}^{n} \rightarrow\{-,+\}$
- Def: f is manipulable by voter 1 if there exists x_{2}, \ldots, x_{n} such that:
- $f\left(+, x_{2}, \ldots, x_{n}\right)=-, f\left(-, x_{2}, \ldots, x_{n}\right)=+$.
- Which f cannot be manipulated by any voter?

Manipulation and Montonicity

- Def: f is manipulable by voter 1 if there exists x_{2}, \ldots, x_{n} such that: $f\left(+, x_{2}, \ldots, x_{n}\right)=-, f\left(-, x_{2}, \ldots x_{n}\right)=+$.
- Which f are non-manipulable?
- Claim: f is manipulable if and only if f is not monotone.
- Recall: f is monotone if $\forall i, x_{i} \geq y_{i} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right) \geq f\left(y_{1}, \ldots, y_{n}\right)$.

Manipulation: 3 or more alt.

\mathbf{a}	\mathbf{b} \mathbf{c} \mathbf{c} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{a}	\mathbf{a}

- Last group of voters could manipulate in Plurality vote.

Manipulation by a Single Voter

- n people rank 3 alternatives.
- Plurality winner = most frequently ranked at top.
- (if tied go according to first voter).
- Example: If second voter knows the preferences of all voters will prefer to vote differently than her true preference.
- Question: Is this avoidable?

回

回

Choice Functions and Manipulation

Definition: F is a social choice function if F associates to each collection of n rankings a winner:
$\mathrm{F}: \mathrm{S}(\mathrm{A}, \mathrm{B}, \ldots, \mathrm{K})^{\mathrm{n}} \rightarrow\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \ldots, \mathrm{K}\}$
Definition: F is manipulable by voter if there exists two rankings $\sigma=\left(\sigma_{\mathrm{i}}, \sigma_{-\mathrm{i}}\right), \sigma^{\prime}=\left(\sigma_{\mathrm{i}}^{\prime}, \sigma_{-\mathrm{i}}\right)$, s.t.
$\sigma_{\mathrm{i}}\left(\mathrm{F}\left(\sigma^{\prime}\right)\right)>\sigma_{\mathrm{i}}(\mathrm{F}(\sigma))$ (Voter i with preference σ_{i} would prefer outcome $\mathrm{F}\left(\sigma^{\prime}\right)$)

Example: Manipulation by voter 2

Examples of non-manipulable Fs

- The "dictator" $\mathrm{F}(\sigma)=\operatorname{top}\left(\sigma_{\mathrm{i}}\right)$ is non-manipulable.
- A function $\mathrm{F}: \mathrm{S}(\mathrm{A}, \mathrm{B})^{\mathrm{n}} \rightarrow\{\mathrm{A}, \mathrm{B}\}$ is non-manipulable if and only if F is monotone.
- Are there other examples?
- Def: F is Neutral if for all σ ' in $\mathrm{S}(\mathrm{A}, \mathrm{B}, \ldots, \mathrm{K})$ and σ in $\mathrm{S}(\mathrm{A}, \mathrm{B}, \ldots, \mathrm{K})^{\mathrm{n}}$ it holds that: $\mathrm{F}\left(\sigma^{\prime} \sigma\right)=\sigma^{\prime} \mathrm{F}(\sigma)$
- In words: Fair among all alternatives.
- Def: F satisfies Unanimity if

$$
\operatorname{top}\left(\sigma_{1}\right)=\ldots=\operatorname{top}\left(\sigma_{\mathrm{n}}\right)=\mathrm{a} \Rightarrow \mathrm{~F}(\sigma)=\mathrm{a}
$$

- Def: Non-manipulable = strategy-proof.

Gibbard-Satterthwaite Thm

- Thm (Gibbard-Satterthwaite 73,75):

If F ranks at least 3 alternatives,

- satisfies unanimity / is onto \&
- is strategy proof

Then F is a dictator

. We'll follow proofs in to Lars Gunar Svensson - 99

Two Simple Lemmas

- Lemma 1 (Monotonicity):

: If F is strategy proof and $F(\sigma)=a$ and τ satisfies that for all x and all i:

- $\sigma_{i}(a) \geq \sigma_{i}(x) \Rightarrow \tau_{i}(a) \geq \tau_{i}(x)$
- then $F(\tau)=a$.

Two Simple Lemmas

- Lemma 1 (Monotonicity):
: If F is strategy proof and $F(\sigma)=a$ and τ satisfies that for all x and all i:
$\sigma_{i}(a) \geq \sigma_{i}(x) \Rightarrow \tau_{i}(a) \geq \tau_{i}(x)$
- then $F(\tau)=a$.
- Pf: Suffices to prove when $\tau_{i}=\sigma_{i}$ for i>1.
- Assume by contradiction that $a \neq b=F(\tau)$ then from strategy-proofness $\sigma_{1}(\mathrm{~b}) \leq \sigma_{1}(\mathrm{a})$
- therefore $\tau_{1}(\mathrm{~b}) \leq \tau_{1}(\mathrm{a})$ but then voter 1 will prefer to use σ_{1}.

Two Simple Lemmas

- Lemma 2 (Pareto):
: Assume that F is onto and strategy-proof.
- Let σ satisfy that $\sigma_{i}(a)>\sigma_{i}(b)$ for all i.
- Then $F(\sigma) \neq b$.

Two Simple Lemmas

- Lemma 2 (Pareto):
: Assume that F is onto and strategy-proof.
- Let σ satisfy that $\sigma_{i}(a)>\sigma_{i}(b)$ for all i.
- Then $F(\sigma) \neq b$.
- Pf: Assume $F(\sigma)=b$.
- Since F is onto there exists a τ with $F(\tau)=a$.
- Let σ_{i}^{\prime} put b then a then like in σ.
- Monotonicity lemma implies that $F\left(\sigma^{\prime}\right)=F(\sigma)=b$.
- Monotonicity lemma also implies that $F\left(\sigma^{\prime}\right)=F(\tau)=a$.

Proof in the case of two voters

- Pf:
: Let $u:=a>b>0$ thers and $v:=b>a>o t h e r s$.
- We know that $f(u, v)$ is either a or b. Let's assume it's a. \Rightarrow for every v^{\prime} which has b at the top we have $f\left(u, v^{\prime}\right)=a$ in particular for v^{\prime} which has a at the bottom.
\Rightarrow (by monotonicity lemma) $f\left(u^{\prime}, v^{\prime}\right)=a$ for all u^{\prime} which has a on top.
- Let A_{1} be alt. a such that if they are at the top of u outcome is a and similarly A_{2}. Then clearly $A_{1} \cap A_{2}=$ empty $\Rightarrow f(u, v)=$ top(u) as needed.

Reduction to two voters

- Lemma:
: It suffices to prove the GS theorem for the case of two voters.
- Pf: By induction on the number of voters n. For general n define $g(u, v)=f(u, v, v, v, v, v, v)$. Note that:
- Lemma $2 \Rightarrow g$ is Pareto.
- We next argue that if f is strategy proof so is g. Otherwise there are u, v, v^{\prime} s.t. $v\left(g\left(u, v^{\prime}\right)\right)>v(g(u, v))$.
- Define $u_{k}=\left(u, k \times v^{\prime},(n-k-1) \times v\right)$
- We must have a k where $v\left(g\left(u_{k+1}\right)>v\left(g\left(u_{k}\right)\right)\right.$
- $\Rightarrow g$ is a strategy proof $\Rightarrow g$ is a dictator.

Reduction to two voters - cont.

- Pf: $g(u, v)=f(u, v, v, v, v, v, v)$ is a dictator.
: If it is dictator on voter 1 - then monotonicty Lemma 1 f is also a dictator on voter 1.
- So assume g is a dictator on voter 2 .
- Fix u^{*} and look at $h\left(v_{2}, \ldots, v_{n}\right)=f\left(u^{*}, v_{2}, \ldots, v_{n}\right)$
- The h is onto and strategy proof so it is dictatorial.
- WLOG assume 2 is the dictator and fix v_{3}, \ldots, v_{n}.
- Then $z(u, v)=f\left(u, v, v_{3}, \ldots, v_{n}\right)$ is onto and strategy proof and 1 cannot be the dictator.
- So z is a dictator on voter $2 \Rightarrow f$ is dictator on voter 2 .

Gibbard-Satterthwaite Thm

- Thm (Gibbard-Satterthwaite 73,75):

If F ranks at least 3 alternatives,

- satisfies unanimity (or is onto) \&
- is non-manipulable then

Then F is a dictator.

- Let $D_{k}(n)=\{$ dictators on k alt and n voters $\}$
- GS Thm: If F is Neutral \& Non Manipulable $\Rightarrow F \in D_{k}(n)$
- More generally:
F depends on two voters \& Takes at least 3 values $\Rightarrow F$ is manipulable.

Random Rankings:

- Kelly 95 : Consider people voting according to a random order on $\{A, \ldots, K\}=$ uniformly in $S_{K}{ }^{n}$
- What is the probability of a manipulation:
- Def: $M(F)=P[\sigma$: some voter can manip F at σ].
- GS Thm: If not in $D_{k}(n)$ then:
- $M(F) \geq(k!)^{-n}$.

If manipulation so unlikely perhaps do not care?

- Notation: Write $D(F, G)=P(F(\sigma) \neq G(\sigma))$.
$D\left(F, D_{k}(n)\right)=\min \left\{D(F, G): G \in D_{k}(n)\right\}$

High Probability Manipulation

- Q:
- Is it true that for all eps exists a delta s.t.
- if F is neutral and
- $D\left(F, D_{k}(n)\right)>\varepsilon$ then $P(F$ manipulable $)>\delta$?

High Probability Manipulation

- Q:
- Is it true that if F is neutral and
- $D\left(F, D_{k}(n)\right)>\varepsilon$ then $P(F$ manipulable $)>\delta$?
- A: No
- Example: Plurality function

High Probability Manipulation

- Thm Issakson-Kindler-M-10:
- If F is Neutral and $k \geq 3$ then $M(F) \geq n^{-3} k^{-10} D\left(F, D_{k}(n)\right)^{2}$
- Moreover: the trivial random algorithm manipulates with probability at least $n^{-3} k^{-10} D\left(F, D_{k}(n)\right)^{2}$.

Related Work

- Bartholdi, Orlin (91), Bartholdi,Tovey Trick (93): Manipulation for a voter for some voting schemes is NP hard (for large k).
- Conitzer, Sandholm $(93,95)$ etc. : Hard on average?
- Conj (Friedgut-Kalai-Nisan 08): Random manipulation gives $M(F) \geq$ poly $(n, k)^{-1}$. In particular easy on average.
- Thm (FKN 08): For $k=3$ alternatives, and neutral F, it holds that $M(F) \geq n^{-1} D\left(F_{k}(n), D\right)^{2}$
(no computational consequences)

Idea 1: The rankings graph

- We consider the graph with vertex set $S(A, B, \ldots K)^{n}$
- $e=\left[x, x^{\prime}\right]$ is an edge on voter i, if $x(j)=x^{\prime}(j)$ for $j \neq i$ and $x(i) \neq x^{\prime}(\mathrm{i})$.
- For $F: S(A, \ldots . K)^{n} \rightarrow\{A, \ldots, K\}$, we call $e=\left[x, x^{\prime}\right]$ a boundary edge if $F(x) \neq F\left(x^{\prime}\right)$.

$[\mathrm{x}, \mathrm{x}]$ is an edge on voter 3

Write:
$e \in \partial_{3}[c, a]$

If $F(x)=c$ and $F\left(x^{\prime}\right)=a$ then
[$\left.\mathrm{x}, \mathrm{x}^{\prime}\right]$ is a boundary edge

3 Types of Boundary edges

This edge is
monotone and non-manipulable x ranks a above b x^{\prime} ranks b above a

$\mathbf{F}(\mathbf{x})=\mathbf{a} \quad \mathbf{F}\left(\mathbf{x}^{\prime}\right)=\mathbf{c}$
This edge is
monotone-neutral
and manipulable:
same order of
a, \mathbf{c} in $\mathbf{x}, \mathbf{x}^{\prime}$

$\mathbf{F}(\mathbf{x})=\mathbf{b} \quad \mathbf{F}\left(\mathbf{x}^{\prime}\right)=\mathbf{c}$
This edge is
anti-monotone and manipulable:
x ranks cabove b
x^{\prime} ranks b above c

Idea 2: Isoperimetry

- Assume 4 alternatives, unif. distribution.
- An Isoperimetric Lemma:
- If F is ε far from all dictators and Neutral
- Then there exists voters $i \neq j$ and s.t:
- $P\left[e \in \partial_{i}[A, B]\right] \geq \varepsilon(6 n)^{-2}, P\left[e \in \partial_{j}[C, D]\right] \geq \varepsilon(6 n)^{-2}$

> B

A

Idea 3: Paths and Flows on $\partial_{i}(A, B)$

- Key Property: The space $\partial_{i}[A, B]$ is "nice":
- One can define "flows" and "paths" on it.
- \&: $\partial \partial_{i}[A, B]$ "=" Manipulation points. Lemma: Let $\left[x, x^{\prime}\right] \in \partial_{i}[A, B], j \in[n] \backslash\{i\}$ $y_{-j}=x_{-j}$ and $y_{-j}^{\prime}=x_{-j}^{\prime}$
y_{j}, y_{j}^{\prime} have same A, B order as $x_{j}, x^{\prime}{ }_{j}$
- Then either $\left[y, y^{\prime}\right] \in \partial_{i}[A, B]$ or
- \exists a manipulation point identical to x except in at most 3 voters.
Pf: If $F(y)$ not in $\{A, B\}$
apply $G S$ fixing all voters but i, j.
If $F(x)=F(y)=F\left(y^{\prime}\right)=A, F\left(x^{\prime}\right)=B$ then (x^{\prime}, y^{\prime}) is manipulation edge.

© Idea 4: Canonical paths

Define a canonical path $\Gamma\left\{e, e^{\prime}\right\}$ for all $e \in \partial_{i}[A, B]$ and $e^{\prime} \in \partial[C, D]$ such that:

- The path begins at e and ends at e and
- Path stays in $\partial_{i}[A, B] \cup \partial_{j}[C, D]$ or encounters manipulation
- But: at the transition point m from

\# of Manipulation Points

- $P[M(F))] \geq(4!)^{n} R^{-1} P\left[\partial_{[}[A, B]\right] \times P\left[\partial_{j}[C, D]\right]$, where
- $R:=\max _{m} \#\left\{\left\{e, e^{\prime}\right\}: m\right.$ is manipulation for $\left.\Gamma\left\{e, e^{\prime}\right\}\right\}$
- Since: $|M(F)| \geq R^{-1}\left|\partial_{i}[A, B]\right| \times\left|\partial_{j}[C, D]\right|$
- Need to "decode" $\leq \operatorname{poly}(k, n)(4!)^{n}\left(e, e^{\prime}\right)$ from m.
- Path to use:
- 1. For all $1 \leq k \leq n$ make $k^{\prime}+h$ coordinate agree with e^{\prime} except A, B order agrees with e.
- 2. For all $1 \leq k \leq n$ flip (A, B) if need to agree e^{\prime}.

\# of Manipulation Points

- Decoding:
- If $e=\left[x, x^{\prime}\right]$ and $e^{\prime}=\left[y, y^{\prime}\right]$ suffices to decode (x, y) from m ($k!)^{2}$ "pay" to know x^{\prime} and y^{\prime}).
- Given a hint of size $4 n$ know step of the path.
- Suffices for each coordinate s: given m_{s} decode at most 4! Options for (x_{s}, y_{s}).
- Given m_{s} either know x_{s}, or y_{s} or $4!/ 2$ options for x_{s} and 2 options for y_{s}.
- Decoding works!
- So $P[M(F))] \geq(4!)^{n} R^{-1} P\left[\partial_{i}(a, b)\right] \times P\left[\partial_{j}(c, d)\right]$, "gives"
- $P[M(f)] \geq \varepsilon^{2}(6 n)^{-5}$.
- QED.

However ...

- In fact, cheating in various places ... - most importantly:
- Manipulation point $=x$ or y up to 3 coordinates, so:
- $R \leq 2 n 4^{n}(k!)^{3}$
- $P[M(f)] \geq(k!)^{-3} \varepsilon^{2}(6 n)^{-5}$
- Fine for constant \# of alternatives k, but not for large k.

Idea 5: Geometries on the ranking cubes

- To get polynomial dependency on k, use refined geometry:
- $\left(x, x^{\prime}\right) \in$ Edges if x, x^{\prime} differ in a single voter and an adjacent transposition.
- For a single voter:
- refined geometry = adjacent transposition card-shuffling.
- Prove: geometry = refined geometry up to poly. factors in k (spectral, isoperimetric quantities behave the same: Aldous-Diaconis, Wilson).
- Prove: Combinatorics still works. Gives manipulation by adj. transposition.

Open Problems

- Are there other combinatorial problems where high order interfaces play an interesting role?
- Can other isoperimetric tools be extended to higher order interfaces?
- Tighter results for GS theorem?
- Thank you for your attention!

