Lecture 4

Lecture date: Sep 7

Scribe: Allan Sly

4

1 SATs

Definition 1 A 'SAT' formula has n variables and m constraints or clauses. The variables are denoted $\{x_i\}_{i=1}^n, x_i \in \{0, 1\}$ and we denote $\overline{x}_i = 1 - x_i$ and z_i is a literal if $z_i = x_i$ or $z_i = \overline{x}_i$.

A clause C_a is given by $C_a = z_{i_1} \vee \ldots \vee z_{i_k}$ and $C_a(x_{i_1}, \ldots, x_{i_k}) = 0$ iff $z_{i_1} = z_{i_2} \ldots = z_{i_k} = 0$ otherwise $C_a(x_{i_1}, \ldots, x_{i_k}) = 1$. Also denote $\partial a = \{i_1, \ldots, i_k\}$.

A SAT formula is given by $f(x) = C_1(x) \wedge \ldots \wedge C_m(x)$ by which we mean f(x) = 1 iff $C_i(x) = 1$ for all *i* otherwise f(x) = 0. This is equivalent to $f(x) = \prod_{i=1}^m C_i(x)$

If we look at $f(x) = \frac{1}{Z} \prod_{i=1}^{m} C_i(x)$ we get a factorization of the uniform distribution on SAT assignments x, according to the factor graph $([n], [m], \{\partial a : 1 \le a \le m\})$.

The basic questions of interest for a SAT are:

- 1. Is there a solution to the equation f(x) = 1?
- 2. What's the distribution of SAT assignments, can you sample from them?
- 3. What can be said for random formulations?

We say k-SAT means all clauses are on k-variables.

1.1 1-SAT

Claim 2 A 1-SAT formula has a solution iff there does not exist x_i such that x_i and \overline{x}_i are clauses of the formula.

Question 3 How do you sample from a SAT assignment?

Sampling the SAT assignments uniformly can be done one variable at a time. When some SAT assignment exists there is either one or two possible choices for each variable. If there are two choices choose with probability 1/2.

Exercise 4 (1 point) Consider the random 1-SAT formula ψ with n variables and $\eta\sqrt{n}$ random 1-clauses. Show that $P[\psi \text{ is satisfiable}] \to h(\eta)$ as $n \to \infty$ where for all η $h(\eta) \in (0,1)$ and $\lim_{\eta\to 0} h(\eta) = 1$ and $\lim_{\eta\to\infty} h(\eta) = 0$.

Exercise 5 (2 points) Find $h(\eta)$.

1.2 2-SAT

We can associate a 2-SAT formula ψ with a directed graph $DG(\psi)$ with vertices $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$ where $z_i \to z_j$ is an edge of $DG(\psi)$ iff $\overline{z}_i \lor z_j$ is a clause of ψ . This also implies that $\overline{z}_j \to \overline{z}_i$ is an edge.

Definition 6 The transitive closure of $DG(\psi)$ is a directed graph where $z_i \to z_j$ iff there exists a path $z_i \to z_{i_1} \to \ldots \to z_{i_k} \to z_j$.

Claim 7 1. If $z_i \rightarrow z_j$ is an edge of the transitive closure then for all SAT assignments with $z_i = 1$ it holds that $z_j = 1$.

2. ψ is SAT iff there does not exist an *i* such that $x_i \to \overline{x}_i$ and $\overline{x}_i \to x_i$.

Exercise 8 (1 or 2 points inversely proportional to proof length) Prove part 2 of the claim.

Algorithm for 2-SAT

- 1. Construct $DG(\psi)$.
- 2. Pick x_i . If $x_i \to \overline{x}_i$ and $\overline{x}_i \to x_i$ return UNSAT.
- 3. If $x_i \to \overline{x}_i$ and $\overline{x}_i \to x_i$ then (I) set $x_i = 0$ and all $z_j = 1$ if $\overline{x}_i \to z_j$.
- 4. If $x_i \to \overline{x}_i$ and $\overline{x}_i \to x_i$ then (II) set $x_i = 1$ and all $z_j = 1$ if $x_i \to z_j$.
- 5. Otherwise choose between (I) and (II).
- 6. Repeat until all x_i are determined.

Exercise 9 (1 point) Prove that the algorithm works.

2nd Algorithm for 2-SAT

This algorithm assumes that there exists a SAT assignment. Pick $X = X^0$ uniformly at random. While $\psi(X^I) \neq 1$

- 1. Take one of the clauses $z_i \vee z_j$ UNSAT by X^I .
- 2. To get X^{I+1} with probability $\frac{1}{2}$ flip x_i^I otherwise flip x_i^I .

Claim Suppose that $\psi(Y) = 1$ and that $\psi(X^I) = 0$ then

$$P[d_H(Y, X^{I+1}) = d_H(Y, X^I) - 1] \ge \frac{1}{2}$$

where d_H is the hamming distance $d_H(X, Y) = \#\{i : x_i \neq y_i\}$ since at least one of x_i^I and x_j^I must be flipped in Y to satisfy $z_i \lor z_j$.

Claim 10 Consider the random walk Z_t started at $d(X^0, Y)$ on [0, n] (where at n you move to n - 1 with probability 1). Let T be the time the algorithm terminates and let T' be the time the random walk hits 0. Then

$$P[T \ge t] \le P[T' \ge t].$$

Let Z_t be the random walk and $Z_0 = j = d(X^0, Y)$. As $d(X^t, Y)$ is always at least as likely to decrease as Z_t (except when $d(X^t, Y) < Z_t = n$) the two processes can be coupled so that $d(X^t, Y) \leq Z_t$. When $d(X^t, Y) < Z_t = n$ by parity $d(X^t, Y) \leq Z_t - 2$ and so we still have that $d(X^{t+1}, Y) \leq Z_{t+1}$. Because it reflects at n, the random walk is not a martingale but the modified walk $Y_t = Z_t + |\{s : s < t, Z_s = n\}|$ is a martingale. Then

$$E[Y_{T'}] = E[Y_0] = j$$

and so

$$E[\# \text{ of times Z hits } n] = j$$

and the expected number of moves between n-1 and n is 2j. By excising moves above k and treating it as the boundary we similarly get

$$E[\# \text{ of times } \mathbf{Z} \text{ hits } k] \leq j$$

and so adding up all these steps we get

$$E[T] \le E[T'] \le 2jn \le 2n^2$$

It follows that $P[T \ge 4n^2] \le \frac{1}{2}$ and so $P[T \ge 4rn^2] \le (\frac{1}{2})^r$.

Exercise 11 (Open Problem) For 2-SAT how can you sample the SAT assignments?